1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The machine combiner pass uses machine trace metrics to ensure the combined 10 // instructions do not lengthen the critical path or the resource depth. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/ProfileSummaryInfo.h" 16 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 17 #include "llvm/CodeGen/MachineDominators.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineFunctionPass.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/MachineSizeOpts.h" 23 #include "llvm/CodeGen/MachineTraceMetrics.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetRegisterInfo.h" 27 #include "llvm/CodeGen/TargetSchedule.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "machine-combiner" 37 38 STATISTIC(NumInstCombined, "Number of machineinst combined"); 39 40 static cl::opt<unsigned> 41 inc_threshold("machine-combiner-inc-threshold", cl::Hidden, 42 cl::desc("Incremental depth computation will be used for basic " 43 "blocks with more instructions."), cl::init(500)); 44 45 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden, 46 cl::desc("Dump all substituted intrs"), 47 cl::init(false)); 48 49 #ifdef EXPENSIVE_CHECKS 50 static cl::opt<bool> VerifyPatternOrder( 51 "machine-combiner-verify-pattern-order", cl::Hidden, 52 cl::desc( 53 "Verify that the generated patterns are ordered by increasing latency"), 54 cl::init(true)); 55 #else 56 static cl::opt<bool> VerifyPatternOrder( 57 "machine-combiner-verify-pattern-order", cl::Hidden, 58 cl::desc( 59 "Verify that the generated patterns are ordered by increasing latency"), 60 cl::init(false)); 61 #endif 62 63 namespace { 64 class MachineCombiner : public MachineFunctionPass { 65 const TargetSubtargetInfo *STI; 66 const TargetInstrInfo *TII; 67 const TargetRegisterInfo *TRI; 68 MCSchedModel SchedModel; 69 MachineRegisterInfo *MRI; 70 MachineLoopInfo *MLI; // Current MachineLoopInfo 71 MachineTraceMetrics *Traces; 72 MachineTraceMetrics::Ensemble *MinInstr; 73 MachineBlockFrequencyInfo *MBFI; 74 ProfileSummaryInfo *PSI; 75 76 TargetSchedModel TSchedModel; 77 78 /// True if optimizing for code size. 79 bool OptSize; 80 81 public: 82 static char ID; 83 MachineCombiner() : MachineFunctionPass(ID) { 84 initializeMachineCombinerPass(*PassRegistry::getPassRegistry()); 85 } 86 void getAnalysisUsage(AnalysisUsage &AU) const override; 87 bool runOnMachineFunction(MachineFunction &MF) override; 88 StringRef getPassName() const override { return "Machine InstCombiner"; } 89 90 private: 91 bool doSubstitute(unsigned NewSize, unsigned OldSize, bool OptForSize); 92 bool combineInstructions(MachineBasicBlock *); 93 MachineInstr *getOperandDef(const MachineOperand &MO); 94 unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs, 95 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 96 MachineTraceMetrics::Trace BlockTrace); 97 unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot, 98 MachineTraceMetrics::Trace BlockTrace); 99 bool 100 improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root, 101 MachineTraceMetrics::Trace BlockTrace, 102 SmallVectorImpl<MachineInstr *> &InsInstrs, 103 SmallVectorImpl<MachineInstr *> &DelInstrs, 104 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 105 MachineCombinerPattern Pattern, bool SlackIsAccurate); 106 bool preservesResourceLen(MachineBasicBlock *MBB, 107 MachineTraceMetrics::Trace BlockTrace, 108 SmallVectorImpl<MachineInstr *> &InsInstrs, 109 SmallVectorImpl<MachineInstr *> &DelInstrs); 110 void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs, 111 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC); 112 std::pair<unsigned, unsigned> 113 getLatenciesForInstrSequences(MachineInstr &MI, 114 SmallVectorImpl<MachineInstr *> &InsInstrs, 115 SmallVectorImpl<MachineInstr *> &DelInstrs, 116 MachineTraceMetrics::Trace BlockTrace); 117 118 void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root, 119 SmallVector<MachineCombinerPattern, 16> &Patterns); 120 }; 121 } 122 123 char MachineCombiner::ID = 0; 124 char &llvm::MachineCombinerID = MachineCombiner::ID; 125 126 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE, 127 "Machine InstCombiner", false, false) 128 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 129 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics) 130 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner", 131 false, false) 132 133 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const { 134 AU.setPreservesCFG(); 135 AU.addPreserved<MachineDominatorTree>(); 136 AU.addRequired<MachineLoopInfo>(); 137 AU.addPreserved<MachineLoopInfo>(); 138 AU.addRequired<MachineTraceMetrics>(); 139 AU.addPreserved<MachineTraceMetrics>(); 140 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 141 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 142 MachineFunctionPass::getAnalysisUsage(AU); 143 } 144 145 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) { 146 MachineInstr *DefInstr = nullptr; 147 // We need a virtual register definition. 