1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global common subexpression elimination on machine 11 // instructions using a scoped hash table based value numbering scheme. It 12 // must be run while the machine function is still in SSA form. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "machine-cse" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/ScopedHashTable.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/RecyclingAllocator.h" 29 using namespace llvm; 30 31 STATISTIC(NumCoalesces, "Number of copies coalesced"); 32 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 33 STATISTIC(NumPhysCSEs, 34 "Number of physreg referencing common subexpr eliminated"); 35 STATISTIC(NumCrossBBCSEs, 36 "Number of cross-MBB physreg referencing CS eliminated"); 37 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 38 39 namespace { 40 class MachineCSE : public MachineFunctionPass { 41 const TargetInstrInfo *TII; 42 const TargetRegisterInfo *TRI; 43 AliasAnalysis *AA; 44 MachineDominatorTree *DT; 45 MachineRegisterInfo *MRI; 46 public: 47 static char ID; // Pass identification 48 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) { 49 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 50 } 51 52 virtual bool runOnMachineFunction(MachineFunction &MF); 53 54 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 55 AU.setPreservesCFG(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 AU.addRequired<AliasAnalysis>(); 58 AU.addPreservedID(MachineLoopInfoID); 59 AU.addRequired<MachineDominatorTree>(); 60 AU.addPreserved<MachineDominatorTree>(); 61 } 62 63 virtual void releaseMemory() { 64 ScopeMap.clear(); 65 Exps.clear(); 66 } 67 68 private: 69 const unsigned LookAheadLimit; 70 typedef RecyclingAllocator<BumpPtrAllocator, 71 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy; 72 typedef ScopedHashTable<MachineInstr*, unsigned, 73 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType; 74 typedef ScopedHTType::ScopeTy ScopeType; 75 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap; 76 ScopedHTType VNT; 77 SmallVector<MachineInstr*, 64> Exps; 78 unsigned CurrVN; 79 80 bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB); 81 bool isPhysDefTriviallyDead(unsigned Reg, 82 MachineBasicBlock::const_iterator I, 83 MachineBasicBlock::const_iterator E) const ; 84 bool hasLivePhysRegDefUses(const MachineInstr *MI, 85 const MachineBasicBlock *MBB, 86 SmallSet<unsigned,8> &PhysRefs, 87 SmallVector<unsigned,2> &PhysDefs) const; 88 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 89 SmallSet<unsigned,8> &PhysRefs, 90 SmallVector<unsigned,2> &PhysDefs, 91 bool &NonLocal) const; 92 bool isCSECandidate(MachineInstr *MI); 93 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 94 MachineInstr *CSMI, MachineInstr *MI); 95 void EnterScope(MachineBasicBlock *MBB); 96 void ExitScope(MachineBasicBlock *MBB); 97 bool ProcessBlock(MachineBasicBlock *MBB); 98 void ExitScopeIfDone(MachineDomTreeNode *Node, 99 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 100 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap); 101 bool PerformCSE(MachineDomTreeNode *Node); 102 }; 103 } // end anonymous namespace 104 105 char MachineCSE::ID = 0; 106 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse", 107 "Machine Common Subexpression Elimination", false, false) 108 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 109 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 110 INITIALIZE_PASS_END(MachineCSE, "machine-cse", 111 "Machine Common Subexpression Elimination", false, false) 112 113 FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); } 114 115 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI, 116 MachineBasicBlock *MBB) { 117 bool Changed = false; 118 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 119 MachineOperand &MO = MI->getOperand(i); 120 if (!MO.isReg() || !MO.isUse()) 121 continue; 122 unsigned Reg = MO.getReg(); 123 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 124 continue; 125 if (!MRI->hasOneNonDBGUse(Reg)) 126 // Only coalesce single use copies. This ensure the copy will be 127 // deleted. 