1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global common subexpression elimination on machine 11 // instructions using a scoped hash table based value numbering scheme. It 12 // must be run while the machine function is still in SSA form. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "machine-cse" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/ScopedHashTable.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/RecyclingAllocator.h" 28 #include "llvm/Target/TargetInstrInfo.h" 29 using namespace llvm; 30 31 STATISTIC(NumCoalesces, "Number of copies coalesced"); 32 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 33 STATISTIC(NumPhysCSEs, 34 "Number of physreg referencing common subexpr eliminated"); 35 STATISTIC(NumCrossBBCSEs, 36 "Number of cross-MBB physreg referencing CS eliminated"); 37 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 38 39 namespace { 40 class MachineCSE : public MachineFunctionPass { 41 const TargetInstrInfo *TII; 42 const TargetRegisterInfo *TRI; 43 AliasAnalysis *AA; 44 MachineDominatorTree *DT; 45 MachineRegisterInfo *MRI; 46 public: 47 static char ID; // Pass identification 48 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) { 49 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 50 } 51 52 bool runOnMachineFunction(MachineFunction &MF) override; 53 54 void getAnalysisUsage(AnalysisUsage &AU) const override { 55 AU.setPreservesCFG(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 AU.addRequired<AliasAnalysis>(); 58 AU.addPreservedID(MachineLoopInfoID); 59 AU.addRequired<MachineDominatorTree>(); 60 AU.addPreserved<MachineDominatorTree>(); 61 } 62 63 void releaseMemory() override { 64 ScopeMap.clear(); 65 Exps.clear(); 66 } 67 68 private: 69 const unsigned LookAheadLimit; 70 typedef RecyclingAllocator<BumpPtrAllocator, 71 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy; 72 typedef ScopedHashTable<MachineInstr*, unsigned, 73 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType; 74 typedef ScopedHTType::ScopeTy ScopeType; 75 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap; 76 ScopedHTType VNT; 77 SmallVector<MachineInstr*, 64> Exps; 78 unsigned CurrVN; 79 80 bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB); 81 bool isPhysDefTriviallyDead(unsigned Reg, 82 MachineBasicBlock::const_iterator I, 83 MachineBasicBlock::const_iterator E) const; 84 bool hasLivePhysRegDefUses(const MachineInstr *MI, 85 const MachineBasicBlock *MBB, 86 SmallSet<unsigned,8> &PhysRefs, 87 SmallVectorImpl<unsigned> &PhysDefs, 88 bool &PhysUseDef) const; 89 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 90 SmallSet<unsigned,8> &PhysRefs, 91 SmallVectorImpl<unsigned> &PhysDefs, 92 bool &NonLocal) const; 93 bool isCSECandidate(MachineInstr *MI); 94 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 95 MachineInstr *CSMI, MachineInstr *MI); 96 void EnterScope(MachineBasicBlock *MBB); 97 void ExitScope(MachineBasicBlock *MBB); 98 bool ProcessBlock(MachineBasicBlock *MBB); 99 void ExitScopeIfDone(MachineDomTreeNode *Node, 100 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 101 bool PerformCSE(MachineDomTreeNode *Node); 102 }; 103 } // end anonymous namespace 104 105 char MachineCSE::ID = 0; 106 char &llvm::MachineCSEID = MachineCSE::ID; 107 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse", 108 "Machine Common Subexpression Elimination", false, false) 109 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 110 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 111 INITIALIZE_PASS_END(MachineCSE, "machine-cse", 112 "Machine Common Subexpression Elimination", false, false) 113 114 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI, 115 MachineBasicBlock *MBB) { 116 bool Changed = false; 117 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 118 MachineOperand &MO = MI->getOperand(i); 119 if (!MO.isReg() || !MO.isUse()) 120 continue; 121 unsigned Reg = MO.getReg(); 122 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 123 continue; 124 if (!MRI->hasOneNonDBGUse(Reg)) 125 // Only coalesce single use copies. This ensure the copy will be 126 // deleted. 