xref: /llvm-project/llvm/lib/CodeGen/MachineCSE.cpp (revision 623d9ba068e6f11be992c5197a26f492573509ef)
1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global common subexpression elimination on machine
10 // instructions using a scoped hash table based value numbering scheme. It
11 // must be run while the machine function is still in SSA form.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/ScopedHashTable.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Allocator.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/RecyclingAllocator.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <iterator>
44 #include <utility>
45 #include <vector>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "machine-cse"
50 
51 STATISTIC(NumCoalesces, "Number of copies coalesced");
52 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
53 STATISTIC(NumPREs,      "Number of partial redundant expression"
54                         " transformed to fully redundant");
55 STATISTIC(NumPhysCSEs,
56           "Number of physreg referencing common subexpr eliminated");
57 STATISTIC(NumCrossBBCSEs,
58           "Number of cross-MBB physreg referencing CS eliminated");
59 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
60 
61 namespace {
62 
63   class MachineCSE : public MachineFunctionPass {
64     const TargetInstrInfo *TII;
65     const TargetRegisterInfo *TRI;
66     AliasAnalysis *AA;
67     MachineDominatorTree *DT;
68     MachineRegisterInfo *MRI;
69 
70   public:
71     static char ID; // Pass identification
72 
73     MachineCSE() : MachineFunctionPass(ID) {
74       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
75     }
76 
77     bool runOnMachineFunction(MachineFunction &MF) override;
78 
79     void getAnalysisUsage(AnalysisUsage &AU) const override {
80       AU.setPreservesCFG();
81       MachineFunctionPass::getAnalysisUsage(AU);
82       AU.addRequired<AAResultsWrapperPass>();
83       AU.addPreservedID(MachineLoopInfoID);
84       AU.addRequired<MachineDominatorTree>();
85       AU.addPreserved<MachineDominatorTree>();
86     }
87 
88     void releaseMemory() override {
89       ScopeMap.clear();
90       PREMap.clear();
91       Exps.clear();
92     }
93 
94   private:
95     using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
96                             ScopedHashTableVal<MachineInstr *, unsigned>>;
97     using ScopedHTType =
98         ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
99                         AllocatorTy>;
100     using ScopeType = ScopedHTType::ScopeTy;
101     using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;
102 
103     unsigned LookAheadLimit = 0;
104     DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
105     DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
106         PREMap;
107     ScopedHTType VNT;
108     SmallVector<MachineInstr *, 64> Exps;
109     unsigned CurrVN = 0;
110 
111     bool PerformTrivialCopyPropagation(MachineInstr *MI,
112                                        MachineBasicBlock *MBB);
113     bool isPhysDefTriviallyDead(unsigned Reg,
114                                 MachineBasicBlock::const_iterator I,
115                                 MachineBasicBlock::const_iterator E) const;
116     bool hasLivePhysRegDefUses(const MachineInstr *MI,
117                                const MachineBasicBlock *MBB,
118                                SmallSet<unsigned, 8> &PhysRefs,
119                                PhysDefVector &PhysDefs, bool &PhysUseDef) const;
120     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
121                           SmallSet<unsigned, 8> &PhysRefs,
122                           PhysDefVector &PhysDefs, bool &NonLocal) const;
123     bool isCSECandidate(MachineInstr *MI);
124     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
125                            MachineBasicBlock *CSBB, MachineInstr *MI);
126     void EnterScope(MachineBasicBlock *MBB);
127     void ExitScope(MachineBasicBlock *MBB);
128     bool ProcessBlockCSE(MachineBasicBlock *MBB);
129     void ExitScopeIfDone(MachineDomTreeNode *Node,
130                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
131     bool PerformCSE(MachineDomTreeNode *Node);
132 
133     bool isPRECandidate(MachineInstr *MI);
134     bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
135     bool PerformSimplePRE(MachineDominatorTree *DT);
136   };
137 
138 } // end anonymous namespace
139 
140 char MachineCSE::ID = 0;
141 
142 char &llvm::MachineCSEID = MachineCSE::ID;
143 
144 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
145                       "Machine Common Subexpression Elimination", false, false)
146 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
147 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
148 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
149                     "Machine Common Subexpression Elimination", false, false)
150 
151 /// The source register of a COPY machine instruction can be propagated to all
152 /// its users, and this propagation could increase the probability of finding
153 /// common subexpressions. If the COPY has only one user, the COPY itself can
154 /// be removed.
