1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global common subexpression elimination on machine 11 // instructions using a scoped hash table based value numbering scheme. It 12 // must be run while the machine function is still in SSA form. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "machine-cse" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/ScopedHashTable.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 29 using namespace llvm; 30 31 STATISTIC(NumCoalesces, "Number of copies coalesced"); 32 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 33 STATISTIC(NumPhysCSEs, "Number of phyreg defining common subexpr eliminated"); 34 35 namespace { 36 class MachineCSE : public MachineFunctionPass { 37 const TargetInstrInfo *TII; 38 const TargetRegisterInfo *TRI; 39 AliasAnalysis *AA; 40 MachineDominatorTree *DT; 41 MachineRegisterInfo *MRI; 42 public: 43 static char ID; // Pass identification 44 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {} 45 46 virtual bool runOnMachineFunction(MachineFunction &MF); 47 48 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 49 AU.setPreservesCFG(); 50 MachineFunctionPass::getAnalysisUsage(AU); 51 AU.addRequired<AliasAnalysis>(); 52 AU.addPreservedID(MachineLoopInfoID); 53 AU.addRequired<MachineDominatorTree>(); 54 AU.addPreserved<MachineDominatorTree>(); 55 } 56 57 virtual void releaseMemory() { 58 ScopeMap.clear(); 59 Exps.clear(); 60 } 61 62 private: 63 const unsigned LookAheadLimit; 64 typedef ScopedHashTableScope<MachineInstr*, unsigned, 65 MachineInstrExpressionTrait> ScopeType; 66 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap; 67 ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait> VNT; 68 SmallVector<MachineInstr*, 64> Exps; 69 unsigned CurrVN; 70 71 bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB); 72 bool isPhysDefTriviallyDead(unsigned Reg, 73 MachineBasicBlock::const_iterator I, 74 MachineBasicBlock::const_iterator E) const ; 75 bool hasLivePhysRegDefUse(const MachineInstr *MI, 76 const MachineBasicBlock *MBB, 77 unsigned &PhysDef) const; 78 bool PhysRegDefReaches(MachineInstr *CSMI, MachineInstr *MI, 79 unsigned PhysDef) const; 80 bool isCSECandidate(MachineInstr *MI); 81 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 82 MachineInstr *CSMI, MachineInstr *MI); 83 void EnterScope(MachineBasicBlock *MBB); 84 void ExitScope(MachineBasicBlock *MBB); 85 bool ProcessBlock(MachineBasicBlock *MBB); 86 void ExitScopeIfDone(MachineDomTreeNode *Node, 87 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 88 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap); 89 bool PerformCSE(MachineDomTreeNode *Node); 90 }; 91 } // end anonymous namespace 92 93 char MachineCSE::ID = 0; 94 INITIALIZE_PASS(MachineCSE, "machine-cse", 95 "Machine Common Subexpression Elimination", false, false); 96 97 FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); } 98 99 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI, 100 MachineBasicBlock *MBB) { 101 bool Changed = false; 102 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 103 MachineOperand &MO = MI->getOperand(i); 104 if (!MO.isReg() || !MO.isUse()) 105 continue; 106 unsigned Reg = MO.getReg(); 107 if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) 108 continue; 109 if (!MRI->hasOneNonDBGUse(Reg)) 110 // Only coalesce single use copies. This ensure the copy will be 111 // deleted. 112 continue; 113 MachineInstr *DefMI = MRI->getVRegDef(Reg); 114 if (DefMI->getParent() != MBB) 115 continue; 116 if (!DefMI->isCopy()) 117 continue; 118 unsigned SrcReg = DefMI->getOperand(1).getReg(); 119 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 120 continue; 121 if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg()) 122 continue; 123 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 124 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 125 const TargetRegisterClass *NewRC = getCommonSubClass(RC, SRC); 126 if (!NewRC) 127 continue; 128 DEBUG(dbgs() << "Coalescing: " << *DefMI); 