148 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) 149 DefInstr = MRI->getUniqueVRegDef(MO.getReg()); 150 // PHI's have no depth etc. 151 if (DefInstr && DefInstr->isPHI()) 152 DefInstr = nullptr; 153 return DefInstr; 154 } 155 156 /// Computes depth of instructions in vector \InsInstr. 157 /// 158 /// \param InsInstrs is a vector of machine instructions 159 /// \param InstrIdxForVirtReg is a dense map of virtual register to index 160 /// of defining machine instruction in \p InsInstrs 161 /// \param BlockTrace is a trace of machine instructions 162 /// 163 /// \returns Depth of last instruction in \InsInstrs ("NewRoot") 164 unsigned 165 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs, 166 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 167 MachineTraceMetrics::Trace BlockTrace) { 168 SmallVector<unsigned, 16> InstrDepth; 169 assert(TSchedModel.hasInstrSchedModelOrItineraries() && 170 "Missing machine model\n"); 171 172 // For each instruction in the new sequence compute the depth based on the 173 // operands. Use the trace information when possible. For new operands which 174 // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth 175 for (auto *InstrPtr : InsInstrs) { // for each Use 176 unsigned IDepth = 0; 177 for (const MachineOperand &MO : InstrPtr->operands()) { 178 // Check for virtual register operand. 179 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 180 continue; 181 if (!MO.isUse()) 182 continue; 183 unsigned DepthOp = 0; 184 unsigned LatencyOp = 0; 185 DenseMap<unsigned, unsigned>::iterator II = 186 InstrIdxForVirtReg.find(MO.getReg()); 187 if (II != InstrIdxForVirtReg.end()) { 188 // Operand is new virtual register not in trace 189 assert(II->second < InstrDepth.size() && "Bad Index"); 190 MachineInstr *DefInstr = InsInstrs[II->second]; 191 assert(DefInstr && 192 "There must be a definition for a new virtual register"); 193 DepthOp = InstrDepth[II->second]; 194 int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg()); 195 int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg()); 196 LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx, 197 InstrPtr, UseIdx); 198 } else { 199 MachineInstr *DefInstr = getOperandDef(MO); 200 if (DefInstr) { 201 DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth; 202 LatencyOp = TSchedModel.computeOperandLatency( 203 DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()), 204 InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg())); 205 } 206 } 207 IDepth = std::max(IDepth, DepthOp + LatencyOp); 208 } 209 InstrDepth.push_back(IDepth); 210 } 211 unsigned NewRootIdx = InsInstrs.size() - 1; 212 return InstrDepth[NewRootIdx]; 213 } 214 215 /// Computes instruction latency as max of latency of defined operands. 216 /// 217 /// \param Root is a machine instruction that could be replaced by NewRoot. 218 /// It is used to compute a more accurate latency information for NewRoot in 219 /// case there is a dependent instruction in the same trace (\p BlockTrace) 220 /// \param NewRoot is the instruction for which the latency is computed 221 /// \param BlockTrace is a trace of machine instructions 222 /// 223 /// \returns Latency of \p NewRoot 224 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot, 225 MachineTraceMetrics::Trace BlockTrace) { 226 assert(TSchedModel.hasInstrSchedModelOrItineraries() && 227 "Missing machine model\n"); 228 229 // Check each definition in NewRoot and compute the latency 230 unsigned NewRootLatency = 0; 231 232 for (const MachineOperand &MO : NewRoot->operands()) { 233 // Check for virtual register operand. 