1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global common subexpression elimination on machine 11 // instructions using a scoped hash table based value numbering scheme. It 12 // must be run while the machine function is still in SSA form. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "machine-cse" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/ScopedHashTable.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/RecyclingAllocator.h" 28 #include "llvm/Target/TargetInstrInfo.h" 29 using namespace llvm; 30 31 STATISTIC(NumCoalesces, "Number of copies coalesced"); 32 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 33 STATISTIC(NumPhysCSEs, 34 "Number of physreg referencing common subexpr eliminated"); 35 STATISTIC(NumCrossBBCSEs, 36 "Number of cross-MBB physreg referencing CS eliminated"); 37 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 38 39 namespace { 40 class MachineCSE : public MachineFunctionPass { 41 const TargetInstrInfo *TII; 42 const TargetRegisterInfo *TRI; 43 AliasAnalysis *AA; 44 MachineDominatorTree *DT; 45 MachineRegisterInfo *MRI; 46 public: 47 static char ID; // Pass identification 48 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) { 49 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 50 } 51 52 virtual bool runOnMachineFunction(MachineFunction &MF); 53 54 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 55 AU.setPreservesCFG(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 AU.addRequired<AliasAnalysis>(); 58 AU.addPreservedID(MachineLoopInfoID); 59 AU.addRequired<MachineDominatorTree>(); 60 AU.addPreserved<MachineDominatorTree>(); 61 } 62 63 virtual void releaseMemory() { 64 ScopeMap.clear(); 65 Exps.clear(); 66 } 67 68 private: 69 const unsigned LookAheadLimit; 70 typedef RecyclingAllocator<BumpPtrAllocator, 71 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy; 72 typedef ScopedHashTable<MachineInstr*, unsigned, 73 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType; 74 typedef ScopedHTType::ScopeTy ScopeType; 75 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap; 76 ScopedHTType VNT; 77 SmallVector<MachineInstr*, 64> Exps; 78 unsigned CurrVN; 79 80 bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB); 81 bool isPhysDefTriviallyDead(unsigned Reg, 82 MachineBasicBlock::const_iterator I, 83 MachineBasicBlock::const_iterator E) const; 84 bool hasLivePhysRegDefUses(const MachineInstr *MI, 85 const MachineBasicBlock *MBB, 86 SmallSet<unsigned,8> &PhysRefs, 87 SmallVectorImpl<unsigned> &PhysDefs, 88 bool &PhysUseDef) const; 89 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 90 SmallSet<unsigned,8> &PhysRefs, 91 SmallVectorImpl<unsigned> &PhysDefs, 92 bool &NonLocal) const; 93 bool isCSECandidate(MachineInstr *MI); 94 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 95 MachineInstr *CSMI, MachineInstr *MI); 96 void EnterScope(MachineBasicBlock *MBB); 97 void ExitScope(MachineBasicBlock *MBB); 98 bool ProcessBlock(MachineBasicBlock *MBB); 99 void ExitScopeIfDone(MachineDomTreeNode *Node, 100 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 101 bool PerformCSE(MachineDomTreeNode *Node); 102 }; 103 } // end anonymous namespace 104 105 char MachineCSE::ID = 0; 106 char &llvm::MachineCSEID = MachineCSE::ID; 107 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse", 108 "Machine Common Subexpression Elimination", false, false) 109 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 110 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 111 INITIALIZE_PASS_END(MachineCSE, "machine-cse", 112 "Machine Common Subexpression Elimination", false, false) 113 114 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI, 115 MachineBasicBlock *MBB) { 116 bool Changed = false; 117 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 118 MachineOperand &MO = MI->getOperand(i); 119 if (!MO.isReg() || !MO.isUse()) 120 continue; 121 unsigned Reg = MO.getReg(); 122 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 123 continue; 124 if (!MRI->hasOneNonDBGUse(Reg)) 125 // Only coalesce single use copies. This ensure the copy will be 126 // deleted. 