xref: /llvm-project/llvm/lib/CodeGen/MachineCombiner.cpp (revision 2aeb930a9f5761e39fb321ad61710683fb49009d)
1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The machine combiner pass uses machine trace metrics to ensure the combined
11 // instructions do not lengthen the critical path or the resource depth.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/CodeGen/MachineDominators.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineLoopInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/MachineTraceMetrics.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "machine-combiner"
34 
35 STATISTIC(NumInstCombined, "Number of machineinst combined");
36 
37 static cl::opt<unsigned>
38 inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
39               cl::desc("Incremental depth computation will be used for basic "
40                        "blocks with more instructions."), cl::init(500));
41 
42 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
43                                 cl::desc("Dump all substituted intrs"),
44                                 cl::init(false));
45 
46 #ifdef EXPENSIVE_CHECKS
47 static cl::opt<bool> VerifyPatternOrder(
48     "machine-combiner-verify-pattern-order", cl::Hidden,
49     cl::desc(
50         "Verify that the generated patterns are ordered by increasing latency"),
51     cl::init(true));
52 #else
53 static cl::opt<bool> VerifyPatternOrder(
54     "machine-combiner-verify-pattern-order", cl::Hidden,
55     cl::desc(
56         "Verify that the generated patterns are ordered by increasing latency"),
57     cl::init(false));
58 #endif
59 
60 namespace {
61 class MachineCombiner : public MachineFunctionPass {
62   const TargetSubtargetInfo *STI;
63   const TargetInstrInfo *TII;
64   const TargetRegisterInfo *TRI;
65   MCSchedModel SchedModel;
66   MachineRegisterInfo *MRI;
67   MachineLoopInfo *MLI; // Current MachineLoopInfo
68   MachineTraceMetrics *Traces;
69   MachineTraceMetrics::Ensemble *MinInstr;
70 
71   TargetSchedModel TSchedModel;
72 
73   /// True if optimizing for code size.
74   bool OptSize;
75 
76 public:
77   static char ID;
78   MachineCombiner() : MachineFunctionPass(ID) {
79     initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
80   }
81   void getAnalysisUsage(AnalysisUsage &AU) const override;
82   bool runOnMachineFunction(MachineFunction &MF) override;
83   StringRef getPassName() const override { return "Machine InstCombiner"; }
84 
85 private:
86   bool doSubstitute(unsigned NewSize, unsigned OldSize);
87   bool combineInstructions(MachineBasicBlock *);
88   MachineInstr *getOperandDef(const MachineOperand &MO);
89   unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
90                     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
91                     MachineTraceMetrics::Trace BlockTrace);
92   unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
93                       MachineTraceMetrics::Trace BlockTrace);
94   bool
95   improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
96                           MachineTraceMetrics::Trace BlockTrace,
97                           SmallVectorImpl<MachineInstr *> &InsInstrs,
98                           SmallVectorImpl<MachineInstr *> &DelInstrs,
99                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
100                           MachineCombinerPattern Pattern, bool SlackIsAccurate);
101   bool preservesResourceLen(MachineBasicBlock *MBB,
102                             MachineTraceMetrics::Trace BlockTrace,
103                             SmallVectorImpl<MachineInstr *> &InsInstrs,
104                             SmallVectorImpl<MachineInstr *> &DelInstrs);
105   void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
106                      SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
107   std::pair<unsigned, unsigned>
108   getLatenciesForInstrSequences(MachineInstr &MI,
109                                 SmallVectorImpl<MachineInstr *> &InsInstrs,
110                                 SmallVectorImpl<MachineInstr *> &DelInstrs,
111                                 MachineTraceMetrics::Trace BlockTrace);
112 
113   void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
114                           SmallVector<MachineCombinerPattern, 16> &Patterns);
115 };
116 }
117 
118 char MachineCombiner::ID = 0;
119 char &llvm::MachineCombinerID = MachineCombiner::ID;
120 
121 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
122                       "Machine InstCombiner", false, false)
123 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
124 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
125 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
126                     false, false)
127 
128 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
129   AU.setPreservesCFG();
130   AU.addPreserved<MachineDominatorTree>();
131   AU.addRequired<MachineLoopInfo>();
132   AU.addPreserved<MachineLoopInfo>();
133   AU.addRequired<MachineTraceMetrics>();
134   AU.addPreserved<MachineTraceMetrics>();
135   MachineFunctionPass::getAnalysisUsage(AU);
136 }
137 
138 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
139   MachineInstr *DefInstr = nullptr;
140   // We need a virtual register definition.
