1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global common subexpression elimination on machine 10 // instructions using a scoped hash table based value numbering scheme. It 11 // must be run while the machine function is still in SSA form. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/ScopedHashTable.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/MC/MCRegister.h" 38 #include "llvm/MC/MCRegisterInfo.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Allocator.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/RecyclingAllocator.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <iterator> 46 #include <utility> 47 #include <vector> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "machine-cse" 52 53 STATISTIC(NumCoalesces, "Number of copies coalesced"); 54 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 55 STATISTIC(NumPREs, "Number of partial redundant expression" 56 " transformed to fully redundant"); 57 STATISTIC(NumPhysCSEs, 58 "Number of physreg referencing common subexpr eliminated"); 59 STATISTIC(NumCrossBBCSEs, 60 "Number of cross-MBB physreg referencing CS eliminated"); 61 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 62 63 namespace { 64 65 class MachineCSE : public MachineFunctionPass { 66 const TargetInstrInfo *TII; 67 const TargetRegisterInfo *TRI; 68 AliasAnalysis *AA; 69 MachineDominatorTree *DT; 70 MachineRegisterInfo *MRI; 71 MachineBlockFrequencyInfo *MBFI; 72 73 public: 74 static char ID; // Pass identification 75 76 MachineCSE() : MachineFunctionPass(ID) { 77 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 78 } 79 80 bool runOnMachineFunction(MachineFunction &MF) override; 81 82 void getAnalysisUsage(AnalysisUsage &AU) const override { 83 AU.setPreservesCFG(); 84 MachineFunctionPass::getAnalysisUsage(AU); 85 AU.addRequired<AAResultsWrapperPass>(); 86 AU.addPreservedID(MachineLoopInfoID); 87 AU.addRequired<MachineDominatorTree>(); 88 AU.addPreserved<MachineDominatorTree>(); 89 AU.addRequired<MachineBlockFrequencyInfo>(); 90 AU.addPreserved<MachineBlockFrequencyInfo>(); 91 } 92 93 void releaseMemory() override { 94 ScopeMap.clear(); 95 PREMap.clear(); 96 Exps.clear(); 97 } 98 99 private: 100 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator, 101 ScopedHashTableVal<MachineInstr *, unsigned>>; 102 using ScopedHTType = 103 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait, 104 AllocatorTy>; 105 using ScopeType = ScopedHTType::ScopeTy; 106 using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>; 107 108 unsigned LookAheadLimit = 0; 109 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap; 110 DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait> 111 PREMap; 112 ScopedHTType VNT; 113 SmallVector<MachineInstr *, 64> Exps; 114 unsigned CurrVN = 0; 115 116 bool PerformTrivialCopyPropagation(MachineInstr *MI, 117 MachineBasicBlock *MBB); 118 bool isPhysDefTriviallyDead(MCRegister Reg, 119 MachineBasicBlock::const_iterator I, 120 MachineBasicBlock::const_iterator E) const; 121 bool hasLivePhysRegDefUses(const MachineInstr *MI, 122 const MachineBasicBlock *MBB, 123 SmallSet<MCRegister, 8> &PhysRefs, 124 PhysDefVector &PhysDefs, bool &PhysUseDef) const; 125 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 126 SmallSet<MCRegister, 8> &PhysRefs, 127 PhysDefVector &PhysDefs, bool &NonLocal) const; 128 bool isCSECandidate(MachineInstr *MI); 129 bool isProfitableToCSE(Register CSReg, Register Reg, 130 MachineBasicBlock *CSBB, MachineInstr *MI); 131 void EnterScope(MachineBasicBlock *MBB); 132 void ExitScope(MachineBasicBlock *MBB); 133 bool ProcessBlockCSE(MachineBasicBlock *MBB); 134 void ExitScopeIfDone(MachineDomTreeNode *Node, 135 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 136 bool PerformCSE(MachineDomTreeNode *Node); 137 138 bool isPRECandidate(MachineInstr *MI); 139 bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB); 140 bool PerformSimplePRE(MachineDominatorTree *DT); 141 /// Heuristics to see if it's profitable to move common computations of MBB 142 /// and MBB1 to CandidateBB. 