127 continue; 128 MachineInstr *DefMI = MRI->getVRegDef(Reg); 129 if (!DefMI->isCopy()) 130 continue; 131 unsigned SrcReg = DefMI->getOperand(1).getReg(); 132 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 133 continue; 134 if (DefMI->getOperand(0).getSubReg()) 135 continue; 136 unsigned SrcSubReg = DefMI->getOperand(1).getSubReg(); 137 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 138 if (SrcSubReg) 139 RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 140 SrcSubReg); 141 if (!MRI->constrainRegClass(SrcReg, RC)) 142 continue; 143 DEBUG(dbgs() << "Coalescing: " << *DefMI); 144 DEBUG(dbgs() << "*** to: " << *MI); 145 MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 146 MRI->clearKillFlags(SrcReg); 147 DefMI->eraseFromParent(); 148 ++NumCoalesces; 149 Changed = true; 150 } 151 152 return Changed; 153 } 154 155 bool 156 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 157 MachineBasicBlock::const_iterator I, 158 MachineBasicBlock::const_iterator E) const { 159 unsigned LookAheadLeft = LookAheadLimit; 160 while (LookAheadLeft) { 161 // Skip over dbg_value's. 162 while (I != E && I->isDebugValue()) 163 ++I; 164 165 if (I == E) 166 // Reached end of block, register is obviously dead. 167 return true; 168 169 bool SeenDef = false; 170 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 171 const MachineOperand &MO = I->getOperand(i); 172 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 173 SeenDef = true; 174 if (!MO.isReg() || !MO.getReg()) 175 continue; 176 if (!TRI->regsOverlap(MO.getReg(), Reg)) 177 continue; 178 if (MO.isUse()) 179 // Found a use! 180 return false; 181 SeenDef = true; 182 } 183 if (SeenDef) 184 // See a def of Reg (or an alias) before encountering any use, it's 185 // trivially dead. 186 return true; 187 188 --LookAheadLeft; 189 ++I; 190 } 191 return false; 192 } 193 194 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 195 /// physical registers (except for dead defs of physical registers). It also 196 /// returns the physical register def by reference if it's the only one and the 197 /// instruction does not uses a physical register. 198 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 199 const MachineBasicBlock *MBB, 200 SmallSet<unsigned,8> &PhysRefs, 201 SmallVectorImpl<unsigned> &PhysDefs, 202 bool &PhysUseDef) const{ 203 // First, add all uses to PhysRefs. 204 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 205 const MachineOperand &MO = MI->getOperand(i); 206 if (!MO.isReg() || MO.isDef()) 207 continue; 208 unsigned Reg = MO.getReg(); 209 if (!Reg) 210 continue; 211 if (TargetRegisterInfo::isVirtualRegister(Reg)) 212 continue; 213 // Reading constant physregs is ok. 214 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) 215 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 216 PhysRefs.insert(*AI); 217 } 218 219 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 220 // (which currently contains only uses), set the PhysUseDef flag. 221 PhysUseDef = false; 222 MachineBasicBlock::const_iterator I = MI; I = llvm::next(I); 223 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 224 const MachineOperand &MO = MI->getOperand(i); 225 if (!MO.isReg() || !MO.isDef()) 226 continue; 227 unsigned Reg = MO.getReg(); 228 if (!Reg) 229 continue; 230 if (TargetRegisterInfo::isVirtualRegister(Reg)) 231 continue; 232 // Check against PhysRefs even if the def is "dead". 233 if (PhysRefs.count(Reg)) 234 PhysUseDef = true; 235 // If the def is dead, it's ok. But the def may not marked "dead". That's 236 // common since this pass is run before livevariables. We can scan 237 // forward a few instructions and check if it is obviously dead. 238 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) 239 PhysDefs.push_back(Reg); 240 } 241 242 // Finally, add all defs to PhysRefs as well. 243 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 244 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI) 245 PhysRefs.insert(*AI); 246 247 return !PhysRefs.empty(); 248 } 249 250 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 251 SmallSet<unsigned,8> &PhysRefs, 252 SmallVectorImpl<unsigned> &PhysDefs, 253 bool &NonLocal) const { 254 // For now conservatively returns false if the common subexpression is 255 // not in the same basic block as the given instruction. The only exception 256 // is if the common subexpression is in the sole predecessor block. 