155 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
156                                                MachineBasicBlock *MBB) {
157   bool Changed = false;
158   for (MachineOperand &MO : MI->operands()) {
159     if (!MO.isReg() || !MO.isUse())
160       continue;
161     unsigned Reg = MO.getReg();
162     if (!TargetRegisterInfo::isVirtualRegister(Reg))
163       continue;
164     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
165     MachineInstr *DefMI = MRI->getVRegDef(Reg);
166     if (!DefMI->isCopy())
167       continue;
168     unsigned SrcReg = DefMI->getOperand(1).getReg();
169     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
170       continue;
171     if (DefMI->getOperand(0).getSubReg())
172       continue;
173     // FIXME: We should trivially coalesce subregister copies to expose CSE
174     // opportunities on instructions with truncated operands (see
175     // cse-add-with-overflow.ll). This can be done here as follows:
176     // if (SrcSubReg)
177     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
178     //                                     SrcSubReg);
179     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
180     //
181     // The 2-addr pass has been updated to handle coalesced subregs. However,
182     // some machine-specific code still can't handle it.
183     // To handle it properly we also need a way find a constrained subregister
184     // class given a super-reg class and subreg index.
185     if (DefMI->getOperand(1).getSubReg())
186       continue;
187     if (!MRI->constrainRegAttrs(SrcReg, Reg))
188       continue;
189     LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
190     LLVM_DEBUG(dbgs() << "***     to: " << *MI);
191 
192     // Update matching debug values.
193     DefMI->changeDebugValuesDefReg(SrcReg);
194 
195     // Propagate SrcReg of copies to MI.
196     MO.setReg(SrcReg);
197     MRI->clearKillFlags(SrcReg);
198     // Coalesce single use copies.
199     if (OnlyOneUse) {
200       DefMI->eraseFromParent();
201       ++NumCoalesces;
202     }
203     Changed = true;
204   }
205 
206   return Changed;
207 }
208 
209 bool
210 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
211                                    MachineBasicBlock::const_iterator I,
212                                    MachineBasicBlock::const_iterator E) const {
213   unsigned LookAheadLeft = LookAheadLimit;
214   while (LookAheadLeft) {
215     // Skip over dbg_value's.
216     I = skipDebugInstructionsForward(I, E);
217 
218     if (I == E)
219       // Reached end of block, we don't know if register is dead or not.
220       return false;
221 
222     bool SeenDef = false;
223     for (const MachineOperand &MO : I->operands()) {
224       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
225         SeenDef = true;
226       if (!MO.isReg() || !MO.getReg())
227         continue;
228       if (!TRI->regsOverlap(MO.getReg(), Reg))
229         continue;
230       if (MO.isUse())
231         // Found a use!
232         return false;
233       SeenDef = true;
234     }
235     if (SeenDef)
236       // See a def of Reg (or an alias) before encountering any use, it's
237       // trivially dead.
238       return true;
239 
240     --LookAheadLeft;
241     ++I;
242   }
243   return false;
244 }
245 
246 static bool isCallerPreservedOrConstPhysReg(unsigned Reg,
247                                             const MachineFunction &MF,
248                                             const TargetRegisterInfo &TRI) {
249   // MachineRegisterInfo::isConstantPhysReg directly called by
250   // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
251   // reserved registers to be frozen. That doesn't cause a problem  post-ISel as
252   // most (if not all) targets freeze reserved registers right after ISel.
253   //
254   // It does cause issues mid-GlobalISel, however, hence the additional
255   // reservedRegsFrozen check.
256   const MachineRegisterInfo &MRI = MF.getRegInfo();
257   return TRI.isCallerPreservedPhysReg(Reg, MF) ||
258          (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
259 }
260 
261 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
262 /// physical registers (except for dead defs of physical registers). It also
263 /// returns the physical register def by reference if it's the only one and the
264 /// instruction does not uses a physical register.