127 continue; 128 MachineInstr *DefMI = MRI->getVRegDef(Reg); 129 if (!DefMI->isCopy()) 130 continue; 131 unsigned SrcReg = DefMI->getOperand(1).getReg(); 132 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 133 continue; 134 if (DefMI->getOperand(0).getSubReg()) 135 continue; 136 // FIXME: We should trivially coalesce subregister copies to expose CSE 137 // opportunities on instructions with truncated operands (see 138 // cse-add-with-overflow.ll). This can be done here as follows: 139 // if (SrcSubReg) 140 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 141 // SrcSubReg); 142 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 143 // 144 // The 2-addr pass has been updated to handle coalesced subregs. However, 145 // some machine-specific code still can't handle it. 146 // To handle it properly we also need a way find a constrained subregister 147 // class given a super-reg class and subreg index. 148 if (DefMI->getOperand(1).getSubReg()) 149 continue; 150 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 151 if (!MRI->constrainRegClass(SrcReg, RC)) 152 continue; 153 DEBUG(dbgs() << "Coalescing: " << *DefMI); 154 DEBUG(dbgs() << "*** to: " << *MI); 155 MO.setReg(SrcReg); 156 MRI->clearKillFlags(SrcReg); 157 DefMI->eraseFromParent(); 158 ++NumCoalesces; 159 Changed = true; 160 } 161 162 return Changed; 163 } 164 165 bool 166 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 167 MachineBasicBlock::const_iterator I, 168 MachineBasicBlock::const_iterator E) const { 169 unsigned LookAheadLeft = LookAheadLimit; 170 while (LookAheadLeft) { 171 // Skip over dbg_value's. 172 while (I != E && I->isDebugValue()) 173 ++I; 174 175 if (I == E) 176 // Reached end of block, register is obviously dead. 177 return true; 178 179 bool SeenDef = false; 180 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 181 const MachineOperand &MO = I->getOperand(i); 182 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 183 SeenDef = true; 184 if (!MO.isReg() || !MO.getReg()) 185 continue; 186 if (!TRI->regsOverlap(MO.getReg(), Reg)) 187 continue; 188 if (MO.isUse()) 189 // Found a use! 190 return false; 191 SeenDef = true; 192 } 193 if (SeenDef) 194 // See a def of Reg (or an alias) before encountering any use, it's 195 // trivially dead. 196 return true; 197 198 --LookAheadLeft; 199 ++I; 200 } 201 return false; 202 } 203 204 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 205 /// physical registers (except for dead defs of physical registers). It also 206 /// returns the physical register def by reference if it's the only one and the 207 /// instruction does not uses a physical register. 208 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 209 const MachineBasicBlock *MBB, 210 SmallSet<unsigned,8> &PhysRefs, 211 SmallVectorImpl<unsigned> &PhysDefs, 212 bool &PhysUseDef) const{ 213 // First, add all uses to PhysRefs. 214 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 215 const MachineOperand &MO = MI->getOperand(i); 216 if (!MO.isReg() || MO.isDef()) 217 continue; 218 unsigned Reg = MO.getReg(); 219 if (!Reg) 220 continue; 221 if (TargetRegisterInfo::isVirtualRegister(Reg)) 222 continue; 223 // Reading constant physregs is ok. 224 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) 225 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 226 PhysRefs.insert(*AI); 227 } 228 229 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 230 // (which currently contains only uses), set the PhysUseDef flag. 231 PhysUseDef = false; 232 MachineBasicBlock::const_iterator I = MI; I = std::next(I); 233 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 234 const MachineOperand &MO = MI->getOperand(i); 235 if (!MO.isReg() || !MO.isDef()) 236 continue; 237 unsigned Reg = MO.getReg(); 238 if (!Reg) 239 continue; 240 if (TargetRegisterInfo::isVirtualRegister(Reg)) 241 continue; 242 // Check against PhysRefs even if the def is "dead". 243 if (PhysRefs.count(Reg)) 244 PhysUseDef = true; 245 // If the def is dead, it's ok. But the def may not marked "dead". That's 246 // common since this pass is run before livevariables. We can scan 247 // forward a few instructions and check if it is obviously dead. 248 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) 249 PhysDefs.push_back(Reg); 250 } 251 252 // Finally, add all defs to PhysRefs as well. 253 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 254 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI) 255 PhysRefs.insert(*AI); 256 257 return !PhysRefs.empty(); 258 } 259 260 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 261 SmallSet<unsigned,8> &PhysRefs, 262 SmallVectorImpl<unsigned> &PhysDefs, 263 bool &NonLocal) const { 264 // For now conservatively returns false if the common subexpression is 265 // not in the same basic block as the given instruction. The only exception 266 // is if the common subexpression is in the sole predecessor block. 