1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global common subexpression elimination on machine 11 // instructions using a scoped hash table based value numbering scheme. It 12 // must be run while the machine function is still in SSA form. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "machine-cse" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/ScopedHashTable.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/RecyclingAllocator.h" 29 using namespace llvm; 30 31 STATISTIC(NumCoalesces, "Number of copies coalesced"); 32 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 33 STATISTIC(NumPhysCSEs, 34 "Number of physreg referencing common subexpr eliminated"); 35 STATISTIC(NumCrossBBCSEs, 36 "Number of cross-MBB physreg referencing CS eliminated"); 37 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 38 39 namespace { 40 class MachineCSE : public MachineFunctionPass { 41 const TargetInstrInfo *TII; 42 const TargetRegisterInfo *TRI; 43 AliasAnalysis *AA; 44 MachineDominatorTree *DT; 45 MachineRegisterInfo *MRI; 46 public: 47 static char ID; // Pass identification 48 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) { 49 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 50 } 51 52 virtual bool runOnMachineFunction(MachineFunction &MF); 53 54 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 55 AU.setPreservesCFG(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 AU.addRequired<AliasAnalysis>(); 58 AU.addPreservedID(MachineLoopInfoID); 59 AU.addRequired<MachineDominatorTree>(); 60 AU.addPreserved<MachineDominatorTree>(); 61 } 62 63 virtual void releaseMemory() { 64 ScopeMap.clear(); 65 Exps.clear(); 66 } 67 68 private: 69 const unsigned LookAheadLimit; 70 typedef RecyclingAllocator<BumpPtrAllocator, 71 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy; 72 typedef ScopedHashTable<MachineInstr*, unsigned, 73 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType; 74 typedef ScopedHTType::ScopeTy ScopeType; 75 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap; 76 ScopedHTType VNT; 77 SmallVector<MachineInstr*, 64> Exps; 78 unsigned CurrVN; 79 80 bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB); 81 bool isPhysDefTriviallyDead(unsigned Reg, 82 MachineBasicBlock::const_iterator I, 83 MachineBasicBlock::const_iterator E) const; 84 bool hasLivePhysRegDefUses(const MachineInstr *MI, 85 const MachineBasicBlock *MBB, 86 SmallSet<unsigned,8> &PhysRefs, 87 SmallVector<unsigned,2> &PhysDefs, 88 bool &PhysUseDef) const; 89 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 90 SmallSet<unsigned,8> &PhysRefs, 91 SmallVector<unsigned,2> &PhysDefs, 92 bool &NonLocal) const; 93 bool isCSECandidate(MachineInstr *MI); 94 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 95 MachineInstr *CSMI, MachineInstr *MI); 96 void EnterScope(MachineBasicBlock *MBB); 97 void ExitScope(MachineBasicBlock *MBB); 98 bool ProcessBlock(MachineBasicBlock *MBB); 99 void ExitScopeIfDone(MachineDomTreeNode *Node, 100 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 101 bool PerformCSE(MachineDomTreeNode *Node); 102 }; 103 } // end anonymous namespace 104 105 char MachineCSE::ID = 0; 106 char &llvm::MachineCSEID = MachineCSE::ID; 107 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse", 108 "Machine Common Subexpression Elimination", false, false) 109 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 110 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 111 INITIALIZE_PASS_END(MachineCSE, "machine-cse", 112 "Machine Common Subexpression Elimination", false, false) 113 114 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI, 115 MachineBasicBlock *MBB) { 116 bool Changed = false; 117 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 118 MachineOperand &MO = MI->getOperand(i); 119 if (!MO.isReg() || !MO.isUse()) 120 continue; 121 unsigned Reg = MO.getReg(); 122 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 123 continue; 124 if (!MRI->hasOneNonDBGUse(Reg)) 125 // Only coalesce single use copies. This ensure the copy will be 126 // deleted. 