141   if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
142     DefInstr = MRI->getUniqueVRegDef(MO.getReg());
143   // PHI's have no depth etc.
144   if (DefInstr && DefInstr->isPHI())
145     DefInstr = nullptr;
146   return DefInstr;
147 }
148 
149 /// Computes depth of instructions in vector \InsInstr.
150 ///
151 /// \param InsInstrs is a vector of machine instructions
152 /// \param InstrIdxForVirtReg is a dense map of virtual register to index
153 /// of defining machine instruction in \p InsInstrs
154 /// \param BlockTrace is a trace of machine instructions
155 ///
156 /// \returns Depth of last instruction in \InsInstrs ("NewRoot")
157 unsigned
158 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
159                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
160                           MachineTraceMetrics::Trace BlockTrace) {
161   SmallVector<unsigned, 16> InstrDepth;
162   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
163          "Missing machine model\n");
164 
165   // For each instruction in the new sequence compute the depth based on the
166   // operands. Use the trace information when possible. For new operands which
167   // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
168   for (auto *InstrPtr : InsInstrs) { // for each Use
169     unsigned IDepth = 0;
170     for (const MachineOperand &MO : InstrPtr->operands()) {
171       // Check for virtual register operand.
172       if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
173         continue;
174       if (!MO.isUse())
175         continue;
176       unsigned DepthOp = 0;
177       unsigned LatencyOp = 0;
178       DenseMap<unsigned, unsigned>::iterator II =
179           InstrIdxForVirtReg.find(MO.getReg());
180       if (II != InstrIdxForVirtReg.end()) {
181         // Operand is new virtual register not in trace
182         assert(II->second < InstrDepth.size() && "Bad Index");
183         MachineInstr *DefInstr = InsInstrs[II->second];
184         assert(DefInstr &&
185                "There must be a definition for a new virtual register");
186         DepthOp = InstrDepth[II->second];
187         int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg());
188         int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg());
189         LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
190                                                       InstrPtr, UseIdx);
191       } else {
192         MachineInstr *DefInstr = getOperandDef(MO);
193         if (DefInstr) {
194           DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
195           LatencyOp = TSchedModel.computeOperandLatency(
196               DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
197               InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
198         }
199       }
200       IDepth = std::max(IDepth, DepthOp + LatencyOp);
201     }
202     InstrDepth.push_back(IDepth);
203   }
204   unsigned NewRootIdx = InsInstrs.size() - 1;
205   return InstrDepth[NewRootIdx];
206 }
207 
208 /// Computes instruction latency as max of latency of defined operands.
209 ///
210 /// \param Root is a machine instruction that could be replaced by NewRoot.
211 /// It is used to compute a more accurate latency information for NewRoot in
212 /// case there is a dependent instruction in the same trace (\p BlockTrace)
213 /// \param NewRoot is the instruction for which the latency is computed
214 /// \param BlockTrace is a trace of machine instructions
215 ///
216 /// \returns Latency of \p NewRoot
217 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
218                                      MachineTraceMetrics::Trace BlockTrace) {
219   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
220          "Missing machine model\n");
221 
222   // Check each definition in NewRoot and compute the latency
223   unsigned NewRootLatency = 0;
224 
225   for (const MachineOperand &MO : NewRoot->operands()) {
226     // Check for virtual register operand.
227     if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
228       continue;
229     if (!MO.isDef())
230       continue;
231     // Get the first instruction that uses MO
232     MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
233     RI++;
234     MachineInstr *UseMO = RI->getParent();
235     unsigned LatencyOp = 0;
236     if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
237       LatencyOp = TSchedModel.computeOperandLatency(
238           NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
239           UseMO->findRegisterUseOperandIdx(MO.getReg()));
240     } else {
241       LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
242     }
243     NewRootLatency = std::max(NewRootLatency, LatencyOp);
244   }
245   return NewRootLatency;
246 }
247 
248 /// The combiner's goal may differ based on which pattern it is attempting
249 /// to optimize.