234 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 235 continue; 236 if (!MO.isDef()) 237 continue; 238 // Get the first instruction that uses MO 239 MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg()); 240 RI++; 241 if (RI == MRI->reg_end()) 242 continue; 243 MachineInstr *UseMO = RI->getParent(); 244 unsigned LatencyOp = 0; 245 if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) { 246 LatencyOp = TSchedModel.computeOperandLatency( 247 NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO, 248 UseMO->findRegisterUseOperandIdx(MO.getReg())); 249 } else { 250 LatencyOp = TSchedModel.computeInstrLatency(NewRoot); 251 } 252 NewRootLatency = std::max(NewRootLatency, LatencyOp); 253 } 254 return NewRootLatency; 255 } 256 257 /// The combiner's goal may differ based on which pattern it is attempting 258 /// to optimize. 259 enum class CombinerObjective { 260 MustReduceDepth, // The data dependency chain must be improved. 261 Default // The critical path must not be lengthened. 262 }; 263 264 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) { 265 // TODO: If C++ ever gets a real enum class, make this part of the 266 // MachineCombinerPattern class. 267 switch (P) { 268 case MachineCombinerPattern::REASSOC_AX_BY: 269 case MachineCombinerPattern::REASSOC_AX_YB: 270 case MachineCombinerPattern::REASSOC_XA_BY: 271 case MachineCombinerPattern::REASSOC_XA_YB: 272 return CombinerObjective::MustReduceDepth; 273 default: 274 return CombinerObjective::Default; 275 } 276 } 277 278 /// Estimate the latency of the new and original instruction sequence by summing 279 /// up the latencies of the inserted and deleted instructions. This assumes 280 /// that the inserted and deleted instructions are dependent instruction chains, 281 /// which might not hold in all cases. 282 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences( 283 MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs, 284 SmallVectorImpl<MachineInstr *> &DelInstrs, 285 MachineTraceMetrics::Trace BlockTrace) { 286 assert(!InsInstrs.empty() && "Only support sequences that insert instrs."); 287 unsigned NewRootLatency = 0; 288 // NewRoot is the last instruction in the \p InsInstrs vector. 289 MachineInstr *NewRoot = InsInstrs.back(); 290 for (unsigned i = 0; i < InsInstrs.size() - 1; i++) 291 NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]); 292 NewRootLatency += getLatency(&MI, NewRoot, BlockTrace); 293 294 unsigned RootLatency = 0; 295 for (auto I : DelInstrs) 296 RootLatency += TSchedModel.computeInstrLatency(I); 297 298 return {NewRootLatency, RootLatency}; 299 } 300 301 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root. 302 /// The new code sequence ends in MI NewRoot. A necessary condition for the new 303 /// sequence to replace the old sequence is that it cannot lengthen the critical 304 /// path. The definition of "improve" may be restricted by specifying that the 305 /// new path improves the data dependency chain (MustReduceDepth). 306 bool MachineCombiner::improvesCriticalPathLen( 307 MachineBasicBlock *MBB, MachineInstr *Root, 308 MachineTraceMetrics::Trace BlockTrace, 309 SmallVectorImpl<MachineInstr *> &InsInstrs, 310 SmallVectorImpl<MachineInstr *> &DelInstrs, 311 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 312 MachineCombinerPattern Pattern, 313 bool SlackIsAccurate) { 314 assert(TSchedModel.hasInstrSchedModelOrItineraries() && 315 "Missing machine model\n"); 316 // Get depth and latency of NewRoot and Root. 317 unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace); 318 unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth; 319 320 LLVM_DEBUG(dbgs() << " Dependence data for " << *Root << "\tNewRootDepth: " 321 << NewRootDepth << "\tRootDepth: " << RootDepth); 322 323 // For a transform such as reassociation, the cost equation is 324 // conservatively calculated so that we must improve the depth (data 325 // dependency cycles) in the critical path to proceed with the transform. 326 // Being conservative also protects against inaccuracies in the underlying 327 // machine trace metrics and CPU models. 328 if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) { 329 LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth "); 330 LLVM_DEBUG(NewRootDepth < RootDepth 331 ? dbgs() << "\t and it does it\n" 332 : dbgs() << "\t but it does NOT do it\n"); 333 return NewRootDepth < RootDepth; 334 } 335 336 // A more flexible cost calculation for the critical path includes the slack 337 // of the original code sequence. This may allow the transform to proceed 338 // even if the instruction depths (data dependency cycles) become worse. 