127 continue; 128 MachineInstr *DefMI = MRI->getVRegDef(Reg); 129 if (DefMI->getParent() != MBB) 130 continue; 131 if (!DefMI->isCopy()) 132 continue; 133 unsigned SrcReg = DefMI->getOperand(1).getReg(); 134 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 135 continue; 136 if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg()) 137 continue; 138 if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg))) 139 continue; 140 DEBUG(dbgs() << "Coalescing: " << *DefMI); 141 DEBUG(dbgs() << "*** to: " << *MI); 142 MO.setReg(SrcReg); 143 MRI->clearKillFlags(SrcReg); 144 DefMI->eraseFromParent(); 145 ++NumCoalesces; 146 Changed = true; 147 } 148 149 return Changed; 150 } 151 152 bool 153 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 154 MachineBasicBlock::const_iterator I, 155 MachineBasicBlock::const_iterator E) const { 156 unsigned LookAheadLeft = LookAheadLimit; 157 while (LookAheadLeft) { 158 // Skip over dbg_value's. 159 while (I != E && I->isDebugValue()) 160 ++I; 161 162 if (I == E) 163 // Reached end of block, register is obviously dead. 164 return true; 165 166 bool SeenDef = false; 167 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 168 const MachineOperand &MO = I->getOperand(i); 169 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 170 SeenDef = true; 171 if (!MO.isReg() || !MO.getReg()) 172 continue; 173 if (!TRI->regsOverlap(MO.getReg(), Reg)) 174 continue; 175 if (MO.isUse()) 176 // Found a use! 177 return false; 178 SeenDef = true; 179 } 180 if (SeenDef) 181 // See a def of Reg (or an alias) before encountering any use, it's 182 // trivially dead. 183 return true; 184 185 --LookAheadLeft; 186 ++I; 187 } 188 return false; 189 } 190 191 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 192 /// physical registers (except for dead defs of physical registers). It also 193 /// returns the physical register def by reference if it's the only one and the 194 /// instruction does not uses a physical register. 195 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 196 const MachineBasicBlock *MBB, 197 SmallSet<unsigned,8> &PhysRefs, 198 SmallVector<unsigned,2> &PhysDefs, 199 bool &PhysUseDef) const{ 200 // First, add all uses to PhysRefs. 201 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 202 const MachineOperand &MO = MI->getOperand(i); 203 if (!MO.isReg() || MO.isDef()) 204 continue; 205 unsigned Reg = MO.getReg(); 206 if (!Reg) 207 continue; 208 if (TargetRegisterInfo::isVirtualRegister(Reg)) 209 continue; 210 // Reading constant physregs is ok. 211 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) 212 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 213 PhysRefs.insert(*AI); 214 } 215 216 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 217 // (which currently contains only uses), set the PhysUseDef flag. 218 PhysUseDef = false; 219 MachineBasicBlock::const_iterator I = MI; I = llvm::next(I); 220 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 221 const MachineOperand &MO = MI->getOperand(i); 222 if (!MO.isReg() || !MO.isDef()) 223 continue; 224 unsigned Reg = MO.getReg(); 225 if (!Reg) 226 continue; 227 if (TargetRegisterInfo::isVirtualRegister(Reg)) 228 continue; 229 // Check against PhysRefs even if the def is "dead". 230 if (PhysRefs.count(Reg)) 231 PhysUseDef = true; 232 // If the def is dead, it's ok. But the def may not marked "dead". That's 233 // common since this pass is run before livevariables. We can scan 234 // forward a few instructions and check if it is obviously dead. 235 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) 236 PhysDefs.push_back(Reg); 237 } 238 239 // Finally, add all defs to PhysRefs as well. 240 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 241 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI) 242 PhysRefs.insert(*AI); 243 244 return !PhysRefs.empty(); 245 } 246 247 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 248 SmallSet<unsigned,8> &PhysRefs, 249 SmallVector<unsigned,2> &PhysDefs, 250 bool &NonLocal) const { 251 // For now conservatively returns false if the common subexpression is 252 // not in the same basic block as the given instruction. The only exception 253 // is if the common subexpression is in the sole predecessor block. 