250 enum class CombinerObjective {
251   MustReduceDepth, // The data dependency chain must be improved.
252   Default          // The critical path must not be lengthened.
253 };
254 
255 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
256   // TODO: If C++ ever gets a real enum class, make this part of the
257   // MachineCombinerPattern class.
258   switch (P) {
259   case MachineCombinerPattern::REASSOC_AX_BY:
260   case MachineCombinerPattern::REASSOC_AX_YB:
261   case MachineCombinerPattern::REASSOC_XA_BY:
262   case MachineCombinerPattern::REASSOC_XA_YB:
263     return CombinerObjective::MustReduceDepth;
264   default:
265     return CombinerObjective::Default;
266   }
267 }
268 
269 /// Estimate the latency of the new and original instruction sequence by summing
270 /// up the latencies of the inserted and deleted instructions. This assumes
271 /// that the inserted and deleted instructions are dependent instruction chains,
272 /// which might not hold in all cases.
273 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
274     MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs,
275     SmallVectorImpl<MachineInstr *> &DelInstrs,
276     MachineTraceMetrics::Trace BlockTrace) {
277   assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
278   unsigned NewRootLatency = 0;
279   // NewRoot is the last instruction in the \p InsInstrs vector.
280   MachineInstr *NewRoot = InsInstrs.back();
281   for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
282     NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
283   NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);
284 
285   unsigned RootLatency = 0;
286   for (auto I : DelInstrs)
287     RootLatency += TSchedModel.computeInstrLatency(I);
288 
289   return {NewRootLatency, RootLatency};
290 }
291 
292 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
293 /// The new code sequence ends in MI NewRoot. A necessary condition for the new
294 /// sequence to replace the old sequence is that it cannot lengthen the critical
295 /// path. The definition of "improve" may be restricted by specifying that the
296 /// new path improves the data dependency chain (MustReduceDepth).
297 bool MachineCombiner::improvesCriticalPathLen(
298     MachineBasicBlock *MBB, MachineInstr *Root,
299     MachineTraceMetrics::Trace BlockTrace,
300     SmallVectorImpl<MachineInstr *> &InsInstrs,
301     SmallVectorImpl<MachineInstr *> &DelInstrs,
302     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
303     MachineCombinerPattern Pattern,
304     bool SlackIsAccurate) {
305   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
306          "Missing machine model\n");
307   // Get depth and latency of NewRoot and Root.
308   unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
309   unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
310 
311   DEBUG(dbgs() << "  Dependence data for " << *Root << "\tNewRootDepth: "
312                << NewRootDepth << "\tRootDepth: " << RootDepth);
313 
314   // For a transform such as reassociation, the cost equation is
315   // conservatively calculated so that we must improve the depth (data
316   // dependency cycles) in the critical path to proceed with the transform.
317   // Being conservative also protects against inaccuracies in the underlying
318   // machine trace metrics and CPU models.
319   if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
320     DEBUG(dbgs() << "\tIt MustReduceDepth ");
321     DEBUG(NewRootDepth < RootDepth ? dbgs() << "\t  and it does it\n"
322                                    : dbgs() << "\t  but it does NOT do it\n");
323     return NewRootDepth < RootDepth;
324   }
325 
326   // A more flexible cost calculation for the critical path includes the slack
327   // of the original code sequence. This may allow the transform to proceed
328   // even if the instruction depths (data dependency cycles) become worse.
