xref: /llvm-project/llvm/lib/CodeGen/MachineCSE.cpp (revision ef6494f24dcc01be9db78c827bdc320e672a510f)
1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #define DEBUG_TYPE "machine-cse"
17 #include "llvm/CodeGen/Passes.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/ScopedHashTable.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/RecyclingAllocator.h"
29 using namespace llvm;
30 
31 STATISTIC(NumCoalesces, "Number of copies coalesced");
32 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
33 STATISTIC(NumPhysCSEs,
34           "Number of physreg referencing common subexpr eliminated");
35 STATISTIC(NumCrossBBCSEs,
36           "Number of cross-MBB physreg referencing CS eliminated");
37 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
38 
39 namespace {
40   class MachineCSE : public MachineFunctionPass {
41     const TargetInstrInfo *TII;
42     const TargetRegisterInfo *TRI;
43     AliasAnalysis *AA;
44     MachineDominatorTree *DT;
45     MachineRegisterInfo *MRI;
46   public:
47     static char ID; // Pass identification
48     MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
49       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
50     }
51 
52     virtual bool runOnMachineFunction(MachineFunction &MF);
53 
54     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
55       AU.setPreservesCFG();
56       MachineFunctionPass::getAnalysisUsage(AU);
57       AU.addRequired<AliasAnalysis>();
58       AU.addPreservedID(MachineLoopInfoID);
59       AU.addRequired<MachineDominatorTree>();
60       AU.addPreserved<MachineDominatorTree>();
61     }
62 
63     virtual void releaseMemory() {
64       ScopeMap.clear();
65       Exps.clear();
66       AllocatableRegs.clear();
67       ReservedRegs.clear();
68     }
69 
70   private:
71     const unsigned LookAheadLimit;
72     typedef RecyclingAllocator<BumpPtrAllocator,
73         ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
74     typedef ScopedHashTable<MachineInstr*, unsigned,
75         MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
76     typedef ScopedHTType::ScopeTy ScopeType;
77     DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
78     ScopedHTType VNT;
79     SmallVector<MachineInstr*, 64> Exps;
80     unsigned CurrVN;
81     BitVector AllocatableRegs;
82     BitVector ReservedRegs;
83 
84     bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
85     bool isPhysDefTriviallyDead(unsigned Reg,
86                                 MachineBasicBlock::const_iterator I,
87                                 MachineBasicBlock::const_iterator E) const;
88     bool hasLivePhysRegDefUses(const MachineInstr *MI,
89                                const MachineBasicBlock *MBB,
90                                SmallSet<unsigned,8> &PhysRefs,
91                                SmallVector<unsigned,2> &PhysDefs) const;
92     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
93                           SmallSet<unsigned,8> &PhysRefs,
94                           SmallVector<unsigned,2> &PhysDefs,
95                           bool &NonLocal) const;
96     bool isCSECandidate(MachineInstr *MI);
97     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
98                            MachineInstr *CSMI, MachineInstr *MI);
99     void EnterScope(MachineBasicBlock *MBB);
100     void ExitScope(MachineBasicBlock *MBB);
101     bool ProcessBlock(MachineBasicBlock *MBB);
102     void ExitScopeIfDone(MachineDomTreeNode *Node,
103                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
104     bool PerformCSE(MachineDomTreeNode *Node);
105   };
106 } // end anonymous namespace
107 
108 char MachineCSE::ID = 0;
109 char &llvm::MachineCSEID = MachineCSE::ID;
110 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
111                 "Machine Common Subexpression Elimination", false, false)
112 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
113 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
114 INITIALIZE_PASS_END(MachineCSE, "machine-cse",
115                 "Machine Common Subexpression Elimination", false, false)
116 
117 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
118                                           MachineBasicBlock *MBB) {
119   bool Changed = false;
120   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
121     MachineOperand &MO = MI->getOperand(i);
122     if (!MO.isReg() || !MO.isUse())
123       continue;
124     unsigned Reg = MO.getReg();
125     if (!TargetRegisterInfo::isVirtualRegister(Reg))
126       continue;
127     if (!MRI->hasOneNonDBGUse(Reg))
128       // Only coalesce single use copies. This ensure the copy will be
129       // deleted.