254 const MachineBasicBlock *MBB = MI->getParent(); 255 const MachineBasicBlock *CSMBB = CSMI->getParent(); 256 257 bool CrossMBB = false; 258 if (CSMBB != MBB) { 259 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 260 return false; 261 262 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 263 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i])) 264 // Avoid extending live range of physical registers if they are 265 //allocatable or reserved. 266 return false; 267 } 268 CrossMBB = true; 269 } 270 MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I); 271 MachineBasicBlock::const_iterator E = MI; 272 MachineBasicBlock::const_iterator EE = CSMBB->end(); 273 unsigned LookAheadLeft = LookAheadLimit; 274 while (LookAheadLeft) { 275 // Skip over dbg_value's. 276 while (I != E && I != EE && I->isDebugValue()) 277 ++I; 278 279 if (I == EE) { 280 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 281 (void)CrossMBB; 282 CrossMBB = false; 283 NonLocal = true; 284 I = MBB->begin(); 285 EE = MBB->end(); 286 continue; 287 } 288 289 if (I == E) 290 return true; 291 292 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 293 const MachineOperand &MO = I->getOperand(i); 294 // RegMasks go on instructions like calls that clobber lots of physregs. 295 // Don't attempt to CSE across such an instruction. 296 if (MO.isRegMask()) 297 return false; 298 if (!MO.isReg() || !MO.isDef()) 299 continue; 300 unsigned MOReg = MO.getReg(); 301 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 302 continue; 303 if (PhysRefs.count(MOReg)) 304 return false; 305 } 306 307 --LookAheadLeft; 308 ++I; 309 } 310 311 return false; 312 } 313 314 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 315 if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() || 316 MI->isKill() || MI->isInlineAsm() || MI->isDebugValue()) 317 return false; 318 319 // Ignore copies. 320 if (MI->isCopyLike()) 321 return false; 322 323 // Ignore stuff that we obviously can't move. 324 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 325 MI->hasUnmodeledSideEffects()) 326 return false; 327 328 if (MI->mayLoad()) { 329 // Okay, this instruction does a load. As a refinement, we allow the target 330 // to decide whether the loaded value is actually a constant. If so, we can 331 // actually use it as a load. 332 if (!MI->isInvariantLoad(AA)) 333 // FIXME: we should be able to hoist loads with no other side effects if 334 // there are no other instructions which can change memory in this loop. 335 // This is a trivial form of alias analysis. 336 return false; 337 } 338 return true; 339 } 340 341 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 342 /// common expression that defines Reg. 343 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 344 MachineInstr *CSMI, MachineInstr *MI) { 345 // FIXME: Heuristics that works around the lack the live range splitting. 346 347 // If CSReg is used at all uses of Reg, CSE should not increase register 348 // pressure of CSReg. 349 bool MayIncreasePressure = true; 350 if (TargetRegisterInfo::isVirtualRegister(CSReg) && 351 TargetRegisterInfo::isVirtualRegister(Reg)) { 352 MayIncreasePressure = false; 353 SmallPtrSet<MachineInstr*, 8> CSUses; 354 for (MachineRegisterInfo::use_nodbg_iterator I =MRI->use_nodbg_begin(CSReg), 355 E = MRI->use_nodbg_end(); I != E; ++I) { 356 MachineInstr *Use = &*I; 357 CSUses.insert(Use); 358 } 359 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), 360 E = MRI->use_nodbg_end(); I != E; ++I) { 361 MachineInstr *Use = &*I; 362 if (!CSUses.count(Use)) { 363 MayIncreasePressure = true; 364 break; 365 } 366 } 367 } 368 if (!MayIncreasePressure) return true; 369 370 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 371 // an immediate predecessor. We don't want to increase register pressure and 372 // end up causing other computation to be spilled. 373 if (MI->isAsCheapAsAMove()) { 374 MachineBasicBlock *CSBB = CSMI->getParent(); 375 MachineBasicBlock *BB = MI->getParent(); 376 if (CSBB != BB && !CSBB->isSuccessor(BB)) 377 return false; 378 } 379 380 // Heuristics #2: If the expression doesn't not use a vr and the only use 381 // of the redundant computation are copies, do not cse. 382 bool HasVRegUse = false; 383 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 384 const MachineOperand &MO = MI->getOperand(i); 385 if (MO.isReg() && MO.isUse() && 386 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 387 HasVRegUse = true; 388 break; 389 } 390 } 391 if (!HasVRegUse) { 392 bool HasNonCopyUse = false; 393 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), 394 E = MRI->use_nodbg_end(); I != E; ++I) { 395 MachineInstr *Use = &*I; 396 // Ignore copies. 