1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global common subexpression elimination on machine 11 // instructions using a scoped hash table based value numbering scheme. It 12 // must be run while the machine function is still in SSA form. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/RecyclingAllocator.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetSubtargetInfo.h" 29 using namespace llvm; 30 31 #define DEBUG_TYPE "machine-cse" 32 33 STATISTIC(NumCoalesces, "Number of copies coalesced"); 34 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 35 STATISTIC(NumPhysCSEs, 36 "Number of physreg referencing common subexpr eliminated"); 37 STATISTIC(NumCrossBBCSEs, 38 "Number of cross-MBB physreg referencing CS eliminated"); 39 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 40 41 namespace { 42 class MachineCSE : public MachineFunctionPass { 43 const TargetInstrInfo *TII; 44 const TargetRegisterInfo *TRI; 45 AliasAnalysis *AA; 46 MachineDominatorTree *DT; 47 MachineRegisterInfo *MRI; 48 public: 49 static char ID; // Pass identification 50 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) { 51 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 52 } 53 54 bool runOnMachineFunction(MachineFunction &MF) override; 55 56 void getAnalysisUsage(AnalysisUsage &AU) const override { 57 AU.setPreservesCFG(); 58 MachineFunctionPass::getAnalysisUsage(AU); 59 AU.addRequired<AliasAnalysis>(); 60 AU.addPreservedID(MachineLoopInfoID); 61 AU.addRequired<MachineDominatorTree>(); 62 AU.addPreserved<MachineDominatorTree>(); 63 } 64 65 void releaseMemory() override { 66 ScopeMap.clear(); 67 Exps.clear(); 68 } 69 70 private: 71 const unsigned LookAheadLimit; 72 typedef RecyclingAllocator<BumpPtrAllocator, 73 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy; 74 typedef ScopedHashTable<MachineInstr*, unsigned, 75 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType; 76 typedef ScopedHTType::ScopeTy ScopeType; 77 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap; 78 ScopedHTType VNT; 79 SmallVector<MachineInstr*, 64> Exps; 80 unsigned CurrVN; 81 82 bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB); 83 bool isPhysDefTriviallyDead(unsigned Reg, 84 MachineBasicBlock::const_iterator I, 85 MachineBasicBlock::const_iterator E) const; 86 bool hasLivePhysRegDefUses(const MachineInstr *MI, 87 const MachineBasicBlock *MBB, 88 SmallSet<unsigned,8> &PhysRefs, 89 SmallVectorImpl<unsigned> &PhysDefs, 90 bool &PhysUseDef) const; 91 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 92 SmallSet<unsigned,8> &PhysRefs, 93 SmallVectorImpl<unsigned> &PhysDefs, 94 bool &NonLocal) const; 95 bool isCSECandidate(MachineInstr *MI); 96 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 97 MachineInstr *CSMI, MachineInstr *MI); 98 void EnterScope(MachineBasicBlock *MBB); 99 void ExitScope(MachineBasicBlock *MBB); 100 bool ProcessBlock(MachineBasicBlock *MBB); 101 void ExitScopeIfDone(MachineDomTreeNode *Node, 102 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 103 bool PerformCSE(MachineDomTreeNode *Node); 104 }; 105 } // end anonymous namespace 106 107 char MachineCSE::ID = 0; 108 char &llvm::MachineCSEID = MachineCSE::ID; 109 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse", 110 "Machine Common Subexpression Elimination", false, false) 111 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 112 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 113 INITIALIZE_PASS_END(MachineCSE, "machine-cse", 114 "Machine Common Subexpression Elimination", false, false) 115 116 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI, 117 MachineBasicBlock *MBB) { 118 bool Changed = false; 119 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 120 MachineOperand &MO = MI->getOperand(i); 121 if (!MO.isReg() || !MO.isUse()) 122 continue; 123 unsigned Reg = MO.getReg(); 124 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 125 continue; 126 if (!MRI->hasOneNonDBGUse(Reg)) 127 // Only coalesce single use copies. This ensure the copy will be 128 // deleted. 