130       continue;
131     MachineInstr *DefMI = MRI->getVRegDef(Reg);
132     if (DefMI->getParent() != MBB)
133       continue;
134     if (!DefMI->isCopy())
135       continue;
136     unsigned SrcReg = DefMI->getOperand(1).getReg();
137     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
138       continue;
139     if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg())
140       continue;
141     if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg)))
142       continue;
143     DEBUG(dbgs() << "Coalescing: " << *DefMI);
144     DEBUG(dbgs() << "***     to: " << *MI);
145     MO.setReg(SrcReg);
146     MRI->clearKillFlags(SrcReg);
147     DefMI->eraseFromParent();
148     ++NumCoalesces;
149     Changed = true;
150   }
151 
152   return Changed;
153 }
154 
155 bool
156 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
157                                    MachineBasicBlock::const_iterator I,
158                                    MachineBasicBlock::const_iterator E) const {
159   unsigned LookAheadLeft = LookAheadLimit;
160   while (LookAheadLeft) {
161     // Skip over dbg_value's.
162     while (I != E && I->isDebugValue())
163       ++I;
164 
165     if (I == E)
166       // Reached end of block, register is obviously dead.
167       return true;
168 
169     bool SeenDef = false;
170     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
171       const MachineOperand &MO = I->getOperand(i);
172       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
173         SeenDef = true;
174       if (!MO.isReg() || !MO.getReg())
175         continue;
176       if (!TRI->regsOverlap(MO.getReg(), Reg))
177         continue;
178       if (MO.isUse())
179         // Found a use!
180         return false;
181       SeenDef = true;
182     }
183     if (SeenDef)
184       // See a def of Reg (or an alias) before encountering any use, it's
185       // trivially dead.
186       return true;
187 
188     --LookAheadLeft;
189     ++I;
190   }
191   return false;
192 }
193 
194 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
195 /// physical registers (except for dead defs of physical registers). It also
196 /// returns the physical register def by reference if it's the only one and the
197 /// instruction does not uses a physical register.
198 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
199                                        const MachineBasicBlock *MBB,
200                                        SmallSet<unsigned,8> &PhysRefs,
201                                        SmallVector<unsigned,2> &PhysDefs) const{
202   MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
203   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
204     const MachineOperand &MO = MI->getOperand(i);
205     if (!MO.isReg())
206       continue;
207     unsigned Reg = MO.getReg();
208     if (!Reg)
209       continue;
210     if (TargetRegisterInfo::isVirtualRegister(Reg))
211       continue;
212     // If the def is dead, it's ok. But the def may not marked "dead". That's
213     // common since this pass is run before livevariables. We can scan
214     // forward a few instructions and check if it is obviously dead.
215     if (MO.isDef() &&
216         (MO.isDead() || isPhysDefTriviallyDead(Reg, I, MBB->end())))
217       continue;
218     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
219       // Reading constant physregs is ok.
220       if (!MRI->isConstantPhysReg(*AI, *MBB->getParent()))
221         PhysRefs.insert(*AI);
222     }
223     if (MO.isDef())
224       PhysDefs.push_back(Reg);
225   }
226 
227   return !PhysRefs.empty();
228 }
229 
230 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
231                                   SmallSet<unsigned,8> &PhysRefs,
232                                   SmallVector<unsigned,2> &PhysDefs,
233                                   bool &NonLocal) const {
234   // For now conservatively returns false if the common subexpression is
235   // not in the same basic block as the given instruction. The only exception
236   // is if the common subexpression is in the sole predecessor block.
237   const MachineBasicBlock *MBB = MI->getParent();
238   const MachineBasicBlock *CSMBB = CSMI->getParent();
239 
240   bool CrossMBB = false;
241   if (CSMBB != MBB) {
242     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
243       return false;
244 
245     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
246       if (AllocatableRegs.test(PhysDefs[i]) || ReservedRegs.test(PhysDefs[i]))
247         // Avoid extending live range of physical registers if they are
248         //allocatable or reserved.