143 bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB, 144 MachineBasicBlock *MBB, 145 MachineBasicBlock *MBB1); 146 }; 147 148 } // end anonymous namespace 149 150 char MachineCSE::ID = 0; 151 152 char &llvm::MachineCSEID = MachineCSE::ID; 153 154 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, 155 "Machine Common Subexpression Elimination", false, false) 156 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 157 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 158 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, 159 "Machine Common Subexpression Elimination", false, false) 160 161 /// The source register of a COPY machine instruction can be propagated to all 162 /// its users, and this propagation could increase the probability of finding 163 /// common subexpressions. If the COPY has only one user, the COPY itself can 164 /// be removed. 165 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, 166 MachineBasicBlock *MBB) { 167 bool Changed = false; 168 for (MachineOperand &MO : MI->operands()) { 169 if (!MO.isReg() || !MO.isUse()) 170 continue; 171 Register Reg = MO.getReg(); 172 if (!Register::isVirtualRegister(Reg)) 173 continue; 174 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); 175 MachineInstr *DefMI = MRI->getVRegDef(Reg); 176 if (!DefMI->isCopy()) 177 continue; 178 Register SrcReg = DefMI->getOperand(1).getReg(); 179 if (!Register::isVirtualRegister(SrcReg)) 180 continue; 181 if (DefMI->getOperand(0).getSubReg()) 182 continue; 183 // FIXME: We should trivially coalesce subregister copies to expose CSE 184 // opportunities on instructions with truncated operands (see 185 // cse-add-with-overflow.ll). This can be done here as follows: 186 // if (SrcSubReg) 187 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 188 // SrcSubReg); 189 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 190 // 191 // The 2-addr pass has been updated to handle coalesced subregs. However, 192 // some machine-specific code still can't handle it. 193 // To handle it properly we also need a way find a constrained subregister 194 // class given a super-reg class and subreg index. 195 if (DefMI->getOperand(1).getSubReg()) 196 continue; 197 if (!MRI->constrainRegAttrs(SrcReg, Reg)) 198 continue; 199 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 200 LLVM_DEBUG(dbgs() << "*** to: " << *MI); 201 202 // Propagate SrcReg of copies to MI. 203 MO.setReg(SrcReg); 204 MRI->clearKillFlags(SrcReg); 205 // Coalesce single use copies. 206 if (OnlyOneUse) { 207 // If (and only if) we've eliminated all uses of the copy, also 208 // copy-propagate to any debug-users of MI, or they'll be left using 209 // an undefined value. 210 DefMI->changeDebugValuesDefReg(SrcReg); 211 212 DefMI->eraseFromParent(); 213 ++NumCoalesces; 214 } 215 Changed = true; 216 } 217 218 return Changed; 219 } 220 221 bool MachineCSE::isPhysDefTriviallyDead( 222 MCRegister Reg, MachineBasicBlock::const_iterator I, 223 MachineBasicBlock::const_iterator E) const { 224 unsigned LookAheadLeft = LookAheadLimit; 225 while (LookAheadLeft) { 226 // Skip over dbg_value's. 227 I = skipDebugInstructionsForward(I, E); 228 229 if (I == E) 230 // Reached end of block, we don't know if register is dead or not. 231 return false; 232 233 bool SeenDef = false; 234 for (const MachineOperand &MO : I->operands()) { 235 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 236 SeenDef = true; 237 if (!MO.isReg() || !MO.getReg()) 238 continue; 239 if (!TRI->regsOverlap(MO.getReg(), Reg)) 240 continue; 241 if (MO.isUse()) 242 // Found a use! 243 return false; 244 SeenDef = true; 245 } 246 if (SeenDef) 247 // See a def of Reg (or an alias) before encountering any use, it's 