129 continue; 130 MachineInstr *DefMI = MRI->getVRegDef(Reg); 131 if (!DefMI->isCopy()) 132 continue; 133 unsigned SrcReg = DefMI->getOperand(1).getReg(); 134 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 135 continue; 136 if (DefMI->getOperand(0).getSubReg()) 137 continue; 138 // FIXME: We should trivially coalesce subregister copies to expose CSE 139 // opportunities on instructions with truncated operands (see 140 // cse-add-with-overflow.ll). This can be done here as follows: 141 // if (SrcSubReg) 142 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 143 // SrcSubReg); 144 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 145 // 146 // The 2-addr pass has been updated to handle coalesced subregs. However, 147 // some machine-specific code still can't handle it. 148 // To handle it properly we also need a way find a constrained subregister 149 // class given a super-reg class and subreg index. 150 if (DefMI->getOperand(1).getSubReg()) 151 continue; 152 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 153 if (!MRI->constrainRegClass(SrcReg, RC)) 154 continue; 155 DEBUG(dbgs() << "Coalescing: " << *DefMI); 156 DEBUG(dbgs() << "*** to: " << *MI); 157 MO.setReg(SrcReg); 158 MRI->clearKillFlags(SrcReg); 159 DefMI->eraseFromParent(); 160 ++NumCoalesces; 161 Changed = true; 162 } 163 164 return Changed; 165 } 166 167 bool 168 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 169 MachineBasicBlock::const_iterator I, 170 MachineBasicBlock::const_iterator E) const { 171 unsigned LookAheadLeft = LookAheadLimit; 172 while (LookAheadLeft) { 173 // Skip over dbg_value's. 174 while (I != E && I->isDebugValue()) 175 ++I; 176 177 if (I == E) 178 // Reached end of block, register is obviously dead. 179 return true; 180 181 bool SeenDef = false; 182 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 183 const MachineOperand &MO = I->getOperand(i); 184 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 185 SeenDef = true; 186 if (!MO.isReg() || !MO.getReg()) 187 continue; 188 if (!TRI->regsOverlap(MO.getReg(), Reg)) 189 continue; 190 if (MO.isUse()) 191 // Found a use! 192 return false; 193 SeenDef = true; 194 } 195 if (SeenDef) 196 // See a def of Reg (or an alias) before encountering any use, it's 197 // trivially dead. 198 return true; 199 200 --LookAheadLeft; 201 ++I; 202 } 203 return false; 204 } 205 206 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 207 /// physical registers (except for dead defs of physical registers). It also 208 /// returns the physical register def by reference if it's the only one and the 209 /// instruction does not uses a physical register. 210 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 211 const MachineBasicBlock *MBB, 212 SmallSet<unsigned,8> &PhysRefs, 213 SmallVectorImpl<unsigned> &PhysDefs, 214 bool &PhysUseDef) const{ 215 // First, add all uses to PhysRefs. 216 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 217 const MachineOperand &MO = MI->getOperand(i); 218 if (!MO.isReg() || MO.isDef()) 219 continue; 220 unsigned Reg = MO.getReg(); 221 if (!Reg) 222 continue; 223 if (TargetRegisterInfo::isVirtualRegister(Reg)) 224 continue; 225 // Reading constant physregs is ok. 226 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) 227 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 228 PhysRefs.insert(*AI); 229 } 230 231 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 232 // (which currently contains only uses), set the PhysUseDef flag. 233 PhysUseDef = false; 234 MachineBasicBlock::const_iterator I = MI; I = std::next(I); 235 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 236 const MachineOperand &MO = MI->getOperand(i); 237 if (!MO.isReg() || !MO.isDef()) 238 continue; 239 unsigned Reg = MO.getReg(); 240 if (!Reg) 241 continue; 242 if (TargetRegisterInfo::isVirtualRegister(Reg)) 243 continue; 244 // Check against PhysRefs even if the def is "dead". 245 if (PhysRefs.count(Reg)) 246 PhysUseDef = true; 247 // If the def is dead, it's ok. But the def may not marked "dead". That's 248 // common since this pass is run before livevariables. We can scan 249 // forward a few instructions and check if it is obviously dead. 250 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) 251 PhysDefs.push_back(Reg); 252 } 253 254 // Finally, add all defs to PhysRefs as well. 255 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 256 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI) 257 PhysRefs.insert(*AI); 258 259 return !PhysRefs.empty(); 260 } 261 262 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 263 SmallSet<unsigned,8> &PhysRefs, 264 SmallVectorImpl<unsigned> &PhysDefs, 265 bool &NonLocal) const { 266 // For now conservatively returns false if the common subexpression is 267 // not in the same basic block as the given instruction. The only exception 268 // is if the common subexpression is in the sole predecessor block. 