257 const MachineBasicBlock *MBB = MI->getParent(); 258 const MachineBasicBlock *CSMBB = CSMI->getParent(); 259 260 bool CrossMBB = false; 261 if (CSMBB != MBB) { 262 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 263 return false; 264 265 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 266 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i])) 267 // Avoid extending live range of physical registers if they are 268 //allocatable or reserved. 269 return false; 270 } 271 CrossMBB = true; 272 } 273 MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I); 274 MachineBasicBlock::const_iterator E = MI; 275 MachineBasicBlock::const_iterator EE = CSMBB->end(); 276 unsigned LookAheadLeft = LookAheadLimit; 277 while (LookAheadLeft) { 278 // Skip over dbg_value's. 279 while (I != E && I != EE && I->isDebugValue()) 280 ++I; 281 282 if (I == EE) { 283 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 284 (void)CrossMBB; 285 CrossMBB = false; 286 NonLocal = true; 287 I = MBB->begin(); 288 EE = MBB->end(); 289 continue; 290 } 291 292 if (I == E) 293 return true; 294 295 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 296 const MachineOperand &MO = I->getOperand(i); 297 // RegMasks go on instructions like calls that clobber lots of physregs. 298 // Don't attempt to CSE across such an instruction. 299 if (MO.isRegMask()) 300 return false; 301 if (!MO.isReg() || !MO.isDef()) 302 continue; 303 unsigned MOReg = MO.getReg(); 304 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 305 continue; 306 if (PhysRefs.count(MOReg)) 307 return false; 308 } 309 310 --LookAheadLeft; 311 ++I; 312 } 313 314 return false; 315 } 316 317 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 318 if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() || 319 MI->isKill() || MI->isInlineAsm() || MI->isDebugValue()) 320 return false; 321 322 // Ignore copies. 323 if (MI->isCopyLike()) 324 return false; 325 326 // Ignore stuff that we obviously can't move. 327 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 328 MI->hasUnmodeledSideEffects()) 329 return false; 330 331 if (MI->mayLoad()) { 332 // Okay, this instruction does a load. As a refinement, we allow the target 333 // to decide whether the loaded value is actually a constant. If so, we can 334 // actually use it as a load. 335 if (!MI->isInvariantLoad(AA)) 336 // FIXME: we should be able to hoist loads with no other side effects if 337 // there are no other instructions which can change memory in this loop. 338 // This is a trivial form of alias analysis. 339 return false; 340 } 341 return true; 342 } 343 344 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 345 /// common expression that defines Reg. 346 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 347 MachineInstr *CSMI, MachineInstr *MI) { 348 // FIXME: Heuristics that works around the lack the live range splitting. 349 350 // If CSReg is used at all uses of Reg, CSE should not increase register 351 // pressure of CSReg. 352 bool MayIncreasePressure = true; 353 if (TargetRegisterInfo::isVirtualRegister(CSReg) && 354 TargetRegisterInfo::isVirtualRegister(Reg)) { 355 MayIncreasePressure = false; 356 SmallPtrSet<MachineInstr*, 8> CSUses; 357 for (MachineRegisterInfo::use_nodbg_iterator I =MRI->use_nodbg_begin(CSReg), 358 E = MRI->use_nodbg_end(); I != E; ++I) { 359 MachineInstr *Use = &*I; 360 CSUses.insert(Use); 361 } 362 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), 363 E = MRI->use_nodbg_end(); I != E; ++I) { 364 MachineInstr *Use = &*I; 365 if (!CSUses.count(Use)) { 366 MayIncreasePressure = true; 367 break; 368 } 369 } 370 } 371 if (!MayIncreasePressure) return true; 372 373 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 374 // an immediate predecessor. We don't want to increase register pressure and 375 // end up causing other computation to be spilled. 376 if (MI->isAsCheapAsAMove()) { 377 MachineBasicBlock *CSBB = CSMI->getParent(); 378 MachineBasicBlock *BB = MI->getParent(); 379 if (CSBB != BB && !CSBB->isSuccessor(BB)) 380 return false; 381 } 382 383 // Heuristics #2: If the expression doesn't not use a vr and the only use 384 // of the redundant computation are copies, do not cse. 385 bool HasVRegUse = false; 386 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 387 const MachineOperand &MO = MI->getOperand(i); 388 if (MO.isReg() && MO.isUse() && 389 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 390 HasVRegUse = true; 391 break; 392 } 393 } 394 if (!HasVRegUse) { 395 bool HasNonCopyUse = false; 396 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), 397 E = MRI->use_nodbg_end(); I != E; ++I) { 398 MachineInstr *Use = &*I; 399 // Ignore copies. 