248 // trivially dead. 249 return true; 250 251 --LookAheadLeft; 252 ++I; 253 } 254 return false; 255 } 256 257 static bool isCallerPreservedOrConstPhysReg(MCRegister Reg, 258 const MachineFunction &MF, 259 const TargetRegisterInfo &TRI) { 260 // MachineRegisterInfo::isConstantPhysReg directly called by 261 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the 262 // reserved registers to be frozen. That doesn't cause a problem post-ISel as 263 // most (if not all) targets freeze reserved registers right after ISel. 264 // 265 // It does cause issues mid-GlobalISel, however, hence the additional 266 // reservedRegsFrozen check. 267 const MachineRegisterInfo &MRI = MF.getRegInfo(); 268 return TRI.isCallerPreservedPhysReg(Reg, MF) || 269 (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg)); 270 } 271 272 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 273 /// physical registers (except for dead defs of physical registers). It also 274 /// returns the physical register def by reference if it's the only one and the 275 /// instruction does not uses a physical register. 276 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 277 const MachineBasicBlock *MBB, 278 SmallSet<MCRegister, 8> &PhysRefs, 279 PhysDefVector &PhysDefs, 280 bool &PhysUseDef) const { 281 // First, add all uses to PhysRefs. 282 for (const MachineOperand &MO : MI->operands()) { 283 if (!MO.isReg() || MO.isDef()) 284 continue; 285 Register Reg = MO.getReg(); 286 if (!Reg) 287 continue; 288 if (Register::isVirtualRegister(Reg)) 289 continue; 290 // Reading either caller preserved or constant physregs is ok. 291 if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), *MI->getMF(), *TRI)) 292 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 293 PhysRefs.insert(*AI); 294 } 295 296 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 297 // (which currently contains only uses), set the PhysUseDef flag. 298 PhysUseDef = false; 299 MachineBasicBlock::const_iterator I = MI; I = std::next(I); 300 for (const auto &MOP : llvm::enumerate(MI->operands())) { 301 const MachineOperand &MO = MOP.value(); 302 if (!MO.isReg() || !MO.isDef()) 303 continue; 304 Register Reg = MO.getReg(); 305 if (!Reg) 306 continue; 307 if (Register::isVirtualRegister(Reg)) 308 continue; 309 // Check against PhysRefs even if the def is "dead". 310 if (PhysRefs.count(Reg.asMCReg())) 311 PhysUseDef = true; 312 // If the def is dead, it's ok. But the def may not marked "dead". That's 313 // common since this pass is run before livevariables. We can scan 314 // forward a few instructions and check if it is obviously dead. 315 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end())) 316 PhysDefs.push_back(std::make_pair(MOP.index(), Reg)); 317 } 318 319 // Finally, add all defs to PhysRefs as well. 320 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 321 for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid(); 322 ++AI) 323 PhysRefs.insert(*AI); 324 325 return !PhysRefs.empty(); 326 } 327 328 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 329 SmallSet<MCRegister, 8> &PhysRefs, 330 PhysDefVector &PhysDefs, 331 bool &NonLocal) const { 332 // For now conservatively returns false if the common subexpression is 333 // not in the same basic block as the given instruction. The only exception 334 // is if the common subexpression is in the sole predecessor block. 335 const MachineBasicBlock *MBB = MI->getParent(); 336 const MachineBasicBlock *CSMBB = CSMI->getParent(); 337 338 bool CrossMBB = false; 339 if (CSMBB != MBB) { 340 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 341 return false; 342 343 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 344 if (MRI->isAllocatable(PhysDefs[i].second) || 345 MRI->isReserved(PhysDefs[i].second)) 346 // Avoid extending live range of physical registers if they are 347 //allocatable or reserved. 