329 
330   // Account for the latency of the inserted and deleted instructions by
331   unsigned NewRootLatency, RootLatency;
332   std::tie(NewRootLatency, RootLatency) =
333       getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);
334 
335   unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
336   unsigned NewCycleCount = NewRootDepth + NewRootLatency;
337   unsigned OldCycleCount =
338       RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
339   DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency << "\tRootLatency: "
340                << RootLatency << "\n\tRootSlack: " << RootSlack
341                << " SlackIsAccurate=" << SlackIsAccurate
342                << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
343                << "\n\tRootDepth + RootLatency + RootSlack = "
344                << OldCycleCount;);
345   DEBUG(NewCycleCount <= OldCycleCount
346             ? dbgs() << "\n\t  It IMPROVES PathLen because"
347             : dbgs() << "\n\t  It DOES NOT improve PathLen because");
348   DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
349                << ", OldCycleCount = " << OldCycleCount << "\n");
350 
351   return NewCycleCount <= OldCycleCount;
352 }
353 
354 /// helper routine to convert instructions into SC
355 void MachineCombiner::instr2instrSC(
356     SmallVectorImpl<MachineInstr *> &Instrs,
357     SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
358   for (auto *InstrPtr : Instrs) {
359     unsigned Opc = InstrPtr->getOpcode();
360     unsigned Idx = TII->get(Opc).getSchedClass();
361     const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
362     InstrsSC.push_back(SC);
363   }
364 }
365 
366 /// True when the new instructions do not increase resource length
367 bool MachineCombiner::preservesResourceLen(
368     MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
369     SmallVectorImpl<MachineInstr *> &InsInstrs,
370     SmallVectorImpl<MachineInstr *> &DelInstrs) {
371   if (!TSchedModel.hasInstrSchedModel())
372     return true;
373 
374   // Compute current resource length
375 
376   //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
377   SmallVector <const MachineBasicBlock *, 1> MBBarr;
378   MBBarr.push_back(MBB);
379   unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
380 
381   // Deal with SC rather than Instructions.
382   SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
383   SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
384 
385   instr2instrSC(InsInstrs, InsInstrsSC);
386   instr2instrSC(DelInstrs, DelInstrsSC);
387 
388   ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
389   ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
390 
391   // Compute new resource length.
392   unsigned ResLenAfterCombine =
393       BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
394 
395   DEBUG(dbgs() << "\t\tResource length before replacement: "
396                << ResLenBeforeCombine << " and after: " << ResLenAfterCombine
397                << "\n";);
398   DEBUG(
399       ResLenAfterCombine <= ResLenBeforeCombine
400           ? dbgs() << "\t\t  As result it IMPROVES/PRESERVES Resource Length\n"
401           : dbgs() << "\t\t  As result it DOES NOT improve/preserve Resource "
402                       "Length\n");
403 
404   return ResLenAfterCombine <= ResLenBeforeCombine;
405 }
406 
407 /// \returns true when new instruction sequence should be generated
408 /// independent if it lengthens critical path or not
409 bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
410   if (OptSize && (NewSize < OldSize))
411     return true;
412   if (!TSchedModel.hasInstrSchedModelOrItineraries())
413     return true;
414   return false;
415 }
416 
417 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
418 /// depths if requested.
419 ///
420 /// \param MBB basic block to insert instructions in
421 /// \param MI current machine instruction
422 /// \param InsInstrs new instructions to insert in \p MBB
423 /// \param DelInstrs instruction to delete from \p MBB
424 /// \param MinInstr is a pointer to the machine trace information
425 /// \param RegUnits set of live registers, needed to compute instruction depths
426 /// \param IncrementalUpdate if true, compute instruction depths incrementally,
427 ///                          otherwise invalidate the trace
428 static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
429                                      SmallVector<MachineInstr *, 16> InsInstrs,
430                                      SmallVector<MachineInstr *, 16> DelInstrs,
431                                      MachineTraceMetrics::Ensemble *MinInstr,
432                                      SparseSet<LiveRegUnit> &RegUnits,
433                                      bool IncrementalUpdate) {
434   for (auto *InstrPtr : InsInstrs)
435     MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
436 
437   for (auto *InstrPtr : DelInstrs) {
438     InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
439     // Erase all LiveRegs defined by the removed instruction
440     for (auto I = RegUnits.begin(); I != RegUnits.end(); ) {
441       if (I->MI == InstrPtr)
442         I = RegUnits.erase(I);
443       else
444         I++;
445     }
446   }
447 
448   if (IncrementalUpdate)
449     for (auto *InstrPtr : InsInstrs)
450       MinInstr->updateDepth(MBB, *InstrPtr, RegUnits);
451   else
452     MinInstr->invalidate(MBB);
453 
454   NumInstCombined++;
455 }
456 
457 // Check that the difference between original and new latency is decreasing for
458 // later patterns. This helps to discover sub-optimal pattern orderings.