400 if (!Use->isCopyLike()) { 401 HasNonCopyUse = true; 402 break; 403 } 404 } 405 if (!HasNonCopyUse) 406 return false; 407 } 408 409 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 410 // it unless the defined value is already used in the BB of the new use. 411 bool HasPHI = false; 412 SmallPtrSet<MachineBasicBlock*, 4> CSBBs; 413 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg), 414 E = MRI->use_nodbg_end(); I != E; ++I) { 415 MachineInstr *Use = &*I; 416 HasPHI |= Use->isPHI(); 417 CSBBs.insert(Use->getParent()); 418 } 419 420 if (!HasPHI) 421 return true; 422 return CSBBs.count(MI->getParent()); 423 } 424 425 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 426 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 427 ScopeType *Scope = new ScopeType(VNT); 428 ScopeMap[MBB] = Scope; 429 } 430 431 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 432 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 433 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 434 assert(SI != ScopeMap.end()); 435 delete SI->second; 436 ScopeMap.erase(SI); 437 } 438 439 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 440 bool Changed = false; 441 442 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 443 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 444 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 445 MachineInstr *MI = &*I; 446 ++I; 447 448 if (!isCSECandidate(MI)) 449 continue; 450 451 bool FoundCSE = VNT.count(MI); 452 if (!FoundCSE) { 453 // Look for trivial copy coalescing opportunities. 454 if (PerformTrivialCoalescing(MI, MBB)) { 455 Changed = true; 456 457 // After coalescing MI itself may become a copy. 458 if (MI->isCopyLike()) 459 continue; 460 FoundCSE = VNT.count(MI); 461 } 462 } 463 464 // Commute commutable instructions. 465 bool Commuted = false; 466 if (!FoundCSE && MI->isCommutable()) { 467 MachineInstr *NewMI = TII->commuteInstruction(MI); 468 if (NewMI) { 469 Commuted = true; 470 FoundCSE = VNT.count(NewMI); 471 if (NewMI != MI) { 472 // New instruction. It doesn't need to be kept. 473 NewMI->eraseFromParent(); 474 Changed = true; 475 } else if (!FoundCSE) 476 // MI was changed but it didn't help, commute it back! 477 (void)TII->commuteInstruction(MI); 478 } 479 } 480 481 // If the instruction defines physical registers and the values *may* be 482 // used, then it's not safe to replace it with a common subexpression. 483 // It's also not safe if the instruction uses physical registers. 484 bool CrossMBBPhysDef = false; 485 SmallSet<unsigned, 8> PhysRefs; 486 SmallVector<unsigned, 2> PhysDefs; 487 bool PhysUseDef = false; 488 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, 489 PhysDefs, PhysUseDef)) { 490 FoundCSE = false; 491 492 // ... Unless the CS is local or is in the sole predecessor block 493 // and it also defines the physical register which is not clobbered 494 // in between and the physical register uses were not clobbered. 495 // This can never be the case if the instruction both uses and 496 // defines the same physical register, which was detected above. 497 if (!PhysUseDef) { 498 unsigned CSVN = VNT.lookup(MI); 499 MachineInstr *CSMI = Exps[CSVN]; 500 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 501 FoundCSE = true; 502 } 503 } 504 505 if (!FoundCSE) { 506 VNT.insert(MI, CurrVN++); 507 Exps.push_back(MI); 508 continue; 509 } 510 511 // Found a common subexpression, eliminate it. 512 unsigned CSVN = VNT.lookup(MI); 513 MachineInstr *CSMI = Exps[CSVN]; 514 DEBUG(dbgs() << "Examining: " << *MI); 515 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 516 517 // Check if it's profitable to perform this CSE. 518 bool DoCSE = true; 519 unsigned NumDefs = MI->getDesc().getNumDefs() + 520 MI->getDesc().getNumImplicitDefs(); 521 522 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 523 MachineOperand &MO = MI->getOperand(i); 524 if (!MO.isReg() || !MO.isDef()) 525 continue; 526 unsigned OldReg = MO.getReg(); 