249         return false;
250     }
251     CrossMBB = true;
252   }
253   MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
254   MachineBasicBlock::const_iterator E = MI;
255   MachineBasicBlock::const_iterator EE = CSMBB->end();
256   unsigned LookAheadLeft = LookAheadLimit;
257   while (LookAheadLeft) {
258     // Skip over dbg_value's.
259     while (I != E && I != EE && I->isDebugValue())
260       ++I;
261 
262     if (I == EE) {
263       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
264       (void)CrossMBB;
265       CrossMBB = false;
266       NonLocal = true;
267       I = MBB->begin();
268       EE = MBB->end();
269       continue;
270     }
271 
272     if (I == E)
273       return true;
274 
275     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
276       const MachineOperand &MO = I->getOperand(i);
277       // RegMasks go on instructions like calls that clobber lots of physregs.
278       // Don't attempt to CSE across such an instruction.
279       if (MO.isRegMask())
280         return false;
281       if (!MO.isReg() || !MO.isDef())
282         continue;
283       unsigned MOReg = MO.getReg();
284       if (TargetRegisterInfo::isVirtualRegister(MOReg))
285         continue;
286       if (PhysRefs.count(MOReg))
287         return false;
288     }
289 
290     --LookAheadLeft;
291     ++I;
292   }
293 
294   return false;
295 }
296 
297 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
298   if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
299       MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
300     return false;
301 
302   // Ignore copies.
303   if (MI->isCopyLike())
304     return false;
305 
306   // Ignore stuff that we obviously can't move.
307   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
308       MI->hasUnmodeledSideEffects())
309     return false;
310 
311   if (MI->mayLoad()) {
312     // Okay, this instruction does a load. As a refinement, we allow the target
313     // to decide whether the loaded value is actually a constant. If so, we can
314     // actually use it as a load.
315     if (!MI->isInvariantLoad(AA))
316       // FIXME: we should be able to hoist loads with no other side effects if
317       // there are no other instructions which can change memory in this loop.
318       // This is a trivial form of alias analysis.
319       return false;
320   }
321   return true;
322 }
323 
324 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
325 /// common expression that defines Reg.
326 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
327                                    MachineInstr *CSMI, MachineInstr *MI) {
328   // FIXME: Heuristics that works around the lack the live range splitting.
329 
330   // If CSReg is used at all uses of Reg, CSE should not increase register
331   // pressure of CSReg.
332   bool MayIncreasePressure = true;
333   if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
334       TargetRegisterInfo::isVirtualRegister(Reg)) {
335     MayIncreasePressure = false;
336     SmallPtrSet<MachineInstr*, 8> CSUses;
337     for (MachineRegisterInfo::use_nodbg_iterator I =MRI->use_nodbg_begin(CSReg),
338          E = MRI->use_nodbg_end(); I != E; ++I) {
339       MachineInstr *Use = &*I;
340       CSUses.insert(Use);
341     }
342     for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
343          E = MRI->use_nodbg_end(); I != E; ++I) {
344       MachineInstr *Use = &*I;
345       if (!CSUses.count(Use)) {
346         MayIncreasePressure = true;
347         break;
348       }
349     }
350   }
351   if (!MayIncreasePressure) return true;
352 
353   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
354   // an immediate predecessor. We don't want to increase register pressure and
355   // end up causing other computation to be spilled.
356   if (MI->isAsCheapAsAMove()) {
357     MachineBasicBlock *CSBB = CSMI->getParent();
358     MachineBasicBlock *BB = MI->getParent();
359     if (CSBB != BB && !CSBB->isSuccessor(BB))
360       return false;
361   }
362 
363   // Heuristics #2: If the expression doesn't not use a vr and the only use
364   // of the redundant computation are copies, do not cse.
365   bool HasVRegUse = false;
366   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
367     const MachineOperand &MO = MI->getOperand(i);
368     if (MO.isReg() && MO.isUse() &&
369         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
370       HasVRegUse = true;
371       break;
372     }
373   }
374   if (!HasVRegUse) {
375     bool HasNonCopyUse = false;
376     for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
377            E = MRI->use_nodbg_end(); I != E; ++I) {
378       MachineInstr *Use = &*I;
379       // Ignore copies.