265 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
266                                        const MachineBasicBlock *MBB,
267                                        SmallSet<unsigned, 8> &PhysRefs,
268                                        PhysDefVector &PhysDefs,
269                                        bool &PhysUseDef) const {
270   // First, add all uses to PhysRefs.
271   for (const MachineOperand &MO : MI->operands()) {
272     if (!MO.isReg() || MO.isDef())
273       continue;
274     unsigned Reg = MO.getReg();
275     if (!Reg)
276       continue;
277     if (TargetRegisterInfo::isVirtualRegister(Reg))
278       continue;
279     // Reading either caller preserved or constant physregs is ok.
280     if (!isCallerPreservedOrConstPhysReg(Reg, *MI->getMF(), *TRI))
281       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
282         PhysRefs.insert(*AI);
283   }
284 
285   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
286   // (which currently contains only uses), set the PhysUseDef flag.
287   PhysUseDef = false;
288   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
289   for (const auto &MOP : llvm::enumerate(MI->operands())) {
290     const MachineOperand &MO = MOP.value();
291     if (!MO.isReg() || !MO.isDef())
292       continue;
293     unsigned Reg = MO.getReg();
294     if (!Reg)
295       continue;
296     if (TargetRegisterInfo::isVirtualRegister(Reg))
297       continue;
298     // Check against PhysRefs even if the def is "dead".
299     if (PhysRefs.count(Reg))
300       PhysUseDef = true;
301     // If the def is dead, it's ok. But the def may not marked "dead". That's
302     // common since this pass is run before livevariables. We can scan
303     // forward a few instructions and check if it is obviously dead.
304     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
305       PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
306   }
307 
308   // Finally, add all defs to PhysRefs as well.
309   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
310     for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
311          ++AI)
312       PhysRefs.insert(*AI);
313 
314   return !PhysRefs.empty();
315 }
316 
317 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
318                                   SmallSet<unsigned, 8> &PhysRefs,
319                                   PhysDefVector &PhysDefs,
320                                   bool &NonLocal) const {
321   // For now conservatively returns false if the common subexpression is
322   // not in the same basic block as the given instruction. The only exception
323   // is if the common subexpression is in the sole predecessor block.
324   const MachineBasicBlock *MBB = MI->getParent();
325   const MachineBasicBlock *CSMBB = CSMI->getParent();
326 
327   bool CrossMBB = false;
328   if (CSMBB != MBB) {
329     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
330       return false;
331 
332     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
333       if (MRI->isAllocatable(PhysDefs[i].second) ||
334           MRI->isReserved(PhysDefs[i].second))
335         // Avoid extending live range of physical registers if they are
336         //allocatable or reserved.
337         return false;
338     }
339     CrossMBB = true;
340   }
341   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
342   MachineBasicBlock::const_iterator E = MI;
343   MachineBasicBlock::const_iterator EE = CSMBB->end();
344   unsigned LookAheadLeft = LookAheadLimit;
345   while (LookAheadLeft) {
346     // Skip over dbg_value's.
347     while (I != E && I != EE && I->isDebugInstr())
348       ++I;
349 
350     if (I == EE) {
351       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
352       (void)CrossMBB;
353       CrossMBB = false;
354       NonLocal = true;
355       I = MBB->begin();
356       EE = MBB->end();
357       continue;
358     }
359 
360     if (I == E)
361       return true;
362 
363     for (const MachineOperand &MO : I->operands()) {
364       // RegMasks go on instructions like calls that clobber lots of physregs.
365       // Don't attempt to CSE across such an instruction.
366       if (MO.isRegMask())
367         return false;
368       if (!MO.isReg() || !MO.isDef())
369         continue;
370       unsigned MOReg = MO.getReg();
371       if (TargetRegisterInfo::isVirtualRegister(MOReg))
372         continue;
373       if (PhysRefs.count(MOReg))
374         return false;
375     }
376 
377     --LookAheadLeft;
378     ++I;
379   }
380 
381   return false;
382 }
383 
384 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
385   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
386       MI->isInlineAsm() || MI->isDebugInstr())
387     return false;
388 
389   // Ignore copies.
390   if (MI->isCopyLike())
391     return false;
392 
393   // Ignore stuff that we obviously can't move.