397 if (!Use->isCopyLike()) { 398 HasNonCopyUse = true; 399 break; 400 } 401 } 402 if (!HasNonCopyUse) 403 return false; 404 } 405 406 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 407 // it unless the defined value is already used in the BB of the new use. 408 bool HasPHI = false; 409 SmallPtrSet<MachineBasicBlock*, 4> CSBBs; 410 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg), 411 E = MRI->use_nodbg_end(); I != E; ++I) { 412 MachineInstr *Use = &*I; 413 HasPHI |= Use->isPHI(); 414 CSBBs.insert(Use->getParent()); 415 } 416 417 if (!HasPHI) 418 return true; 419 return CSBBs.count(MI->getParent()); 420 } 421 422 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 423 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 424 ScopeType *Scope = new ScopeType(VNT); 425 ScopeMap[MBB] = Scope; 426 } 427 428 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 429 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 430 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 431 assert(SI != ScopeMap.end()); 432 delete SI->second; 433 ScopeMap.erase(SI); 434 } 435 436 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 437 bool Changed = false; 438 439 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 440 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 441 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 442 MachineInstr *MI = &*I; 443 ++I; 444 445 if (!isCSECandidate(MI)) 446 continue; 447 448 bool FoundCSE = VNT.count(MI); 449 if (!FoundCSE) { 450 // Look for trivial copy coalescing opportunities. 451 if (PerformTrivialCoalescing(MI, MBB)) { 452 Changed = true; 453 454 // After coalescing MI itself may become a copy. 455 if (MI->isCopyLike()) 456 continue; 457 FoundCSE = VNT.count(MI); 458 } 459 } 460 461 // Commute commutable instructions. 462 bool Commuted = false; 463 if (!FoundCSE && MI->isCommutable()) { 464 MachineInstr *NewMI = TII->commuteInstruction(MI); 465 if (NewMI) { 466 Commuted = true; 467 FoundCSE = VNT.count(NewMI); 468 if (NewMI != MI) { 469 // New instruction. It doesn't need to be kept. 470 NewMI->eraseFromParent(); 471 Changed = true; 472 } else if (!FoundCSE) 473 // MI was changed but it didn't help, commute it back! 474 (void)TII->commuteInstruction(MI); 475 } 476 } 477 478 // If the instruction defines physical registers and the values *may* be 479 // used, then it's not safe to replace it with a common subexpression. 480 // It's also not safe if the instruction uses physical registers. 481 bool CrossMBBPhysDef = false; 482 SmallSet<unsigned, 8> PhysRefs; 483 SmallVector<unsigned, 2> PhysDefs; 484 bool PhysUseDef = false; 485 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, 486 PhysDefs, PhysUseDef)) { 487 FoundCSE = false; 488 489 // ... Unless the CS is local or is in the sole predecessor block 490 // and it also defines the physical register which is not clobbered 491 // in between and the physical register uses were not clobbered. 492 // This can never be the case if the instruction both uses and 493 // defines the same physical register, which was detected above. 494 if (!PhysUseDef) { 495 unsigned CSVN = VNT.lookup(MI); 496 MachineInstr *CSMI = Exps[CSVN]; 497 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 498 FoundCSE = true; 499 } 500 } 501 502 if (!FoundCSE) { 503 VNT.insert(MI, CurrVN++); 504 Exps.push_back(MI); 505 continue; 506 } 507 508 // Found a common subexpression, eliminate it. 509 unsigned CSVN = VNT.lookup(MI); 510 MachineInstr *CSMI = Exps[CSVN]; 511 DEBUG(dbgs() << "Examining: " << *MI); 512 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 513 514 // Check if it's profitable to perform this CSE. 515 bool DoCSE = true; 516 unsigned NumDefs = MI->getDesc().getNumDefs() + 517 MI->getDesc().getNumImplicitDefs(); 518 519 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 520 MachineOperand &MO = MI->getOperand(i); 521 if (!MO.isReg() || !MO.isDef()) 522 continue; 523 unsigned OldReg = MO.getReg(); 524 unsigned NewReg = CSMI->getOperand(i).getReg(); 