459 void MachineCombiner::verifyPatternOrder(
460     MachineBasicBlock *MBB, MachineInstr &Root,
461     SmallVector<MachineCombinerPattern, 16> &Patterns) {
462   long PrevLatencyDiff = std::numeric_limits<long>::max();
463   (void)PrevLatencyDiff; // Variable is used in assert only.
464   for (auto P : Patterns) {
465     SmallVector<MachineInstr *, 16> InsInstrs;
466     SmallVector<MachineInstr *, 16> DelInstrs;
467     DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
468     TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
469                                     InstrIdxForVirtReg);
470     // Found pattern, but did not generate alternative sequence.
471     // This can happen e.g. when an immediate could not be materialized
472     // in a single instruction.
473     if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
474       continue;
475 
476     unsigned NewRootLatency, RootLatency;
477     std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
478         Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB));
479     long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
480     assert(CurrentLatencyDiff <= PrevLatencyDiff &&
481            "Current pattern is better than previous pattern.");
482     PrevLatencyDiff = CurrentLatencyDiff;
483   }
484 }
485 
486 /// Substitute a slow code sequence with a faster one by
487 /// evaluating instruction combining pattern.
488 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
489 /// combining based on machine trace metrics. Only combine a sequence of
490 /// instructions  when this neither lengthens the critical path nor increases
491 /// resource pressure. When optimizing for codesize always combine when the new
492 /// sequence is shorter.
493 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
494   bool Changed = false;
495   DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
496 
497   bool IncrementalUpdate = false;
498   auto BlockIter = MBB->begin();
499   decltype(BlockIter) LastUpdate;
500   // Check if the block is in a loop.
501   const MachineLoop *ML = MLI->getLoopFor(MBB);
502   if (!MinInstr)
503     MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
504 
505   SparseSet<LiveRegUnit> RegUnits;
506   RegUnits.setUniverse(TRI->getNumRegUnits());
507 
508   while (BlockIter != MBB->end()) {
509     auto &MI = *BlockIter++;
510     SmallVector<MachineCombinerPattern, 16> Patterns;
511     // The motivating example is:
512     //
513     //     MUL  Other        MUL_op1 MUL_op2  Other
514     //      \    /               \      |    /
515     //      ADD/SUB      =>        MADD/MSUB
516     //      (=Root)                (=NewRoot)
517 
518     // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
519     // usually beneficial for code size it unfortunately can hurt performance
520     // when the ADD is on the critical path, but the MUL is not. With the
521     // substitution the MUL becomes part of the critical path (in form of the
522     // MADD) and can lengthen it on architectures where the MADD latency is
523     // longer than the ADD latency.
524     //
525     // For each instruction we check if it can be the root of a combiner
526     // pattern. Then for each pattern the new code sequence in form of MI is
527     // generated and evaluated. When the efficiency criteria (don't lengthen
528     // critical path, don't use more resources) is met the new sequence gets
529     // hooked up into the basic block before the old sequence is removed.
530     //
531     // The algorithm does not try to evaluate all patterns and pick the best.
532     // This is only an artificial restriction though. In practice there is
533     // mostly one pattern, and getMachineCombinerPatterns() can order patterns
534     // based on an internal cost heuristic. If
535     // machine-combiner-verify-pattern-order is enabled, all patterns are
536     // checked to ensure later patterns do not provide better latency savings.