129 DEBUG(dbgs() << "*** to: " << *MI); 130 MO.setReg(SrcReg); 131 MRI->clearKillFlags(SrcReg); 132 if (NewRC != SRC) 133 MRI->setRegClass(SrcReg, NewRC); 134 DefMI->eraseFromParent(); 135 ++NumCoalesces; 136 Changed = true; 137 } 138 139 return Changed; 140 } 141 142 bool 143 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 144 MachineBasicBlock::const_iterator I, 145 MachineBasicBlock::const_iterator E) const { 146 unsigned LookAheadLeft = LookAheadLimit; 147 while (LookAheadLeft) { 148 // Skip over dbg_value's. 149 while (I != E && I->isDebugValue()) 150 ++I; 151 152 if (I == E) 153 // Reached end of block, register is obviously dead. 154 return true; 155 156 bool SeenDef = false; 157 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 158 const MachineOperand &MO = I->getOperand(i); 159 if (!MO.isReg() || !MO.getReg()) 160 continue; 161 if (!TRI->regsOverlap(MO.getReg(), Reg)) 162 continue; 163 if (MO.isUse()) 164 // Found a use! 165 return false; 166 SeenDef = true; 167 } 168 if (SeenDef) 169 // See a def of Reg (or an alias) before encountering any use, it's 170 // trivially dead. 171 return true; 172 173 --LookAheadLeft; 174 ++I; 175 } 176 return false; 177 } 178 179 /// hasLivePhysRegDefUse - Return true if the specified instruction read / write 180 /// physical registers (except for dead defs of physical registers). It also 181 /// returns the physical register def by reference if it's the only one and the 182 /// instruction does not uses a physical register. 183 bool MachineCSE::hasLivePhysRegDefUse(const MachineInstr *MI, 184 const MachineBasicBlock *MBB, 185 unsigned &PhysDef) const { 186 PhysDef = 0; 187 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 188 const MachineOperand &MO = MI->getOperand(i); 189 if (!MO.isReg()) 190 continue; 191 unsigned Reg = MO.getReg(); 192 if (!Reg) 193 continue; 194 if (TargetRegisterInfo::isVirtualRegister(Reg)) 195 continue; 196 if (MO.isUse()) { 197 // Can't touch anything to read a physical register. 198 PhysDef = 0; 199 return true; 200 } 201 if (MO.isDead()) 202 // If the def is dead, it's ok. 203 continue; 204 // Ok, this is a physical register def that's not marked "dead". That's 205 // common since this pass is run before livevariables. We can scan 206 // forward a few instructions and check if it is obviously dead. 207 if (PhysDef) { 208 // Multiple physical register defs. These are rare, forget about it. 209 PhysDef = 0; 210 return true; 211 } 212 PhysDef = Reg; 213 } 214 215 if (PhysDef) { 216 MachineBasicBlock::const_iterator I = MI; I = llvm::next(I); 217 if (!isPhysDefTriviallyDead(PhysDef, I, MBB->end())) 218 return true; 219 } 220 return false; 221 } 222 223 bool MachineCSE::PhysRegDefReaches(MachineInstr *CSMI, MachineInstr *MI, 224 unsigned PhysDef) const { 225 // For now conservatively returns false if the common subexpression is 226 // not in the same basic block as the given instruction. 227 MachineBasicBlock *MBB = MI->getParent(); 228 if (CSMI->getParent() != MBB) 229 return false; 230 MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I); 231 MachineBasicBlock::const_iterator E = MI; 232 unsigned LookAheadLeft = LookAheadLimit; 233 while (LookAheadLeft) { 234 // Skip over dbg_value's. 235 while (I != E && I->isDebugValue()) 236 ++I; 237 238 if (I == E) 239 return true; 240 if (I->modifiesRegister(PhysDef, TRI)) 241 return false; 242 243 --LookAheadLeft; 244 ++I; 245 } 246 247 return false; 248 } 249 250 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 251 if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() || 252 MI->isKill() || MI->isInlineAsm() || MI->isDebugValue()) 253 return false; 254 255 // Ignore copies. 