269 const MachineBasicBlock *MBB = MI->getParent(); 270 const MachineBasicBlock *CSMBB = CSMI->getParent(); 271 272 bool CrossMBB = false; 273 if (CSMBB != MBB) { 274 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 275 return false; 276 277 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 278 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i])) 279 // Avoid extending live range of physical registers if they are 280 //allocatable or reserved. 281 return false; 282 } 283 CrossMBB = true; 284 } 285 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); 286 MachineBasicBlock::const_iterator E = MI; 287 MachineBasicBlock::const_iterator EE = CSMBB->end(); 288 unsigned LookAheadLeft = LookAheadLimit; 289 while (LookAheadLeft) { 290 // Skip over dbg_value's. 291 while (I != E && I != EE && I->isDebugValue()) 292 ++I; 293 294 if (I == EE) { 295 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 296 (void)CrossMBB; 297 CrossMBB = false; 298 NonLocal = true; 299 I = MBB->begin(); 300 EE = MBB->end(); 301 continue; 302 } 303 304 if (I == E) 305 return true; 306 307 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 308 const MachineOperand &MO = I->getOperand(i); 309 // RegMasks go on instructions like calls that clobber lots of physregs. 310 // Don't attempt to CSE across such an instruction. 311 if (MO.isRegMask()) 312 return false; 313 if (!MO.isReg() || !MO.isDef()) 314 continue; 315 unsigned MOReg = MO.getReg(); 316 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 317 continue; 318 if (PhysRefs.count(MOReg)) 319 return false; 320 } 321 322 --LookAheadLeft; 323 ++I; 324 } 325 326 return false; 327 } 328 329 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 330 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || 331 MI->isInlineAsm() || MI->isDebugValue()) 332 return false; 333 334 // Ignore copies. 335 if (MI->isCopyLike()) 336 return false; 337 338 // Ignore stuff that we obviously can't move. 339 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 340 MI->hasUnmodeledSideEffects()) 341 return false; 342 343 if (MI->mayLoad()) { 344 // Okay, this instruction does a load. As a refinement, we allow the target 345 // to decide whether the loaded value is actually a constant. If so, we can 346 // actually use it as a load. 347 if (!MI->isInvariantLoad(AA)) 348 // FIXME: we should be able to hoist loads with no other side effects if 349 // there are no other instructions which can change memory in this loop. 350 // This is a trivial form of alias analysis. 351 return false; 352 } 353 return true; 354 } 355 356 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 357 /// common expression that defines Reg. 358 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 359 MachineInstr *CSMI, MachineInstr *MI) { 360 // FIXME: Heuristics that works around the lack the live range splitting. 361 362 // If CSReg is used at all uses of Reg, CSE should not increase register 363 // pressure of CSReg. 364 bool MayIncreasePressure = true; 365 if (TargetRegisterInfo::isVirtualRegister(CSReg) && 366 TargetRegisterInfo::isVirtualRegister(Reg)) { 367 MayIncreasePressure = false; 368 SmallPtrSet<MachineInstr*, 8> CSUses; 369 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 370 CSUses.insert(&MI); 371 } 372 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 373 if (!CSUses.count(&MI)) { 374 MayIncreasePressure = true; 375 break; 376 } 377 } 378 } 379 if (!MayIncreasePressure) return true; 380 381 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 382 // an immediate predecessor. We don't want to increase register pressure and 383 // end up causing other computation to be spilled. 