537 
538     if (!TII->getMachineCombinerPatterns(MI, Patterns))
539       continue;
540 
541     if (VerifyPatternOrder)
542       verifyPatternOrder(MBB, MI, Patterns);
543 
544     for (auto P : Patterns) {
545       SmallVector<MachineInstr *, 16> InsInstrs;
546       SmallVector<MachineInstr *, 16> DelInstrs;
547       DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
548       TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
549                                       InstrIdxForVirtReg);
550       unsigned NewInstCount = InsInstrs.size();
551       unsigned OldInstCount = DelInstrs.size();
552       // Found pattern, but did not generate alternative sequence.
553       // This can happen e.g. when an immediate could not be materialized
554       // in a single instruction.
555       if (!NewInstCount)
556         continue;
557 
558       DEBUG(if (dump_intrs) {
559         dbgs() << "\tFor the Pattern (" << (int)P << ") these instructions could be removed\n";
560         for (auto const *InstrPtr : DelInstrs) {
561           dbgs() << "\t\t" << STI->getSchedInfoStr(*InstrPtr) << ": ";
562           InstrPtr->print(dbgs(), false, false, false, TII);
563         }
564         dbgs() << "\tThese instructions could replace the removed ones\n";
565         for (auto const *InstrPtr : InsInstrs) {
566           dbgs() << "\t\t" << STI->getSchedInfoStr(*InstrPtr) << ": ";
567           InstrPtr->print(dbgs(), false, false, false, TII);
568         }
569       });
570 
571       bool SubstituteAlways = false;
572       if (ML && TII->isThroughputPattern(P))
573         SubstituteAlways = true;
574 
575       if (IncrementalUpdate) {
576         // Update depths since the last incremental update.
577         MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits);
578         LastUpdate = BlockIter;
579       }
580 
581       // Substitute when we optimize for codesize and the new sequence has
582       // fewer instructions OR
583       // the new sequence neither lengthens the critical path nor increases
584       // resource pressure.
585       if (SubstituteAlways || doSubstitute(NewInstCount, OldInstCount)) {
586         insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
587                                  RegUnits, IncrementalUpdate);
588         // Eagerly stop after the first pattern fires.
589         Changed = true;
590         break;
591       } else {
592         // For big basic blocks, we only compute the full trace the first time
593         // we hit this. We do not invalidate the trace, but instead update the
594         // instruction depths incrementally.
595         // NOTE: Only the instruction depths up to MI are accurate. All other
596         // trace information is not updated.
597         MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
598         Traces->verifyAnalysis();
599         if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
600                                     InstrIdxForVirtReg, P,
601                                     !IncrementalUpdate) &&
602             preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
603           if (MBB->size() > inc_threshold) {
604             // Use incremental depth updates for basic blocks above treshold
605             IncrementalUpdate = true;
606             LastUpdate = BlockIter;
607           }
608 
609           insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
610                                    RegUnits, IncrementalUpdate);
611 
612           // Eagerly stop after the first pattern fires.
613           Changed = true;
614           break;
615         }
616         // Cleanup instructions of the alternative code sequence. There is no
617         // use for them.
618         MachineFunction *MF = MBB->getParent();
619         for (auto *InstrPtr : InsInstrs)
620           MF->DeleteMachineInstr(InstrPtr);
621       }
622       InstrIdxForVirtReg.clear();
623     }
624   }
625 
626   if (Changed && IncrementalUpdate)
627     Traces->invalidate(MBB);
628   return Changed;
629 }
630 
631 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
632   STI = &MF.getSubtarget();
633   TII = STI->getInstrInfo();
634   TRI = STI->getRegisterInfo();
635   SchedModel = STI->getSchedModel();
636   TSchedModel.init(SchedModel, STI, TII);
637   MRI = &MF.getRegInfo();
638   MLI = &getAnalysis<MachineLoopInfo>();
639   Traces = &getAnalysis<MachineTraceMetrics>();
640   MinInstr = nullptr;
641   OptSize = MF.getFunction().optForSize();
642 
643   DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
644   if (!TII->useMachineCombiner()) {
645     DEBUG(dbgs() << "  Skipping pass: Target does not support machine combiner\n");
646     return false;
647   }
648 
649   bool Changed = false;
650 
651   // Try to combine instructions.
652   for (auto &MBB : MF)
653     Changed |= combineInstructions(&MBB);
654 
655   return Changed;
656 }
657