339 340 // Account for the latency of the inserted and deleted instructions by 341 unsigned NewRootLatency, RootLatency; 342 std::tie(NewRootLatency, RootLatency) = 343 getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace); 344 345 unsigned RootSlack = BlockTrace.getInstrSlack(*Root); 346 unsigned NewCycleCount = NewRootDepth + NewRootLatency; 347 unsigned OldCycleCount = 348 RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0); 349 LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency 350 << "\tRootLatency: " << RootLatency << "\n\tRootSlack: " 351 << RootSlack << " SlackIsAccurate=" << SlackIsAccurate 352 << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount 353 << "\n\tRootDepth + RootLatency + RootSlack = " 354 << OldCycleCount;); 355 LLVM_DEBUG(NewCycleCount <= OldCycleCount 356 ? dbgs() << "\n\t It IMPROVES PathLen because" 357 : dbgs() << "\n\t It DOES NOT improve PathLen because"); 358 LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount 359 << ", OldCycleCount = " << OldCycleCount << "\n"); 360 361 return NewCycleCount <= OldCycleCount; 362 } 363 364 /// helper routine to convert instructions into SC 365 void MachineCombiner::instr2instrSC( 366 SmallVectorImpl<MachineInstr *> &Instrs, 367 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) { 368 for (auto *InstrPtr : Instrs) { 369 unsigned Opc = InstrPtr->getOpcode(); 370 unsigned Idx = TII->get(Opc).getSchedClass(); 371 const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx); 372 InstrsSC.push_back(SC); 373 } 374 } 375 376 /// True when the new instructions do not increase resource length 377 bool MachineCombiner::preservesResourceLen( 378 MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace, 379 SmallVectorImpl<MachineInstr *> &InsInstrs, 380 SmallVectorImpl<MachineInstr *> &DelInstrs) { 381 if (!TSchedModel.hasInstrSchedModel()) 382 return true; 383 384 // Compute current resource length 385 386 //ArrayRef<const MachineBasicBlock *> MBBarr(MBB); 387 SmallVector <const MachineBasicBlock *, 1> MBBarr; 388 MBBarr.push_back(MBB); 389 unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr); 390 391 // Deal with SC rather than Instructions. 392 SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC; 393 SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC; 394 395 instr2instrSC(InsInstrs, InsInstrsSC); 396 instr2instrSC(DelInstrs, DelInstrsSC); 397 398 ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC); 399 ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC); 400 401 // Compute new resource length. 402 unsigned ResLenAfterCombine = 403 BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr); 404 405 LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: " 406 << ResLenBeforeCombine 407 << " and after: " << ResLenAfterCombine << "\n";); 408 LLVM_DEBUG( 409 ResLenAfterCombine <= 410 ResLenBeforeCombine + TII->getExtendResourceLenLimit() 411 ? dbgs() << "\t\t As result it IMPROVES/PRESERVES Resource Length\n" 412 : dbgs() << "\t\t As result it DOES NOT improve/preserve Resource " 413 "Length\n"); 414 415 return ResLenAfterCombine <= 416 ResLenBeforeCombine + TII->getExtendResourceLenLimit(); 417 } 418 419 /// \returns true when new instruction sequence should be generated 420 /// independent if it lengthens critical path or not 421 bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize, 422 bool OptForSize) { 423 if (OptForSize && (NewSize < OldSize)) 424 return true; 425 if (!TSchedModel.hasInstrSchedModelOrItineraries()) 426 return true; 427 return false; 428 } 429 430 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction 431 /// depths if requested. 432 /// 433 /// \param MBB basic block to insert instructions in 434 /// \param MI current machine instruction 435 /// \param InsInstrs new instructions to insert in \p MBB 436 /// \param DelInstrs instruction to delete from \p MBB 437 /// \param MinInstr is a pointer to the machine trace information 438 /// \param RegUnits set of live registers, needed to compute instruction depths 439 /// \param IncrementalUpdate if true, compute instruction depths incrementally, 440 /// otherwise invalidate the trace 441 static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI, 442 SmallVector<MachineInstr *, 16> InsInstrs, 443 SmallVector<MachineInstr *, 16> DelInstrs, 444 MachineTraceMetrics::Ensemble *MinInstr, 445 SparseSet<LiveRegUnit> &RegUnits, 446 bool IncrementalUpdate) { 447 for (auto *InstrPtr : InsInstrs) 448 MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr); 449 450 for (auto *InstrPtr : DelInstrs) { 451 InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval(); 452 // Erase all LiveRegs defined by the removed instruction 453 for (auto I = RegUnits.begin(); I != RegUnits.end(); ) { 454 if (I->MI == InstrPtr) 455 I = RegUnits.erase(I); 456 else 457 I++; 458 } 459 } 460 461 if (IncrementalUpdate) 462 for (auto *InstrPtr : InsInstrs) 463 MinInstr->updateDepth(MBB, *InstrPtr, RegUnits); 464 else 465 MinInstr->invalidate(MBB); 466 467 NumInstCombined++; 468 } 469 470 // Check that the difference between original and new latency is decreasing for 471 // later patterns. This helps to discover sub-optimal pattern orderings. 472 void MachineCombiner::verifyPatternOrder( 473 MachineBasicBlock *MBB, MachineInstr &Root, 474 SmallVector<MachineCombinerPattern, 16> &Patterns) { 475 long PrevLatencyDiff = std::numeric_limits<long>::max(); 476 (void)PrevLatencyDiff; // Variable is used in assert only. 477 for (auto P : Patterns) { 478 SmallVector<MachineInstr *, 16> InsInstrs; 479 SmallVector<MachineInstr *, 16> DelInstrs; 480 DenseMap<unsigned, unsigned> InstrIdxForVirtReg; 481 TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs, 482 InstrIdxForVirtReg); 483 // Found pattern, but did not generate alternative sequence. 484 // This can happen e.g. when an immediate could not be materialized 485 // in a single instruction. 486 if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries()) 487 continue; 488 489 unsigned NewRootLatency, RootLatency; 490 std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences( 491 Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB)); 492 long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency); 493 assert(CurrentLatencyDiff <= PrevLatencyDiff && 494 "Current pattern is better than previous pattern."); 495 PrevLatencyDiff = CurrentLatencyDiff; 496 } 497 } 498 499 /// Substitute a slow code sequence with a faster one by 500 /// evaluating instruction combining pattern. 501 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction 502 /// combining based on machine trace metrics. Only combine a sequence of 503 /// instructions when this neither lengthens the critical path nor increases 504 /// resource pressure. When optimizing for codesize always combine when the new 505 /// sequence is shorter. 506 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) { 507 bool Changed = false; 508 LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n"); 509 510 bool IncrementalUpdate = false; 511 auto BlockIter = MBB->begin(); 512 decltype(BlockIter) LastUpdate; 513 // Check if the block is in a loop. 514 const MachineLoop *ML = MLI->getLoopFor(MBB); 515 if (!MinInstr) 516 MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount); 517 518 SparseSet<LiveRegUnit> RegUnits; 519 RegUnits.setUniverse(TRI->getNumRegUnits()); 520 521 bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI); 522 523 while (BlockIter != MBB->end()) { 524 auto &MI = *BlockIter++; 525 SmallVector<MachineCombinerPattern, 16> Patterns; 526 // The motivating example is: 527 // 528 // MUL Other MUL_op1 MUL_op2 Other 529 // \ / \ | / 530 // ADD/SUB => MADD/MSUB 531 // (=Root) (=NewRoot) 532 533 // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is 534 // usually beneficial for code size it unfortunately can hurt performance 535 // when the ADD is on the critical path, but the MUL is not. With the 536 // substitution the MUL becomes part of the critical path (in form of the 537 // MADD) and can lengthen it on architectures where the MADD latency is 538 // longer than the ADD latency. 539 // 540 // For each instruction we check if it can be the root of a combiner 541 // pattern. Then for each pattern the new code sequence in form of MI is 542 // generated and evaluated. When the efficiency criteria (don't lengthen 543 // critical path, don't use more resources) is met the new sequence gets 544 // hooked up into the basic block before the old sequence is removed. 545 // 546 // The algorithm does not try to evaluate all patterns and pick the best. 547 // This is only an artificial restriction though. In practice there is 548 // mostly one pattern, and getMachineCombinerPatterns() can order patterns 549 // based on an internal cost heuristic. If 550 // machine-combiner-verify-pattern-order is enabled, all patterns are 551 // checked to ensure later patterns do not provide better latency savings. 