384 if (TII->isAsCheapAsAMove(MI)) { 385 MachineBasicBlock *CSBB = CSMI->getParent(); 386 MachineBasicBlock *BB = MI->getParent(); 387 if (CSBB != BB && !CSBB->isSuccessor(BB)) 388 return false; 389 } 390 391 // Heuristics #2: If the expression doesn't not use a vr and the only use 392 // of the redundant computation are copies, do not cse. 393 bool HasVRegUse = false; 394 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 395 const MachineOperand &MO = MI->getOperand(i); 396 if (MO.isReg() && MO.isUse() && 397 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 398 HasVRegUse = true; 399 break; 400 } 401 } 402 if (!HasVRegUse) { 403 bool HasNonCopyUse = false; 404 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 405 // Ignore copies. 406 if (!MI.isCopyLike()) { 407 HasNonCopyUse = true; 408 break; 409 } 410 } 411 if (!HasNonCopyUse) 412 return false; 413 } 414 415 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 416 // it unless the defined value is already used in the BB of the new use. 417 bool HasPHI = false; 418 SmallPtrSet<MachineBasicBlock*, 4> CSBBs; 419 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 420 HasPHI |= MI.isPHI(); 421 CSBBs.insert(MI.getParent()); 422 } 423 424 if (!HasPHI) 425 return true; 426 return CSBBs.count(MI->getParent()); 427 } 428 429 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 430 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 431 ScopeType *Scope = new ScopeType(VNT); 432 ScopeMap[MBB] = Scope; 433 } 434 435 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 436 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 437 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 438 assert(SI != ScopeMap.end()); 439 delete SI->second; 440 ScopeMap.erase(SI); 441 } 442 443 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 444 bool Changed = false; 445 446 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 447 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 448 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 449 MachineInstr *MI = &*I; 450 ++I; 451 452 if (!isCSECandidate(MI)) 453 continue; 454 455 bool FoundCSE = VNT.count(MI); 456 if (!FoundCSE) { 457 // Look for trivial copy coalescing opportunities. 458 if (PerformTrivialCoalescing(MI, MBB)) { 459 Changed = true; 460 461 // After coalescing MI itself may become a copy. 462 if (MI->isCopyLike()) 463 continue; 464 FoundCSE = VNT.count(MI); 465 } 466 } 467 468 // Commute commutable instructions. 469 bool Commuted = false; 470 if (!FoundCSE && MI->isCommutable()) { 471 MachineInstr *NewMI = TII->commuteInstruction(MI); 472 if (NewMI) { 473 Commuted = true; 474 FoundCSE = VNT.count(NewMI); 475 if (NewMI != MI) { 476 // New instruction. It doesn't need to be kept. 477 NewMI->eraseFromParent(); 478 Changed = true; 479 } else if (!FoundCSE) 480 // MI was changed but it didn't help, commute it back! 481 (void)TII->commuteInstruction(MI); 482 } 483 } 484 485 // If the instruction defines physical registers and the values *may* be 486 // used, then it's not safe to replace it with a common subexpression. 487 // It's also not safe if the instruction uses physical registers. 488 bool CrossMBBPhysDef = false; 489 SmallSet<unsigned, 8> PhysRefs; 490 SmallVector<unsigned, 2> PhysDefs; 491 bool PhysUseDef = false; 492 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, 493 PhysDefs, PhysUseDef)) { 494 FoundCSE = false; 495 496 // ... Unless the CS is local or is in the sole predecessor block 497 // and it also defines the physical register which is not clobbered 498 // in between and the physical register uses were not clobbered. 499 // This can never be the case if the instruction both uses and 500 // defines the same physical register, which was detected above. 501 if (!PhysUseDef) { 502 unsigned CSVN = VNT.lookup(MI); 503 MachineInstr *CSMI = Exps[CSVN]; 504 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 505 FoundCSE = true; 506 } 507 } 508 509 if (!FoundCSE) { 510 VNT.insert(MI, CurrVN++); 511 Exps.push_back(MI); 512 continue; 513 } 514 515 // Found a common subexpression, eliminate it. 516 unsigned CSVN = VNT.lookup(MI); 517 MachineInstr *CSMI = Exps[CSVN]; 518 DEBUG(dbgs() << "Examining: " << *MI); 519 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 520 521 // Check if it's profitable to perform this CSE. 522 bool DoCSE = true; 523 unsigned NumDefs = MI->getDesc().getNumDefs() + 524 MI->getDesc().getNumImplicitDefs(); 525 526 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 527 MachineOperand &MO = MI->getOperand(i); 528 if (!MO.isReg() || !MO.isDef()) 529 continue; 530 unsigned OldReg = MO.getReg(); 531 unsigned NewReg = CSMI->getOperand(i).getReg(); 