380       if (!Use->isCopyLike()) {
381         HasNonCopyUse = true;
382         break;
383       }
384     }
385     if (!HasNonCopyUse)
386       return false;
387   }
388 
389   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
390   // it unless the defined value is already used in the BB of the new use.
391   bool HasPHI = false;
392   SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
393   for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
394        E = MRI->use_nodbg_end(); I != E; ++I) {
395     MachineInstr *Use = &*I;
396     HasPHI |= Use->isPHI();
397     CSBBs.insert(Use->getParent());
398   }
399 
400   if (!HasPHI)
401     return true;
402   return CSBBs.count(MI->getParent());
403 }
404 
405 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
406   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
407   ScopeType *Scope = new ScopeType(VNT);
408   ScopeMap[MBB] = Scope;
409 }
410 
411 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
412   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
413   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
414   assert(SI != ScopeMap.end());
415   ScopeMap.erase(SI);
416   delete SI->second;
417 }
418 
419 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
420   bool Changed = false;
421 
422   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
423   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
424   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
425     MachineInstr *MI = &*I;
426     ++I;
427 
428     if (!isCSECandidate(MI))
429       continue;
430 
431     bool FoundCSE = VNT.count(MI);
432     if (!FoundCSE) {
433       // Look for trivial copy coalescing opportunities.
434       if (PerformTrivialCoalescing(MI, MBB)) {
435         Changed = true;
436 
437         // After coalescing MI itself may become a copy.
438         if (MI->isCopyLike())
439           continue;
440         FoundCSE = VNT.count(MI);
441       }
442     }
443 
444     // Commute commutable instructions.
445     bool Commuted = false;
446     if (!FoundCSE && MI->isCommutable()) {
447       MachineInstr *NewMI = TII->commuteInstruction(MI);
448       if (NewMI) {
449         Commuted = true;
450         FoundCSE = VNT.count(NewMI);
451         if (NewMI != MI) {
452           // New instruction. It doesn't need to be kept.
453           NewMI->eraseFromParent();
454           Changed = true;
455         } else if (!FoundCSE)
456           // MI was changed but it didn't help, commute it back!
457           (void)TII->commuteInstruction(MI);
458       }
459     }
460 
461     // If the instruction defines physical registers and the values *may* be
462     // used, then it's not safe to replace it with a common subexpression.
463     // It's also not safe if the instruction uses physical registers.
464     bool CrossMBBPhysDef = false;
465     SmallSet<unsigned, 8> PhysRefs;
466     SmallVector<unsigned, 2> PhysDefs;
467     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, PhysDefs)) {
468       FoundCSE = false;
469 
470       // ... Unless the CS is local or is in the sole predecessor block
471       // and it also defines the physical register which is not clobbered
472       // in between and the physical register uses were not clobbered.
473       unsigned CSVN = VNT.lookup(MI);
474       MachineInstr *CSMI = Exps[CSVN];
475       if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
476         FoundCSE = true;
477     }
478 
479     if (!FoundCSE) {
480       VNT.insert(MI, CurrVN++);
481       Exps.push_back(MI);
482       continue;
483     }
484 
485     // Found a common subexpression, eliminate it.
486     unsigned CSVN = VNT.lookup(MI);
487     MachineInstr *CSMI = Exps[CSVN];
488     DEBUG(dbgs() << "Examining: " << *MI);
489     DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
490 
491     // Check if it's profitable to perform this CSE.
492     bool DoCSE = true;
493     unsigned NumDefs = MI->getDesc().getNumDefs() +
494                        MI->getDesc().getNumImplicitDefs();
495 
496     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
497       MachineOperand &MO = MI->getOperand(i);
498       if (!MO.isReg() || !MO.isDef())
499         continue;
500       unsigned OldReg = MO.getReg();
501       unsigned NewReg = CSMI->getOperand(i).getReg();
502 
503       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
504       // we should make sure it is not dead at CSMI.