348 return false; 349 } 350 CrossMBB = true; 351 } 352 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); 353 MachineBasicBlock::const_iterator E = MI; 354 MachineBasicBlock::const_iterator EE = CSMBB->end(); 355 unsigned LookAheadLeft = LookAheadLimit; 356 while (LookAheadLeft) { 357 // Skip over dbg_value's. 358 while (I != E && I != EE && I->isDebugInstr()) 359 ++I; 360 361 if (I == EE) { 362 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 363 (void)CrossMBB; 364 CrossMBB = false; 365 NonLocal = true; 366 I = MBB->begin(); 367 EE = MBB->end(); 368 continue; 369 } 370 371 if (I == E) 372 return true; 373 374 for (const MachineOperand &MO : I->operands()) { 375 // RegMasks go on instructions like calls that clobber lots of physregs. 376 // Don't attempt to CSE across such an instruction. 377 if (MO.isRegMask()) 378 return false; 379 if (!MO.isReg() || !MO.isDef()) 380 continue; 381 Register MOReg = MO.getReg(); 382 if (Register::isVirtualRegister(MOReg)) 383 continue; 384 if (PhysRefs.count(MOReg.asMCReg())) 385 return false; 386 } 387 388 --LookAheadLeft; 389 ++I; 390 } 391 392 return false; 393 } 394 395 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 396 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || 397 MI->isInlineAsm() || MI->isDebugInstr()) 398 return false; 399 400 // Ignore copies. 401 if (MI->isCopyLike()) 402 return false; 403 404 // Ignore stuff that we obviously can't move. 405 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 406 MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects()) 407 return false; 408 409 if (MI->mayLoad()) { 410 // Okay, this instruction does a load. As a refinement, we allow the target 411 // to decide whether the loaded value is actually a constant. If so, we can 412 // actually use it as a load. 413 if (!MI->isDereferenceableInvariantLoad(AA)) 414 // FIXME: we should be able to hoist loads with no other side effects if 415 // there are no other instructions which can change memory in this loop. 416 // This is a trivial form of alias analysis. 417 return false; 418 } 419 420 // Ignore stack guard loads, otherwise the register that holds CSEed value may 421 // be spilled and get loaded back with corrupted data. 422 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) 423 return false; 424 425 return true; 426 } 427 428 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 429 /// common expression that defines Reg. CSBB is basic block where CSReg is 430 /// defined. 431 bool MachineCSE::isProfitableToCSE(Register CSReg, Register Reg, 432 MachineBasicBlock *CSBB, MachineInstr *MI) { 433 // FIXME: Heuristics that works around the lack the live range splitting. 434 435 // If CSReg is used at all uses of Reg, CSE should not increase register 436 // pressure of CSReg. 437 bool MayIncreasePressure = true; 438 if (Register::isVirtualRegister(CSReg) && Register::isVirtualRegister(Reg)) { 439 MayIncreasePressure = false; 440 SmallPtrSet<MachineInstr*, 8> CSUses; 441 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 442 CSUses.insert(&MI); 443 } 444 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 445 if (!CSUses.count(&MI)) { 446 MayIncreasePressure = true; 447 break; 448 } 449 } 450 } 451 if (!MayIncreasePressure) return true; 452 453 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 454 // an immediate predecessor. We don't want to increase register pressure and 455 // end up causing other computation to be spilled. 456 if (TII->isAsCheapAsAMove(*MI)) { 457 MachineBasicBlock *BB = MI->getParent(); 458 if (CSBB != BB && !CSBB->isSuccessor(BB)) 459 return false; 460 } 461 462 // Heuristics #2: If the expression doesn't not use a vr and the only use 463 // of the redundant computation are copies, do not cse. 464 bool HasVRegUse = false; 465 for (const MachineOperand &MO : MI->operands()) { 466 if (MO.isReg() && MO.isUse() && Register::isVirtualRegister(MO.getReg())) { 467 HasVRegUse = true; 468 break; 469 } 470 } 471 if (!HasVRegUse) { 472 bool HasNonCopyUse = false; 473 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 474 // Ignore copies. 