267 const MachineBasicBlock *MBB = MI->getParent(); 268 const MachineBasicBlock *CSMBB = CSMI->getParent(); 269 270 bool CrossMBB = false; 271 if (CSMBB != MBB) { 272 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 273 return false; 274 275 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 276 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i])) 277 // Avoid extending live range of physical registers if they are 278 //allocatable or reserved. 279 return false; 280 } 281 CrossMBB = true; 282 } 283 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); 284 MachineBasicBlock::const_iterator E = MI; 285 MachineBasicBlock::const_iterator EE = CSMBB->end(); 286 unsigned LookAheadLeft = LookAheadLimit; 287 while (LookAheadLeft) { 288 // Skip over dbg_value's. 289 while (I != E && I != EE && I->isDebugValue()) 290 ++I; 291 292 if (I == EE) { 293 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 294 (void)CrossMBB; 295 CrossMBB = false; 296 NonLocal = true; 297 I = MBB->begin(); 298 EE = MBB->end(); 299 continue; 300 } 301 302 if (I == E) 303 return true; 304 305 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 306 const MachineOperand &MO = I->getOperand(i); 307 // RegMasks go on instructions like calls that clobber lots of physregs. 308 // Don't attempt to CSE across such an instruction. 309 if (MO.isRegMask()) 310 return false; 311 if (!MO.isReg() || !MO.isDef()) 312 continue; 313 unsigned MOReg = MO.getReg(); 314 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 315 continue; 316 if (PhysRefs.count(MOReg)) 317 return false; 318 } 319 320 --LookAheadLeft; 321 ++I; 322 } 323 324 return false; 325 } 326 327 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 328 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || 329 MI->isInlineAsm() || MI->isDebugValue()) 330 return false; 331 332 // Ignore copies. 333 if (MI->isCopyLike()) 334 return false; 335 336 // Ignore stuff that we obviously can't move. 337 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 338 MI->hasUnmodeledSideEffects()) 339 return false; 340 341 if (MI->mayLoad()) { 342 // Okay, this instruction does a load. As a refinement, we allow the target 343 // to decide whether the loaded value is actually a constant. If so, we can 344 // actually use it as a load. 345 if (!MI->isInvariantLoad(AA)) 346 // FIXME: we should be able to hoist loads with no other side effects if 347 // there are no other instructions which can change memory in this loop. 348 // This is a trivial form of alias analysis. 349 return false; 350 } 351 return true; 352 } 353 354 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 355 /// common expression that defines Reg. 356 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 357 MachineInstr *CSMI, MachineInstr *MI) { 358 // FIXME: Heuristics that works around the lack the live range splitting. 359 360 // If CSReg is used at all uses of Reg, CSE should not increase register 361 // pressure of CSReg. 362 bool MayIncreasePressure = true; 363 if (TargetRegisterInfo::isVirtualRegister(CSReg) && 364 TargetRegisterInfo::isVirtualRegister(Reg)) { 365 MayIncreasePressure = false; 366 SmallPtrSet<MachineInstr*, 8> CSUses; 367 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 368 CSUses.insert(&MI); 369 } 370 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 371 if (!CSUses.count(&MI)) { 372 MayIncreasePressure = true; 373 break; 374 } 375 } 376 } 377 if (!MayIncreasePressure) return true; 378 379 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 380 // an immediate predecessor. We don't want to increase register pressure and 381 // end up causing other computation to be spilled. 