128 continue; 129 MachineInstr *DefMI = MRI->getVRegDef(Reg); 130 if (DefMI->getParent() != MBB) 131 continue; 132 if (!DefMI->isCopy()) 133 continue; 134 unsigned SrcReg = DefMI->getOperand(1).getReg(); 135 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 136 continue; 137 if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg()) 138 continue; 139 if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg))) 140 continue; 141 DEBUG(dbgs() << "Coalescing: " << *DefMI); 142 DEBUG(dbgs() << "*** to: " << *MI); 143 MO.setReg(SrcReg); 144 MRI->clearKillFlags(SrcReg); 145 DefMI->eraseFromParent(); 146 ++NumCoalesces; 147 Changed = true; 148 } 149 150 return Changed; 151 } 152 153 bool 154 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 155 MachineBasicBlock::const_iterator I, 156 MachineBasicBlock::const_iterator E) const { 157 unsigned LookAheadLeft = LookAheadLimit; 158 while (LookAheadLeft) { 159 // Skip over dbg_value's. 160 while (I != E && I->isDebugValue()) 161 ++I; 162 163 if (I == E) 164 // Reached end of block, register is obviously dead. 165 return true; 166 167 bool SeenDef = false; 168 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 169 const MachineOperand &MO = I->getOperand(i); 170 if (!MO.isReg() || !MO.getReg()) 171 continue; 172 if (!TRI->regsOverlap(MO.getReg(), Reg)) 173 continue; 174 if (MO.isUse()) 175 // Found a use! 176 return false; 177 SeenDef = true; 178 } 179 if (SeenDef) 180 // See a def of Reg (or an alias) before encountering any use, it's 181 // trivially dead. 182 return true; 183 184 --LookAheadLeft; 185 ++I; 186 } 187 return false; 188 } 189 190 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 191 /// physical registers (except for dead defs of physical registers). It also 192 /// returns the physical register def by reference if it's the only one and the 193 /// instruction does not uses a physical register. 194 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 195 const MachineBasicBlock *MBB, 196 SmallSet<unsigned,8> &PhysRefs, 197 SmallVector<unsigned,2> &PhysDefs) const{ 198 MachineBasicBlock::const_iterator I = MI; I = llvm::next(I); 199 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 200 const MachineOperand &MO = MI->getOperand(i); 201 if (!MO.isReg()) 202 continue; 203 unsigned Reg = MO.getReg(); 204 if (!Reg) 205 continue; 206 if (TargetRegisterInfo::isVirtualRegister(Reg)) 207 continue; 208 // If the def is dead, it's ok. But the def may not marked "dead". That's 209 // common since this pass is run before livevariables. We can scan 210 // forward a few instructions and check if it is obviously dead. 211 if (MO.isDef() && 212 (MO.isDead() || isPhysDefTriviallyDead(Reg, I, MBB->end()))) 213 continue; 214 PhysRefs.insert(Reg); 215 if (MO.isDef()) 216 PhysDefs.push_back(Reg); 217 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) 218 PhysRefs.insert(*Alias); 219 } 220 221 return !PhysRefs.empty(); 222 } 223 224 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 225 SmallSet<unsigned,8> &PhysRefs, 226 SmallVector<unsigned,2> &PhysDefs, 227 bool &NonLocal) const { 228 // For now conservatively returns false if the common subexpression is 229 // not in the same basic block as the given instruction. The only exception 230 // is if the common subexpression is in the sole predecessor block. 231 const MachineBasicBlock *MBB = MI->getParent(); 232 const MachineBasicBlock *CSMBB = CSMI->getParent(); 233 234 bool CrossMBB = false; 235 if (CSMBB != MBB) { 236 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 237 return false; 238 239 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 240 if (TRI->isInAllocatableClass(PhysDefs[i])) 241 // Avoid extending live range of physical registers unless 242 // they are unallocatable. 243 return false; 244 } 245 CrossMBB = true; 246 } 247 MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I); 248 MachineBasicBlock::const_iterator E = MI; 249 MachineBasicBlock::const_iterator EE = CSMBB->end(); 250 unsigned LookAheadLeft = LookAheadLimit; 251 while (LookAheadLeft) { 252 // Skip over dbg_value's. 253 while (I != E && I != EE && I->isDebugValue()) 254 ++I; 255 256 if (I == EE) { 257 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 258 (void)CrossMBB; 259 CrossMBB = false; 260 NonLocal = true; 261 I = MBB->begin(); 262 EE = MBB->end(); 263 continue; 264 } 265 266 if (I == E) 267 return true; 268 269 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 270 const MachineOperand &MO = I->getOperand(i); 271 if (!MO.isReg() || !MO.isDef()) 272 continue; 273 unsigned MOReg = MO.getReg(); 274 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 275 continue; 276 if (PhysRefs.count(MOReg)) 277 return false; 278 } 279 280 --LookAheadLeft; 281 ++I; 282 } 283 284 return false; 285 } 286 287 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 288 if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() || 289 MI->isKill() || MI->isInlineAsm() || MI->isDebugValue()) 290 return false; 291 292 // Ignore copies. 