475 if (!MI.isCopyLike()) { 476 HasNonCopyUse = true; 477 break; 478 } 479 } 480 if (!HasNonCopyUse) 481 return false; 482 } 483 484 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 485 // it unless the defined value is already used in the BB of the new use. 486 bool HasPHI = false; 487 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) { 488 HasPHI |= UseMI.isPHI(); 489 if (UseMI.getParent() == MI->getParent()) 490 return true; 491 } 492 493 return !HasPHI; 494 } 495 496 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 497 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 498 ScopeType *Scope = new ScopeType(VNT); 499 ScopeMap[MBB] = Scope; 500 } 501 502 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 503 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 504 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 505 assert(SI != ScopeMap.end()); 506 delete SI->second; 507 ScopeMap.erase(SI); 508 } 509 510 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) { 511 bool Changed = false; 512 513 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 514 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 515 SmallVector<unsigned, 2> ImplicitDefs; 516 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { 517 if (!isCSECandidate(&MI)) 518 continue; 519 520 bool FoundCSE = VNT.count(&MI); 521 if (!FoundCSE) { 522 // Using trivial copy propagation to find more CSE opportunities. 523 if (PerformTrivialCopyPropagation(&MI, MBB)) { 524 Changed = true; 525 526 // After coalescing MI itself may become a copy. 527 if (MI.isCopyLike()) 528 continue; 529 530 // Try again to see if CSE is possible. 531 FoundCSE = VNT.count(&MI); 532 } 533 } 534 535 // Commute commutable instructions. 536 bool Commuted = false; 537 if (!FoundCSE && MI.isCommutable()) { 538 if (MachineInstr *NewMI = TII->commuteInstruction(MI)) { 539 Commuted = true; 540 FoundCSE = VNT.count(NewMI); 541 if (NewMI != &MI) { 542 // New instruction. It doesn't need to be kept. 543 NewMI->eraseFromParent(); 544 Changed = true; 545 } else if (!FoundCSE) 546 // MI was changed but it didn't help, commute it back! 547 (void)TII->commuteInstruction(MI); 548 } 549 } 550 551 // If the instruction defines physical registers and the values *may* be 552 // used, then it's not safe to replace it with a common subexpression. 553 // It's also not safe if the instruction uses physical registers. 554 bool CrossMBBPhysDef = false; 555 SmallSet<MCRegister, 8> PhysRefs; 556 PhysDefVector PhysDefs; 557 bool PhysUseDef = false; 558 if (FoundCSE && 559 hasLivePhysRegDefUses(&MI, MBB, PhysRefs, PhysDefs, PhysUseDef)) { 560 FoundCSE = false; 561 562 // ... Unless the CS is local or is in the sole predecessor block 563 // and it also defines the physical register which is not clobbered 564 // in between and the physical register uses were not clobbered. 565 // This can never be the case if the instruction both uses and 566 // defines the same physical register, which was detected above. 567 if (!PhysUseDef) { 568 unsigned CSVN = VNT.lookup(&MI); 569 MachineInstr *CSMI = Exps[CSVN]; 570 if (PhysRegDefsReach(CSMI, &MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 571 FoundCSE = true; 572 } 573 } 574 575 if (!FoundCSE) { 576 VNT.insert(&MI, CurrVN++); 577 Exps.push_back(&MI); 578 continue; 579 } 580 581 // Found a common subexpression, eliminate it. 582 unsigned CSVN = VNT.lookup(&MI); 583 MachineInstr *CSMI = Exps[CSVN]; 584 LLVM_DEBUG(dbgs() << "Examining: " << MI); 585 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 586 587 // Prevent CSE-ing non-local convergent instructions. 