505       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
506         ImplicitDefsToUpdate.push_back(i);
507       if (OldReg == NewReg) {
508         --NumDefs;
509         continue;
510       }
511 
512       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
513              TargetRegisterInfo::isVirtualRegister(NewReg) &&
514              "Do not CSE physical register defs!");
515 
516       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
517         DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
518         DoCSE = false;
519         break;
520       }
521 
522       // Don't perform CSE if the result of the old instruction cannot exist
523       // within the register class of the new instruction.
524       const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
525       if (!MRI->constrainRegClass(NewReg, OldRC)) {
526         DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
527         DoCSE = false;
528         break;
529       }
530 
531       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
532       --NumDefs;
533     }
534 
535     // Actually perform the elimination.
536     if (DoCSE) {
537       for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
538         MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
539         MRI->clearKillFlags(CSEPairs[i].second);
540       }
541 
542       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
543       // we should make sure it is not dead at CSMI.
544       for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i)
545         CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false);
546 
547       if (CrossMBBPhysDef) {
548         // Add physical register defs now coming in from a predecessor to MBB
549         // livein list.
550         while (!PhysDefs.empty()) {
551           unsigned LiveIn = PhysDefs.pop_back_val();
552           if (!MBB->isLiveIn(LiveIn))
553             MBB->addLiveIn(LiveIn);
554         }
555         ++NumCrossBBCSEs;
556       }
557 
558       MI->eraseFromParent();
559       ++NumCSEs;
560       if (!PhysRefs.empty())
561         ++NumPhysCSEs;
562       if (Commuted)
563         ++NumCommutes;
564       Changed = true;
565     } else {
566       VNT.insert(MI, CurrVN++);
567       Exps.push_back(MI);
568     }
569     CSEPairs.clear();
570     ImplicitDefsToUpdate.clear();
571   }
572 
573   return Changed;
574 }
575 
576 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
577 /// dominator tree node if its a leaf or all of its children are done. Walk
578 /// up the dominator tree to destroy ancestors which are now done.
579 void
580 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
581                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
582   if (OpenChildren[Node])
583     return;
584 
585   // Pop scope.
586   ExitScope(Node->getBlock());
587 
588   // Now traverse upwards to pop ancestors whose offsprings are all done.
589   while (MachineDomTreeNode *Parent = Node->getIDom()) {
590     unsigned Left = --OpenChildren[Parent];
591     if (Left != 0)
592       break;
593     ExitScope(Parent->getBlock());
594     Node = Parent;
595   }
596 }
597 
598 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
599   SmallVector<MachineDomTreeNode*, 32> Scopes;
600   SmallVector<MachineDomTreeNode*, 8> WorkList;
601   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
602 
603   CurrVN = 0;
604 
605   // Perform a DFS walk to determine the order of visit.
606   WorkList.push_back(Node);
607   do {
608     Node = WorkList.pop_back_val();
609     Scopes.push_back(Node);
610     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
611     unsigned NumChildren = Children.size();
612     OpenChildren[Node] = NumChildren;
613     for (unsigned i = 0; i != NumChildren; ++i) {
614       MachineDomTreeNode *Child = Children[i];
615       WorkList.push_back(Child);
616     }
617   } while (!WorkList.empty());
618 
619   // Now perform CSE.
620   bool Changed = false;
621   for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
622     MachineDomTreeNode *Node = Scopes[i];
623     MachineBasicBlock *MBB = Node->getBlock();
624     EnterScope(MBB);
625     Changed |= ProcessBlock(MBB);
626     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
627     ExitScopeIfDone(Node, OpenChildren);
628   }
629 
630   return Changed;
631 }
632 
633 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
634   TII = MF.getTarget().getInstrInfo();
635   TRI = MF.getTarget().getRegisterInfo();
636   MRI = &MF.getRegInfo();
637   AA = &getAnalysis<AliasAnalysis>();
638   DT = &getAnalysis<MachineDominatorTree>();
639   AllocatableRegs = TRI->getAllocatableSet(MF);
640   ReservedRegs = TRI->getReservedRegs(MF);
641   return PerformCSE(DT->getRootNode());
642 }
643