293 if (MI->isCopyLike()) 294 return false; 295 296 // Ignore stuff that we obviously can't move. 297 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 298 MI->hasUnmodeledSideEffects()) 299 return false; 300 301 if (MI->mayLoad()) { 302 // Okay, this instruction does a load. As a refinement, we allow the target 303 // to decide whether the loaded value is actually a constant. If so, we can 304 // actually use it as a load. 305 if (!MI->isInvariantLoad(AA)) 306 // FIXME: we should be able to hoist loads with no other side effects if 307 // there are no other instructions which can change memory in this loop. 308 // This is a trivial form of alias analysis. 309 return false; 310 } 311 return true; 312 } 313 314 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 315 /// common expression that defines Reg. 316 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 317 MachineInstr *CSMI, MachineInstr *MI) { 318 // FIXME: Heuristics that works around the lack the live range splitting. 319 320 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 321 // an immediate predecessor. We don't want to increase register pressure and 322 // end up causing other computation to be spilled. 323 if (MI->isAsCheapAsAMove()) { 324 MachineBasicBlock *CSBB = CSMI->getParent(); 325 MachineBasicBlock *BB = MI->getParent(); 326 if (CSBB != BB && !CSBB->isSuccessor(BB)) 327 return false; 328 } 329 330 // Heuristics #2: If the expression doesn't not use a vr and the only use 331 // of the redundant computation are copies, do not cse. 332 bool HasVRegUse = false; 333 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 334 const MachineOperand &MO = MI->getOperand(i); 335 if (MO.isReg() && MO.isUse() && 336 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 337 HasVRegUse = true; 338 break; 339 } 340 } 341 if (!HasVRegUse) { 342 bool HasNonCopyUse = false; 343 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), 344 E = MRI->use_nodbg_end(); I != E; ++I) { 345 MachineInstr *Use = &*I; 346 // Ignore copies. 347 if (!Use->isCopyLike()) { 348 HasNonCopyUse = true; 349 break; 350 } 351 } 352 if (!HasNonCopyUse) 353 return false; 354 } 355 356 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 357 // it unless the defined value is already used in the BB of the new use. 358 bool HasPHI = false; 359 SmallPtrSet<MachineBasicBlock*, 4> CSBBs; 360 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg), 361 E = MRI->use_nodbg_end(); I != E; ++I) { 362 MachineInstr *Use = &*I; 363 HasPHI |= Use->isPHI(); 364 CSBBs.insert(Use->getParent()); 365 } 366 367 if (!HasPHI) 368 return true; 369 return CSBBs.count(MI->getParent()); 370 } 371 372 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 373 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 374 ScopeType *Scope = new ScopeType(VNT); 375 ScopeMap[MBB] = Scope; 376 } 377 378 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 379 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 380 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 381 assert(SI != ScopeMap.end()); 382 ScopeMap.erase(SI); 383 delete SI->second; 384 } 385 386 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 387 bool Changed = false; 388 389 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 390 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 391 MachineInstr *MI = &*I; 392 ++I; 393 394 if (!isCSECandidate(MI)) 395 continue; 396 397 bool FoundCSE = VNT.count(MI); 398 if (!FoundCSE) { 399 // Look for trivial copy coalescing opportunities. 400 if (PerformTrivialCoalescing(MI, MBB)) { 401 Changed = true; 402 403 // After coalescing MI itself may become a copy. 404 if (MI->isCopyLike()) 405 continue; 406 FoundCSE = VNT.count(MI); 407 } 408 } 409 410 // Commute commutable instructions. 411 bool Commuted = false; 412 if (!FoundCSE && MI->isCommutable()) { 413 MachineInstr *NewMI = TII->commuteInstruction(MI); 414 if (NewMI) { 415 Commuted = true; 416 FoundCSE = VNT.count(NewMI); 417 if (NewMI != MI) { 418 // New instruction. It doesn't need to be kept. 419 NewMI->eraseFromParent(); 420 Changed = true; 421 } else if (!FoundCSE) 422 // MI was changed but it didn't help, commute it back! 423 (void)TII->commuteInstruction(MI); 424 } 425 } 426 427 // If the instruction defines physical registers and the values *may* be 428 // used, then it's not safe to replace it with a common subexpression. 429 // It's also not safe if the instruction uses physical registers. 430 bool CrossMBBPhysDef = false; 431 SmallSet<unsigned,8> PhysRefs; 432 SmallVector<unsigned, 2> PhysDefs; 433 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, PhysDefs)) { 434 FoundCSE = false; 435 436 // ... Unless the CS is local or is in the sole predecessor block 437 // and it also defines the physical register which is not clobbered 438 // in between and the physical register uses were not clobbered. 