525 526 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 527 // we should make sure it is not dead at CSMI. 528 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 529 ImplicitDefsToUpdate.push_back(i); 530 if (OldReg == NewReg) { 531 --NumDefs; 532 continue; 533 } 534 535 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 536 TargetRegisterInfo::isVirtualRegister(NewReg) && 537 "Do not CSE physical register defs!"); 538 539 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 540 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 541 DoCSE = false; 542 break; 543 } 544 545 // Don't perform CSE if the result of the old instruction cannot exist 546 // within the register class of the new instruction. 547 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg); 548 if (!MRI->constrainRegClass(NewReg, OldRC)) { 549 DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n"); 550 DoCSE = false; 551 break; 552 } 553 554 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 555 --NumDefs; 556 } 557 558 // Actually perform the elimination. 559 if (DoCSE) { 560 for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) { 561 MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second); 562 MRI->clearKillFlags(CSEPairs[i].second); 563 } 564 565 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 566 // we should make sure it is not dead at CSMI. 567 for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i) 568 CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false); 569 570 if (CrossMBBPhysDef) { 571 // Add physical register defs now coming in from a predecessor to MBB 572 // livein list. 573 while (!PhysDefs.empty()) { 574 unsigned LiveIn = PhysDefs.pop_back_val(); 575 if (!MBB->isLiveIn(LiveIn)) 576 MBB->addLiveIn(LiveIn); 577 } 578 ++NumCrossBBCSEs; 579 } 580 581 MI->eraseFromParent(); 582 ++NumCSEs; 583 if (!PhysRefs.empty()) 584 ++NumPhysCSEs; 585 if (Commuted) 586 ++NumCommutes; 587 Changed = true; 588 } else { 589 VNT.insert(MI, CurrVN++); 590 Exps.push_back(MI); 591 } 592 CSEPairs.clear(); 593 ImplicitDefsToUpdate.clear(); 594 } 595 596 return Changed; 597 } 598 599 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 600 /// dominator tree node if its a leaf or all of its children are done. Walk 601 /// up the dominator tree to destroy ancestors which are now done. 602 void 603 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 604 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 605 if (OpenChildren[Node]) 606 return; 607 608 // Pop scope. 609 ExitScope(Node->getBlock()); 610 611 // Now traverse upwards to pop ancestors whose offsprings are all done. 612 while (MachineDomTreeNode *Parent = Node->getIDom()) { 613 unsigned Left = --OpenChildren[Parent]; 614 if (Left != 0) 615 break; 616 ExitScope(Parent->getBlock()); 617 Node = Parent; 618 } 619 } 620 621 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 622 SmallVector<MachineDomTreeNode*, 32> Scopes; 623 SmallVector<MachineDomTreeNode*, 8> WorkList; 624 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 625 626 CurrVN = 0; 627 628 // Perform a DFS walk to determine the order of visit. 629 WorkList.push_back(Node); 630 do { 631 Node = WorkList.pop_back_val(); 632 Scopes.push_back(Node); 633 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 634 unsigned NumChildren = Children.size(); 635 OpenChildren[Node] = NumChildren; 636 for (unsigned i = 0; i != NumChildren; ++i) { 637 MachineDomTreeNode *Child = Children[i]; 638 WorkList.push_back(Child); 639 } 640 } while (!WorkList.empty()); 641 642 // Now perform CSE. 643 bool Changed = false; 644 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 645 MachineDomTreeNode *Node = Scopes[i]; 646 MachineBasicBlock *MBB = Node->getBlock(); 647 EnterScope(MBB); 648 Changed |= ProcessBlock(MBB); 649 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 650 ExitScopeIfDone(Node, OpenChildren); 651 } 652 653 return Changed; 654 } 655 656 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 657 TII = MF.getTarget().getInstrInfo(); 658 TRI = MF.getTarget().getRegisterInfo(); 659 MRI = &MF.getRegInfo(); 660 AA = &getAnalysis<AliasAnalysis>(); 661 DT = &getAnalysis<MachineDominatorTree>(); 662 return PerformCSE(DT->getRootNode()); 663 } 664