588 // LLVM's current definition of `isConvergent` does not necessarily prove 589 // that non-local CSE is illegal. The following check extends the definition 590 // of `isConvergent` to assume a convergent instruction is dependent not 591 // only on additional conditions, but also on fewer conditions. LLVM does 592 // not have a MachineInstr attribute which expresses this extended 593 // definition, so it's necessary to use `isConvergent` to prevent illegally 594 // CSE-ing the subset of `isConvergent` instructions which do fall into this 595 // extended definition. 596 if (MI.isConvergent() && MI.getParent() != CSMI->getParent()) { 597 LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in " 598 "different BBs, avoid CSE!\n"); 599 VNT.insert(&MI, CurrVN++); 600 Exps.push_back(&MI); 601 continue; 602 } 603 604 // Check if it's profitable to perform this CSE. 605 bool DoCSE = true; 606 unsigned NumDefs = MI.getNumDefs(); 607 608 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 609 MachineOperand &MO = MI.getOperand(i); 610 if (!MO.isReg() || !MO.isDef()) 611 continue; 612 Register OldReg = MO.getReg(); 613 Register NewReg = CSMI->getOperand(i).getReg(); 614 615 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 616 // we should make sure it is not dead at CSMI. 617 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 618 ImplicitDefsToUpdate.push_back(i); 619 620 // Keep track of implicit defs of CSMI and MI, to clear possibly 621 // made-redundant kill flags. 622 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) 623 ImplicitDefs.push_back(OldReg); 624 625 if (OldReg == NewReg) { 626 --NumDefs; 627 continue; 628 } 629 630 assert(Register::isVirtualRegister(OldReg) && 631 Register::isVirtualRegister(NewReg) && 632 "Do not CSE physical register defs!"); 633 634 if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), &MI)) { 635 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 636 DoCSE = false; 637 break; 638 } 639 640 // Don't perform CSE if the result of the new instruction cannot exist 641 // within the constraints (register class, bank, or low-level type) of 642 // the old instruction. 643 if (!MRI->constrainRegAttrs(NewReg, OldReg)) { 644 LLVM_DEBUG( 645 dbgs() << "*** Not the same register constraints, avoid CSE!\n"); 646 DoCSE = false; 647 break; 648 } 649 650 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 651 --NumDefs; 652 } 653 654 // Actually perform the elimination. 655 if (DoCSE) { 656 for (const std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { 657 unsigned OldReg = CSEPair.first; 658 unsigned NewReg = CSEPair.second; 659 // OldReg may have been unused but is used now, clear the Dead flag 660 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); 661 assert(Def != nullptr && "CSEd register has no unique definition?"); 662 Def->clearRegisterDeads(NewReg); 663 // Replace with NewReg and clear kill flags which may be wrong now. 664 MRI->replaceRegWith(OldReg, NewReg); 665 MRI->clearKillFlags(NewReg); 666 } 667 668 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 669 // we should make sure it is not dead at CSMI. 670 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) 671 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); 672 for (const auto &PhysDef : PhysDefs) 673 if (!MI.getOperand(PhysDef.first).isDead()) 674 CSMI->getOperand(PhysDef.first).setIsDead(false); 675 676 // Go through implicit defs of CSMI and MI, and clear the kill flags on 677 // their uses in all the instructions between CSMI and MI. 678 // We might have made some of the kill flags redundant, consider: 679 // subs ... implicit-def %nzcv <- CSMI 680 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore 681 // subs ... implicit-def %nzcv <- MI, to be eliminated 682 // csinc ... implicit killed %nzcv 683 // Since we eliminated MI, and reused a register imp-def'd by CSMI 684 // (here %nzcv), that register, if it was killed before MI, should have 685 // that kill flag removed, because it's lifetime was extended. 