256 if (MI->isCopyLike()) 257 return false; 258 259 // Ignore stuff that we obviously can't move. 260 const TargetInstrDesc &TID = MI->getDesc(); 261 if (TID.mayStore() || TID.isCall() || TID.isTerminator() || 262 TID.hasUnmodeledSideEffects()) 263 return false; 264 265 if (TID.mayLoad()) { 266 // Okay, this instruction does a load. As a refinement, we allow the target 267 // to decide whether the loaded value is actually a constant. If so, we can 268 // actually use it as a load. 269 if (!MI->isInvariantLoad(AA)) 270 // FIXME: we should be able to hoist loads with no other side effects if 271 // there are no other instructions which can change memory in this loop. 272 // This is a trivial form of alias analysis. 273 return false; 274 } 275 return true; 276 } 277 278 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 279 /// common expression that defines Reg. 280 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 281 MachineInstr *CSMI, MachineInstr *MI) { 282 // FIXME: Heuristics that works around the lack the live range splitting. 283 284 // Heuristics #1: Don't cse "cheap" computating if the def is not local or in an 285 // immediate predecessor. We don't want to increase register pressure and end up 286 // causing other computation to be spilled. 287 if (MI->getDesc().isAsCheapAsAMove()) { 288 MachineBasicBlock *CSBB = CSMI->getParent(); 289 MachineBasicBlock *BB = MI->getParent(); 290 if (CSBB != BB && 291 find(CSBB->succ_begin(), CSBB->succ_end(), BB) == CSBB->succ_end()) 292 return false; 293 } 294 295 // Heuristics #2: If the expression doesn't not use a vr and the only use 296 // of the redundant computation are copies, do not cse. 297 bool HasVRegUse = false; 298 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 299 const MachineOperand &MO = MI->getOperand(i); 300 if (MO.isReg() && MO.isUse() && MO.getReg() && 301 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 302 HasVRegUse = true; 303 break; 304 } 305 } 306 if (!HasVRegUse) { 307 bool HasNonCopyUse = false; 308 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), 309 E = MRI->use_nodbg_end(); I != E; ++I) { 310 MachineInstr *Use = &*I; 311 // Ignore copies. 312 if (!Use->isCopyLike()) { 313 HasNonCopyUse = true; 314 break; 315 } 316 } 317 if (!HasNonCopyUse) 318 return false; 319 } 320 321 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 322 // it unless the defined value is already used in the BB of the new use. 323 bool HasPHI = false; 324 SmallPtrSet<MachineBasicBlock*, 4> CSBBs; 325 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg), 326 E = MRI->use_nodbg_end(); I != E; ++I) { 327 MachineInstr *Use = &*I; 328 HasPHI |= Use->isPHI(); 329 CSBBs.insert(Use->getParent()); 330 } 331 332 if (!HasPHI) 333 return true; 334 return CSBBs.count(MI->getParent()); 335 } 336 337 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 338 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 339 ScopeType *Scope = new ScopeType(VNT); 340 ScopeMap[MBB] = Scope; 341 } 342 343 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 344 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 345 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 346 assert(SI != ScopeMap.end()); 347 ScopeMap.erase(SI); 348 delete SI->second; 349 } 350 351 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 352 bool Changed = false; 353 354 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 355 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 356 MachineInstr *MI = &*I; 357 ++I; 358 359 if (!isCSECandidate(MI)) 360 continue; 361 362 bool DefPhys = false; 363 bool FoundCSE = VNT.count(MI); 364 if (!FoundCSE) { 365 // Look for trivial copy coalescing opportunities. 366 if (PerformTrivialCoalescing(MI, MBB)) { 367 // After coalescing MI itself may become a copy. 368 if (MI->isCopyLike()) 369 continue; 370 FoundCSE = VNT.count(MI); 371 } 372 } 373 // FIXME: commute commutable instructions? 374 375 // If the instruction defines a physical register and the value *may* be 376 // used, then it's not safe to replace it with a common subexpression. 377 unsigned PhysDef = 0; 378 if (FoundCSE && hasLivePhysRegDefUse(MI, MBB, PhysDef)) { 379 FoundCSE = false; 380 381 // ... Unless the CS is local and it also defines the physical register 382 // which is not clobbered in between. 