439 unsigned CSVN = VNT.lookup(MI); 440 MachineInstr *CSMI = Exps[CSVN]; 441 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 442 FoundCSE = true; 443 } 444 445 if (!FoundCSE) { 446 VNT.insert(MI, CurrVN++); 447 Exps.push_back(MI); 448 continue; 449 } 450 451 // Found a common subexpression, eliminate it. 452 unsigned CSVN = VNT.lookup(MI); 453 MachineInstr *CSMI = Exps[CSVN]; 454 DEBUG(dbgs() << "Examining: " << *MI); 455 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 456 457 // Check if it's profitable to perform this CSE. 458 bool DoCSE = true; 459 unsigned NumDefs = MI->getDesc().getNumDefs(); 460 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 461 MachineOperand &MO = MI->getOperand(i); 462 if (!MO.isReg() || !MO.isDef()) 463 continue; 464 unsigned OldReg = MO.getReg(); 465 unsigned NewReg = CSMI->getOperand(i).getReg(); 466 if (OldReg == NewReg) 467 continue; 468 469 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 470 TargetRegisterInfo::isVirtualRegister(NewReg) && 471 "Do not CSE physical register defs!"); 472 473 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 474 DoCSE = false; 475 break; 476 } 477 478 // Don't perform CSE if the result of the old instruction cannot exist 479 // within the register class of the new instruction. 480 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg); 481 if (!MRI->constrainRegClass(NewReg, OldRC)) { 482 DoCSE = false; 483 break; 484 } 485 486 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 487 --NumDefs; 488 } 489 490 // Actually perform the elimination. 491 if (DoCSE) { 492 for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) { 493 MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second); 494 MRI->clearKillFlags(CSEPairs[i].second); 495 } 496 497 if (CrossMBBPhysDef) { 498 // Add physical register defs now coming in from a predecessor to MBB 499 // livein list. 500 while (!PhysDefs.empty()) { 501 unsigned LiveIn = PhysDefs.pop_back_val(); 502 if (!MBB->isLiveIn(LiveIn)) 503 MBB->addLiveIn(LiveIn); 504 } 505 ++NumCrossBBCSEs; 506 } 507 508 MI->eraseFromParent(); 509 ++NumCSEs; 510 if (!PhysRefs.empty()) 511 ++NumPhysCSEs; 512 if (Commuted) 513 ++NumCommutes; 514 Changed = true; 515 } else { 516 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 517 VNT.insert(MI, CurrVN++); 518 Exps.push_back(MI); 519 } 520 CSEPairs.clear(); 521 } 522 523 return Changed; 524 } 525 526 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 527 /// dominator tree node if its a leaf or all of its children are done. Walk 528 /// up the dominator tree to destroy ancestors which are now done. 529 void 530 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 531 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 532 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 533 if (OpenChildren[Node]) 534 return; 535 536 // Pop scope. 537 ExitScope(Node->getBlock()); 538 539 // Now traverse upwards to pop ancestors whose offsprings are all done. 540 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 541 unsigned Left = --OpenChildren[Parent]; 542 if (Left != 0) 543 break; 544 ExitScope(Parent->getBlock()); 545 Node = Parent; 546 } 547 } 548 549 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 550 SmallVector<MachineDomTreeNode*, 32> Scopes; 551 SmallVector<MachineDomTreeNode*, 8> WorkList; 552 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 553 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 554 555 CurrVN = 0; 556 557 // Perform a DFS walk to determine the order of visit. 558 WorkList.push_back(Node); 559 do { 560 Node = WorkList.pop_back_val(); 561 Scopes.push_back(Node); 562 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 563 unsigned NumChildren = Children.size(); 564 OpenChildren[Node] = NumChildren; 565 for (unsigned i = 0; i != NumChildren; ++i) { 566 MachineDomTreeNode *Child = Children[i]; 567 ParentMap[Child] = Node; 568 WorkList.push_back(Child); 569 } 570 } while (!WorkList.empty()); 571 572 // Now perform CSE. 573 bool Changed = false; 574 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 575 MachineDomTreeNode *Node = Scopes[i]; 576 MachineBasicBlock *MBB = Node->getBlock(); 577 EnterScope(MBB); 578 Changed |= ProcessBlock(MBB); 579 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 580 ExitScopeIfDone(Node, OpenChildren, ParentMap); 581 } 582 583 return Changed; 584 } 585 586 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 587 TII = MF.getTarget().getInstrInfo(); 588 TRI = MF.getTarget().getRegisterInfo(); 589 MRI = &MF.getRegInfo(); 590 AA = &getAnalysis<AliasAnalysis>(); 591 DT = &getAnalysis<MachineDominatorTree>(); 592 return PerformCSE(DT->getRootNode()); 593 } 594