527 unsigned NewReg = CSMI->getOperand(i).getReg(); 528 529 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 530 // we should make sure it is not dead at CSMI. 531 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 532 ImplicitDefsToUpdate.push_back(i); 533 if (OldReg == NewReg) { 534 --NumDefs; 535 continue; 536 } 537 538 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 539 TargetRegisterInfo::isVirtualRegister(NewReg) && 540 "Do not CSE physical register defs!"); 541 542 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 543 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 544 DoCSE = false; 545 break; 546 } 547 548 // Don't perform CSE if the result of the old instruction cannot exist 549 // within the register class of the new instruction. 550 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg); 551 if (!MRI->constrainRegClass(NewReg, OldRC)) { 552 DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n"); 553 DoCSE = false; 554 break; 555 } 556 557 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 558 --NumDefs; 559 } 560 561 // Actually perform the elimination. 562 if (DoCSE) { 563 for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) { 564 MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second); 565 MRI->clearKillFlags(CSEPairs[i].second); 566 } 567 568 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 569 // we should make sure it is not dead at CSMI. 570 for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i) 571 CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false); 572 573 if (CrossMBBPhysDef) { 574 // Add physical register defs now coming in from a predecessor to MBB 575 // livein list. 576 while (!PhysDefs.empty()) { 577 unsigned LiveIn = PhysDefs.pop_back_val(); 578 if (!MBB->isLiveIn(LiveIn)) 579 MBB->addLiveIn(LiveIn); 580 } 581 ++NumCrossBBCSEs; 582 } 583 584 MI->eraseFromParent(); 585 ++NumCSEs; 586 if (!PhysRefs.empty()) 587 ++NumPhysCSEs; 588 if (Commuted) 589 ++NumCommutes; 590 Changed = true; 591 } else { 592 VNT.insert(MI, CurrVN++); 593 Exps.push_back(MI); 594 } 595 CSEPairs.clear(); 596 ImplicitDefsToUpdate.clear(); 597 } 598 599 return Changed; 600 } 601 602 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 603 /// dominator tree node if its a leaf or all of its children are done. Walk 604 /// up the dominator tree to destroy ancestors which are now done. 605 void 606 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 607 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 608 if (OpenChildren[Node]) 609 return; 610 611 // Pop scope. 612 ExitScope(Node->getBlock()); 613 614 // Now traverse upwards to pop ancestors whose offsprings are all done. 615 while (MachineDomTreeNode *Parent = Node->getIDom()) { 616 unsigned Left = --OpenChildren[Parent]; 617 if (Left != 0) 618 break; 619 ExitScope(Parent->getBlock()); 620 Node = Parent; 621 } 622 } 623 624 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 625 SmallVector<MachineDomTreeNode*, 32> Scopes; 626 SmallVector<MachineDomTreeNode*, 8> WorkList; 627 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 628 629 CurrVN = 0; 630 631 // Perform a DFS walk to determine the order of visit. 632 WorkList.push_back(Node); 633 do { 634 Node = WorkList.pop_back_val(); 635 Scopes.push_back(Node); 636 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 637 unsigned NumChildren = Children.size(); 638 OpenChildren[Node] = NumChildren; 639 for (unsigned i = 0; i != NumChildren; ++i) { 640 MachineDomTreeNode *Child = Children[i]; 641 WorkList.push_back(Child); 642 } 643 } while (!WorkList.empty()); 644 645 // Now perform CSE. 646 bool Changed = false; 647 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 648 MachineDomTreeNode *Node = Scopes[i]; 649 MachineBasicBlock *MBB = Node->getBlock(); 650 EnterScope(MBB); 651 Changed |= ProcessBlock(MBB); 652 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 653 ExitScopeIfDone(Node, OpenChildren); 654 } 655 656 return Changed; 657 } 658 659 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 660 TII = MF.getTarget().getInstrInfo(); 661 TRI = MF.getTarget().getRegisterInfo(); 662 MRI = &MF.getRegInfo(); 663 AA = &getAnalysis<AliasAnalysis>(); 664 DT = &getAnalysis<MachineDominatorTree>(); 665 return PerformCSE(DT->getRootNode()); 666 } 667