383 if (PhysDef) { 384 unsigned CSVN = VNT.lookup(MI); 385 MachineInstr *CSMI = Exps[CSVN]; 386 if (PhysRegDefReaches(CSMI, MI, PhysDef)) { 387 FoundCSE = true; 388 DefPhys = true; 389 } 390 } 391 } 392 393 if (!FoundCSE) { 394 VNT.insert(MI, CurrVN++); 395 Exps.push_back(MI); 396 continue; 397 } 398 399 // Found a common subexpression, eliminate it. 400 unsigned CSVN = VNT.lookup(MI); 401 MachineInstr *CSMI = Exps[CSVN]; 402 DEBUG(dbgs() << "Examining: " << *MI); 403 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 404 405 // Check if it's profitable to perform this CSE. 406 bool DoCSE = true; 407 unsigned NumDefs = MI->getDesc().getNumDefs(); 408 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 409 MachineOperand &MO = MI->getOperand(i); 410 if (!MO.isReg() || !MO.isDef()) 411 continue; 412 unsigned OldReg = MO.getReg(); 413 unsigned NewReg = CSMI->getOperand(i).getReg(); 414 if (OldReg == NewReg) 415 continue; 416 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 417 TargetRegisterInfo::isVirtualRegister(NewReg) && 418 "Do not CSE physical register defs!"); 419 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 420 DoCSE = false; 421 break; 422 } 423 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 424 --NumDefs; 425 } 426 427 // Actually perform the elimination. 428 if (DoCSE) { 429 for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) { 430 MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second); 431 MRI->clearKillFlags(CSEPairs[i].second); 432 } 433 MI->eraseFromParent(); 434 ++NumCSEs; 435 if (DefPhys) 436 ++NumPhysCSEs; 437 } else { 438 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 439 VNT.insert(MI, CurrVN++); 440 Exps.push_back(MI); 441 } 442 CSEPairs.clear(); 443 } 444 445 return Changed; 446 } 447 448 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 449 /// dominator tree node if its a leaf or all of its children are done. Walk 450 /// up the dominator tree to destroy ancestors which are now done. 451 void 452 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 453 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 454 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 455 if (OpenChildren[Node]) 456 return; 457 458 // Pop scope. 459 ExitScope(Node->getBlock()); 460 461 // Now traverse upwards to pop ancestors whose offsprings are all done. 462 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 463 unsigned Left = --OpenChildren[Parent]; 464 if (Left != 0) 465 break; 466 ExitScope(Parent->getBlock()); 467 Node = Parent; 468 } 469 } 470 471 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 472 SmallVector<MachineDomTreeNode*, 32> Scopes; 473 SmallVector<MachineDomTreeNode*, 8> WorkList; 474 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 475 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 476 477 CurrVN = 0; 478 479 // Perform a DFS walk to determine the order of visit. 480 WorkList.push_back(Node); 481 do { 482 Node = WorkList.pop_back_val(); 483 Scopes.push_back(Node); 484 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 485 unsigned NumChildren = Children.size(); 486 OpenChildren[Node] = NumChildren; 487 for (unsigned i = 0; i != NumChildren; ++i) { 488 MachineDomTreeNode *Child = Children[i]; 489 ParentMap[Child] = Node; 490 WorkList.push_back(Child); 491 } 492 } while (!WorkList.empty()); 493 494 // Now perform CSE. 495 bool Changed = false; 496 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 497 MachineDomTreeNode *Node = Scopes[i]; 498 MachineBasicBlock *MBB = Node->getBlock(); 499 EnterScope(MBB); 500 Changed |= ProcessBlock(MBB); 501 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 502 ExitScopeIfDone(Node, OpenChildren, ParentMap); 503 } 504 505 return Changed; 506 } 507 508 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 509 TII = MF.getTarget().getInstrInfo(); 510 TRI = MF.getTarget().getRegisterInfo(); 511 MRI = &MF.getRegInfo(); 512 AA = &getAnalysis<AliasAnalysis>(); 513 DT = &getAnalysis<MachineDominatorTree>(); 514 return PerformCSE(DT->getRootNode()); 515 } 516