552 553 if (!TII->getMachineCombinerPatterns(MI, Patterns)) 554 continue; 555 556 if (VerifyPatternOrder) 557 verifyPatternOrder(MBB, MI, Patterns); 558 559 for (auto P : Patterns) { 560 SmallVector<MachineInstr *, 16> InsInstrs; 561 SmallVector<MachineInstr *, 16> DelInstrs; 562 DenseMap<unsigned, unsigned> InstrIdxForVirtReg; 563 TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs, 564 InstrIdxForVirtReg); 565 unsigned NewInstCount = InsInstrs.size(); 566 unsigned OldInstCount = DelInstrs.size(); 567 // Found pattern, but did not generate alternative sequence. 568 // This can happen e.g. when an immediate could not be materialized 569 // in a single instruction. 570 if (!NewInstCount) 571 continue; 572 573 LLVM_DEBUG(if (dump_intrs) { 574 dbgs() << "\tFor the Pattern (" << (int)P 575 << ") these instructions could be removed\n"; 576 for (auto const *InstrPtr : DelInstrs) 577 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, 578 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII); 579 dbgs() << "\tThese instructions could replace the removed ones\n"; 580 for (auto const *InstrPtr : InsInstrs) 581 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, 582 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII); 583 }); 584 585 bool SubstituteAlways = false; 586 if (ML && TII->isThroughputPattern(P)) 587 SubstituteAlways = true; 588 589 if (IncrementalUpdate) { 590 // Update depths since the last incremental update. 591 MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits); 592 LastUpdate = BlockIter; 593 } 594 595 // Substitute when we optimize for codesize and the new sequence has 596 // fewer instructions OR 597 // the new sequence neither lengthens the critical path nor increases 598 // resource pressure. 599 if (SubstituteAlways || 600 doSubstitute(NewInstCount, OldInstCount, OptForSize)) { 601 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr, 602 RegUnits, IncrementalUpdate); 603 // Eagerly stop after the first pattern fires. 604 Changed = true; 605 break; 606 } else { 607 // For big basic blocks, we only compute the full trace the first time 608 // we hit this. We do not invalidate the trace, but instead update the 609 // instruction depths incrementally. 610 // NOTE: Only the instruction depths up to MI are accurate. All other 611 // trace information is not updated. 612 MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB); 613 Traces->verifyAnalysis(); 614 if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs, 615 InstrIdxForVirtReg, P, 616 !IncrementalUpdate) && 617 preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) { 618 if (MBB->size() > inc_threshold) { 619 // Use incremental depth updates for basic blocks above treshold 620 IncrementalUpdate = true; 621 LastUpdate = BlockIter; 622 } 623 624 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr, 625 RegUnits, IncrementalUpdate); 626 627 // Eagerly stop after the first pattern fires. 628 Changed = true; 629 break; 630 } 631 // Cleanup instructions of the alternative code sequence. There is no 632 // use for them. 633 MachineFunction *MF = MBB->getParent(); 634 for (auto *InstrPtr : InsInstrs) 635 MF->DeleteMachineInstr(InstrPtr); 636 } 637 InstrIdxForVirtReg.clear(); 638 } 639 } 640 641 if (Changed && IncrementalUpdate) 642 Traces->invalidate(MBB); 643 return Changed; 644 } 645 646 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) { 647 STI = &MF.getSubtarget(); 648 TII = STI->getInstrInfo(); 649 TRI = STI->getRegisterInfo(); 650 SchedModel = STI->getSchedModel(); 651 TSchedModel.init(STI); 652 MRI = &MF.getRegInfo(); 653 MLI = &getAnalysis<MachineLoopInfo>(); 654 Traces = &getAnalysis<MachineTraceMetrics>(); 655 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 656 MBFI = (PSI && PSI->hasProfileSummary()) ? 657 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : 658 nullptr; 659 MinInstr = nullptr; 660 OptSize = MF.getFunction().hasOptSize(); 661 662 LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n'); 663 if (!TII->useMachineCombiner()) { 664 LLVM_DEBUG( 665 dbgs() 666 << " Skipping pass: Target does not support machine combiner\n"); 667 return false; 668 } 669 670 bool Changed = false; 671 672 // Try to combine instructions. 673 for (auto &MBB : MF) 674 Changed |= combineInstructions(&MBB); 675 676 return Changed; 677 } 678