532 533 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 534 // we should make sure it is not dead at CSMI. 535 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 536 ImplicitDefsToUpdate.push_back(i); 537 if (OldReg == NewReg) { 538 --NumDefs; 539 continue; 540 } 541 542 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 543 TargetRegisterInfo::isVirtualRegister(NewReg) && 544 "Do not CSE physical register defs!"); 545 546 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 547 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 548 DoCSE = false; 549 break; 550 } 551 552 // Don't perform CSE if the result of the old instruction cannot exist 553 // within the register class of the new instruction. 554 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg); 555 if (!MRI->constrainRegClass(NewReg, OldRC)) { 556 DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n"); 557 DoCSE = false; 558 break; 559 } 560 561 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 562 --NumDefs; 563 } 564 565 // Actually perform the elimination. 566 if (DoCSE) { 567 for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) { 568 MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second); 569 MRI->clearKillFlags(CSEPairs[i].second); 570 } 571 572 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 573 // we should make sure it is not dead at CSMI. 574 for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i) 575 CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false); 576 577 if (CrossMBBPhysDef) { 578 // Add physical register defs now coming in from a predecessor to MBB 579 // livein list. 580 while (!PhysDefs.empty()) { 581 unsigned LiveIn = PhysDefs.pop_back_val(); 582 if (!MBB->isLiveIn(LiveIn)) 583 MBB->addLiveIn(LiveIn); 584 } 585 ++NumCrossBBCSEs; 586 } 587 588 MI->eraseFromParent(); 589 ++NumCSEs; 590 if (!PhysRefs.empty()) 591 ++NumPhysCSEs; 592 if (Commuted) 593 ++NumCommutes; 594 Changed = true; 595 } else { 596 VNT.insert(MI, CurrVN++); 597 Exps.push_back(MI); 598 } 599 CSEPairs.clear(); 600 ImplicitDefsToUpdate.clear(); 601 } 602 603 return Changed; 604 } 605 606 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 607 /// dominator tree node if its a leaf or all of its children are done. Walk 608 /// up the dominator tree to destroy ancestors which are now done. 609 void 610 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 611 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 612 if (OpenChildren[Node]) 613 return; 614 615 // Pop scope. 616 ExitScope(Node->getBlock()); 617 618 // Now traverse upwards to pop ancestors whose offsprings are all done. 619 while (MachineDomTreeNode *Parent = Node->getIDom()) { 620 unsigned Left = --OpenChildren[Parent]; 621 if (Left != 0) 622 break; 623 ExitScope(Parent->getBlock()); 624 Node = Parent; 625 } 626 } 627 628 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 629 SmallVector<MachineDomTreeNode*, 32> Scopes; 630 SmallVector<MachineDomTreeNode*, 8> WorkList; 631 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 632 633 CurrVN = 0; 634 635 // Perform a DFS walk to determine the order of visit. 636 WorkList.push_back(Node); 637 do { 638 Node = WorkList.pop_back_val(); 639 Scopes.push_back(Node); 640 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 641 unsigned NumChildren = Children.size(); 642 OpenChildren[Node] = NumChildren; 643 for (unsigned i = 0; i != NumChildren; ++i) { 644 MachineDomTreeNode *Child = Children[i]; 645 WorkList.push_back(Child); 646 } 647 } while (!WorkList.empty()); 648 649 // Now perform CSE. 650 bool Changed = false; 651 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 652 MachineDomTreeNode *Node = Scopes[i]; 653 MachineBasicBlock *MBB = Node->getBlock(); 654 EnterScope(MBB); 655 Changed |= ProcessBlock(MBB); 656 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 657 ExitScopeIfDone(Node, OpenChildren); 658 } 659 660 return Changed; 661 } 662 663 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 664 if (skipOptnoneFunction(*MF.getFunction())) 665 return false; 666 667 TII = MF.getSubtarget().getInstrInfo(); 668 TRI = MF.getSubtarget().getRegisterInfo(); 669 MRI = &MF.getRegInfo(); 670 AA = &getAnalysis<AliasAnalysis>(); 671 DT = &getAnalysis<MachineDominatorTree>(); 672 return PerformCSE(DT->getRootNode()); 673 } 674