686 if (CSMI->getParent() == MI.getParent()) { 687 for (MachineBasicBlock::iterator II = CSMI, IE = &MI; II != IE; ++II) 688 for (auto ImplicitDef : ImplicitDefs) 689 if (MachineOperand *MO = II->findRegisterUseOperand( 690 ImplicitDef, /*isKill=*/true, TRI)) 691 MO->setIsKill(false); 692 } else { 693 // If the instructions aren't in the same BB, bail out and clear the 694 // kill flag on all uses of the imp-def'd register. 695 for (auto ImplicitDef : ImplicitDefs) 696 MRI->clearKillFlags(ImplicitDef); 697 } 698 699 if (CrossMBBPhysDef) { 700 // Add physical register defs now coming in from a predecessor to MBB 701 // livein list. 702 while (!PhysDefs.empty()) { 703 auto LiveIn = PhysDefs.pop_back_val(); 704 if (!MBB->isLiveIn(LiveIn.second)) 705 MBB->addLiveIn(LiveIn.second); 706 } 707 ++NumCrossBBCSEs; 708 } 709 710 MI.eraseFromParent(); 711 ++NumCSEs; 712 if (!PhysRefs.empty()) 713 ++NumPhysCSEs; 714 if (Commuted) 715 ++NumCommutes; 716 Changed = true; 717 } else { 718 VNT.insert(&MI, CurrVN++); 719 Exps.push_back(&MI); 720 } 721 CSEPairs.clear(); 722 ImplicitDefsToUpdate.clear(); 723 ImplicitDefs.clear(); 724 } 725 726 return Changed; 727 } 728 729 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 730 /// dominator tree node if its a leaf or all of its children are done. Walk 731 /// up the dominator tree to destroy ancestors which are now done. 732 void 733 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 734 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 735 if (OpenChildren[Node]) 736 return; 737 738 // Pop scope. 739 ExitScope(Node->getBlock()); 740 741 // Now traverse upwards to pop ancestors whose offsprings are all done. 742 while (MachineDomTreeNode *Parent = Node->getIDom()) { 743 unsigned Left = --OpenChildren[Parent]; 744 if (Left != 0) 745 break; 746 ExitScope(Parent->getBlock()); 747 Node = Parent; 748 } 749 } 750 751 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 752 SmallVector<MachineDomTreeNode*, 32> Scopes; 753 SmallVector<MachineDomTreeNode*, 8> WorkList; 754 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 755 756 CurrVN = 0; 757 758 // Perform a DFS walk to determine the order of visit. 759 WorkList.push_back(Node); 760 do { 761 Node = WorkList.pop_back_val(); 762 Scopes.push_back(Node); 763 OpenChildren[Node] = Node->getNumChildren(); 764 append_range(WorkList, Node->children()); 765 } while (!WorkList.empty()); 766 767 // Now perform CSE. 768 bool Changed = false; 769 for (MachineDomTreeNode *Node : Scopes) { 770 MachineBasicBlock *MBB = Node->getBlock(); 771 EnterScope(MBB); 772 Changed |= ProcessBlockCSE(MBB); 773 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 774 ExitScopeIfDone(Node, OpenChildren); 775 } 776 777 return Changed; 778 } 779 780 // We use stronger checks for PRE candidate rather than for CSE ones to embrace 781 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps 782 // to exclude instrs created by PRE that won't be CSEed later. 783 bool MachineCSE::isPRECandidate(MachineInstr *MI) { 784 if (!isCSECandidate(MI) || 785 MI->isNotDuplicable() || 786 MI->mayLoad() || 787 MI->isAsCheapAsAMove() || 788 MI->getNumDefs() != 1 || 789 MI->getNumExplicitDefs() != 1) 790 return false; 791 792 for (const auto &def : MI->defs()) 793 if (!Register::isVirtualRegister(def.getReg())) 794 return false; 795 796 for (const auto &use : MI->uses()) 797 if (use.isReg() && !Register::isVirtualRegister(use.getReg())) 798 return false; 799 800 return true; 801 } 802 803 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT, 804 MachineBasicBlock *MBB) { 805 bool Changed = false; 806 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { 807 if (!isPRECandidate(&MI)) 808 continue; 809 810 if (!PREMap.count(&MI)) { 811 PREMap[&MI] = MBB; 812 continue; 813 } 814 815 auto MBB1 = PREMap[&MI]; 816 assert( 817 !DT->properlyDominates(MBB, MBB1) && 818 "MBB cannot properly dominate MBB1 while DFS through dominators tree!"); 819 auto CMBB = DT->findNearestCommonDominator(MBB, MBB1); 820 if (!CMBB->isLegalToHoistInto()) 821 continue; 822 823 if (!isProfitableToHoistInto(CMBB, MBB, MBB1)) 824 continue; 825 826 // Two instrs are partial redundant if their basic blocks are reachable 827 // from one to another but one doesn't dominate another. 