382 if (MI->isAsCheapAsAMove()) { 383 MachineBasicBlock *CSBB = CSMI->getParent(); 384 MachineBasicBlock *BB = MI->getParent(); 385 if (CSBB != BB && !CSBB->isSuccessor(BB)) 386 return false; 387 } 388 389 // Heuristics #2: If the expression doesn't not use a vr and the only use 390 // of the redundant computation are copies, do not cse. 391 bool HasVRegUse = false; 392 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 393 const MachineOperand &MO = MI->getOperand(i); 394 if (MO.isReg() && MO.isUse() && 395 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 396 HasVRegUse = true; 397 break; 398 } 399 } 400 if (!HasVRegUse) { 401 bool HasNonCopyUse = false; 402 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 403 // Ignore copies. 404 if (!MI.isCopyLike()) { 405 HasNonCopyUse = true; 406 break; 407 } 408 } 409 if (!HasNonCopyUse) 410 return false; 411 } 412 413 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 414 // it unless the defined value is already used in the BB of the new use. 415 bool HasPHI = false; 416 SmallPtrSet<MachineBasicBlock*, 4> CSBBs; 417 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 418 HasPHI |= MI.isPHI(); 419 CSBBs.insert(MI.getParent()); 420 } 421 422 if (!HasPHI) 423 return true; 424 return CSBBs.count(MI->getParent()); 425 } 426 427 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 428 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 429 ScopeType *Scope = new ScopeType(VNT); 430 ScopeMap[MBB] = Scope; 431 } 432 433 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 434 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 435 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 436 assert(SI != ScopeMap.end()); 437 delete SI->second; 438 ScopeMap.erase(SI); 439 } 440 441 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 442 bool Changed = false; 443 444 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 445 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 446 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 447 MachineInstr *MI = &*I; 448 ++I; 449 450 if (!isCSECandidate(MI)) 451 continue; 452 453 bool FoundCSE = VNT.count(MI); 454 if (!FoundCSE) { 455 // Look for trivial copy coalescing opportunities. 456 if (PerformTrivialCoalescing(MI, MBB)) { 457 Changed = true; 458 459 // After coalescing MI itself may become a copy. 460 if (MI->isCopyLike()) 461 continue; 462 FoundCSE = VNT.count(MI); 463 } 464 } 465 466 // Commute commutable instructions. 467 bool Commuted = false; 468 if (!FoundCSE && MI->isCommutable()) { 469 MachineInstr *NewMI = TII->commuteInstruction(MI); 470 if (NewMI) { 471 Commuted = true; 472 FoundCSE = VNT.count(NewMI); 473 if (NewMI != MI) { 474 // New instruction. It doesn't need to be kept. 475 NewMI->eraseFromParent(); 476 Changed = true; 477 } else if (!FoundCSE) 478 // MI was changed but it didn't help, commute it back! 479 (void)TII->commuteInstruction(MI); 480 } 481 } 482 483 // If the instruction defines physical registers and the values *may* be 484 // used, then it's not safe to replace it with a common subexpression. 485 // It's also not safe if the instruction uses physical registers. 486 bool CrossMBBPhysDef = false; 487 SmallSet<unsigned, 8> PhysRefs; 488 SmallVector<unsigned, 2> PhysDefs; 489 bool PhysUseDef = false; 490 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, 491 PhysDefs, PhysUseDef)) { 492 FoundCSE = false; 493 494 // ... Unless the CS is local or is in the sole predecessor block 495 // and it also defines the physical register which is not clobbered 496 // in between and the physical register uses were not clobbered. 497 // This can never be the case if the instruction both uses and 498 // defines the same physical register, which was detected above. 499 if (!PhysUseDef) { 500 unsigned CSVN = VNT.lookup(MI); 501 MachineInstr *CSMI = Exps[CSVN]; 502 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 503 FoundCSE = true; 504 } 505 } 506 507 if (!FoundCSE) { 508 VNT.insert(MI, CurrVN++); 509 Exps.push_back(MI); 510 continue; 511 } 512 513 // Found a common subexpression, eliminate it. 514 unsigned CSVN = VNT.lookup(MI); 515 MachineInstr *CSMI = Exps[CSVN]; 516 DEBUG(dbgs() << "Examining: " << *MI); 517 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 518 519 // Check if it's profitable to perform this CSE. 520 bool DoCSE = true; 521 unsigned NumDefs = MI->getDesc().getNumDefs() + 522 MI->getDesc().getNumImplicitDefs(); 523 524 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 525 MachineOperand &MO = MI->getOperand(i); 526 if (!MO.isReg() || !MO.isDef()) 527 continue; 528 unsigned OldReg = MO.getReg(); 529 unsigned NewReg = CSMI->getOperand(i).getReg(); 530 531 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 532 // we should make sure it is not dead at CSMI. 533 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 534 ImplicitDefsToUpdate.push_back(i); 535 if (OldReg == NewReg) { 536 --NumDefs; 537 continue; 538 } 539 540 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 541 TargetRegisterInfo::isVirtualRegister(NewReg) && 542 "Do not CSE physical register defs!"); 543 544 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 545 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 546 DoCSE = false; 547 break; 548 } 549 550 // Don't perform CSE if the result of the old instruction cannot exist 551 // within the register class of the new instruction. 552 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg); 553 if (!MRI->constrainRegClass(NewReg, OldRC)) { 554 DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n"); 555 DoCSE = false; 556 break; 557 } 558 559 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 560 --NumDefs; 561 } 562 563 // Actually perform the elimination. 564 if (DoCSE) { 565 for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) { 566 MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second); 567 MRI->clearKillFlags(CSEPairs[i].second); 568 } 569 570 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 571 // we should make sure it is not dead at CSMI. 572 for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i) 573 CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false); 574 575 if (CrossMBBPhysDef) { 576 // Add physical register defs now coming in from a predecessor to MBB 577 // livein list. 578 while (!PhysDefs.empty()) { 579 unsigned LiveIn = PhysDefs.pop_back_val(); 580 if (!MBB->isLiveIn(LiveIn)) 581 MBB->addLiveIn(LiveIn); 582 } 583 ++NumCrossBBCSEs; 584 } 585 586 MI->eraseFromParent(); 587 ++NumCSEs; 588 if (!PhysRefs.empty()) 589 ++NumPhysCSEs; 590 if (Commuted) 591 ++NumCommutes; 592 Changed = true; 593 } else { 594 VNT.insert(MI, CurrVN++); 595 Exps.push_back(MI); 596 } 597 CSEPairs.clear(); 598 ImplicitDefsToUpdate.clear(); 599 } 600 601 return Changed; 602 } 603 604 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 605 /// dominator tree node if its a leaf or all of its children are done. Walk 606 /// up the dominator tree to destroy ancestors which are now done. 607 void 608 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 609 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 610 if (OpenChildren[Node]) 611 return; 612 613 // Pop scope. 614 ExitScope(Node->getBlock()); 615 616 // Now traverse upwards to pop ancestors whose offsprings are all done. 617 while (MachineDomTreeNode *Parent = Node->getIDom()) { 618 unsigned Left = --OpenChildren[Parent]; 619 if (Left != 0) 620 break; 621 ExitScope(Parent->getBlock()); 622 Node = Parent; 623 } 624 } 625 626 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 627 SmallVector<MachineDomTreeNode*, 32> Scopes; 628 SmallVector<MachineDomTreeNode*, 8> WorkList; 629 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 630 631 CurrVN = 0; 632 633 // Perform a DFS walk to determine the order of visit. 634 WorkList.push_back(Node); 635 do { 636 Node = WorkList.pop_back_val(); 637 Scopes.push_back(Node); 638 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 639 unsigned NumChildren = Children.size(); 640 OpenChildren[Node] = NumChildren; 641 for (unsigned i = 0; i != NumChildren; ++i) { 642 MachineDomTreeNode *Child = Children[i]; 643 WorkList.push_back(Child); 644 } 645 } while (!WorkList.empty()); 646 647 // Now perform CSE. 648 bool Changed = false; 649 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 650 MachineDomTreeNode *Node = Scopes[i]; 651 MachineBasicBlock *MBB = Node->getBlock(); 652 EnterScope(MBB); 653 Changed |= ProcessBlock(MBB); 654 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 655 ExitScopeIfDone(Node, OpenChildren); 656 } 657 658 return Changed; 659 } 660 661 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 662 if (skipOptnoneFunction(*MF.getFunction())) 663 return false; 664 665 TII = MF.getTarget().getInstrInfo(); 666 TRI = MF.getTarget().getRegisterInfo(); 667 MRI = &MF.getRegInfo(); 668 AA = &getAnalysis<AliasAnalysis>(); 669 DT = &getAnalysis<MachineDominatorTree>(); 670 return PerformCSE(DT->getRootNode()); 671 } 672