828 if (CMBB != MBB1) { 829 auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock(); 830 if (BB != nullptr && BB1 != nullptr && 831 (isPotentiallyReachable(BB1, BB) || 832 isPotentiallyReachable(BB, BB1))) { 833 // The following check extends the definition of `isConvergent` to 834 // assume a convergent instruction is dependent not only on additional 835 // conditions, but also on fewer conditions. LLVM does not have a 836 // MachineInstr attribute which expresses this extended definition, so 837 // it's necessary to use `isConvergent` to prevent illegally PRE-ing the 838 // subset of `isConvergent` instructions which do fall into this 839 // extended definition. 840 if (MI.isConvergent() && CMBB != MBB) 841 continue; 842 843 assert(MI.getOperand(0).isDef() && 844 "First operand of instr with one explicit def must be this def"); 845 Register VReg = MI.getOperand(0).getReg(); 846 Register NewReg = MRI->cloneVirtualRegister(VReg); 847 if (!isProfitableToCSE(NewReg, VReg, CMBB, &MI)) 848 continue; 849 MachineInstr &NewMI = 850 TII->duplicate(*CMBB, CMBB->getFirstTerminator(), MI); 851 852 // When hoisting, make sure we don't carry the debug location of 853 // the original instruction, as that's not correct and can cause 854 // unexpected jumps when debugging optimized code. 855 auto EmptyDL = DebugLoc(); 856 NewMI.setDebugLoc(EmptyDL); 857 858 NewMI.getOperand(0).setReg(NewReg); 859 860 PREMap[&MI] = CMBB; 861 ++NumPREs; 862 Changed = true; 863 } 864 } 865 } 866 return Changed; 867 } 868 869 // This simple PRE (partial redundancy elimination) pass doesn't actually 870 // eliminate partial redundancy but transforms it to full redundancy, 871 // anticipating that the next CSE step will eliminate this created redundancy. 872 // If CSE doesn't eliminate this, than created instruction will remain dead 873 // and eliminated later by Remove Dead Machine Instructions pass. 874 bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) { 875 SmallVector<MachineDomTreeNode *, 32> BBs; 876 877 PREMap.clear(); 878 bool Changed = false; 879 BBs.push_back(DT->getRootNode()); 880 do { 881 auto Node = BBs.pop_back_val(); 882 append_range(BBs, Node->children()); 883 884 MachineBasicBlock *MBB = Node->getBlock(); 885 Changed |= ProcessBlockPRE(DT, MBB); 886 887 } while (!BBs.empty()); 888 889 return Changed; 890 } 891 892 bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB, 893 MachineBasicBlock *MBB, 894 MachineBasicBlock *MBB1) { 895 if (CandidateBB->getParent()->getFunction().hasMinSize()) 896 return true; 897 assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB"); 898 assert(DT->dominates(CandidateBB, MBB1) && 899 "CandidateBB should dominate MBB1"); 900 return MBFI->getBlockFreq(CandidateBB) <= 901 MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1); 902 } 903 904 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 905 if (skipFunction(MF.getFunction())) 906 return false; 907 908 TII = MF.getSubtarget().getInstrInfo(); 909 TRI = MF.getSubtarget().getRegisterInfo(); 910 MRI = &MF.getRegInfo(); 911 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 912 DT = &getAnalysis<MachineDominatorTree>(); 913 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 914 LookAheadLimit = TII->getMachineCSELookAheadLimit(); 915 bool ChangedPRE, ChangedCSE; 916 ChangedPRE = PerformSimplePRE(DT); 917 ChangedCSE = PerformCSE(DT->getRootNode()); 918 return ChangedPRE || ChangedCSE; 919 } 920