394   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
395       MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
396     return false;
397 
398   if (MI->mayLoad()) {
399     // Okay, this instruction does a load. As a refinement, we allow the target
400     // to decide whether the loaded value is actually a constant. If so, we can
401     // actually use it as a load.
402     if (!MI->isDereferenceableInvariantLoad(AA))
403       // FIXME: we should be able to hoist loads with no other side effects if
404       // there are no other instructions which can change memory in this loop.
405       // This is a trivial form of alias analysis.
406       return false;
407   }
408 
409   // Ignore stack guard loads, otherwise the register that holds CSEed value may
410   // be spilled and get loaded back with corrupted data.
411   if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
412     return false;
413 
414   return true;
415 }
416 
417 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
418 /// common expression that defines Reg. CSBB is basic block where CSReg is
419 /// defined.
420 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
421                                    MachineBasicBlock *CSBB, MachineInstr *MI) {
422   // FIXME: Heuristics that works around the lack the live range splitting.
423 
424   // If CSReg is used at all uses of Reg, CSE should not increase register
425   // pressure of CSReg.
426   bool MayIncreasePressure = true;
427   if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
428       TargetRegisterInfo::isVirtualRegister(Reg)) {
429     MayIncreasePressure = false;
430     SmallPtrSet<MachineInstr*, 8> CSUses;
431     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
432       CSUses.insert(&MI);
433     }
434     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
435       if (!CSUses.count(&MI)) {
436         MayIncreasePressure = true;
437         break;
438       }
439     }
440   }
441   if (!MayIncreasePressure) return true;
442 
443   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
444   // an immediate predecessor. We don't want to increase register pressure and
445   // end up causing other computation to be spilled.
446   if (TII->isAsCheapAsAMove(*MI)) {
447     MachineBasicBlock *BB = MI->getParent();
448     if (CSBB != BB && !CSBB->isSuccessor(BB))
449       return false;
450   }
451 
452   // Heuristics #2: If the expression doesn't not use a vr and the only use
453   // of the redundant computation are copies, do not cse.
454   bool HasVRegUse = false;
455   for (const MachineOperand &MO : MI->operands()) {
456     if (MO.isReg() && MO.isUse() &&
457         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
458       HasVRegUse = true;
459       break;
460     }
461   }
462   if (!HasVRegUse) {
463     bool HasNonCopyUse = false;
464     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
465       // Ignore copies.
466       if (!MI.isCopyLike()) {
467         HasNonCopyUse = true;
468         break;
469       }
470     }
471     if (!HasNonCopyUse)
472       return false;
473   }
474 
475   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
476   // it unless the defined value is already used in the BB of the new use.
477   bool HasPHI = false;
478   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
479     HasPHI |= UseMI.isPHI();
480     if (UseMI.getParent() == MI->getParent())
481       return true;
482   }
483 
484   return !HasPHI;
485 }
486 
487 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
488   LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
489   ScopeType *Scope = new ScopeType(VNT);
490   ScopeMap[MBB] = Scope;
491 }
492 
493 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
494   LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
495   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
496   assert(SI != ScopeMap.end());
497   delete SI->second;
498   ScopeMap.erase(SI);
499 }
500 
501 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) {
502   bool Changed = false;
503 
504   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
505   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
506   SmallVector<unsigned, 2> ImplicitDefs;
507   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
508     MachineInstr *MI = &*I;
509     ++I;
510 
511     if (!isCSECandidate(MI))
512       continue;
513 
514     bool FoundCSE = VNT.count(MI);
515     if (!FoundCSE) {
516       // Using trivial copy propagation to find more CSE opportunities.
517       if (PerformTrivialCopyPropagation(MI, MBB)) {
518         Changed = true;
519 
520         // After coalescing MI itself may become a copy.
521         if (MI->isCopyLike())
522           continue;
523 
524         // Try again to see if CSE is possible.
525         FoundCSE = VNT.count(MI);
526       }
527     }
528 
529     // Commute commutable instructions.
530     bool Commuted = false;
531     if (!FoundCSE && MI->isCommutable()) {
532       if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
533         Commuted = true;
534         FoundCSE = VNT.count(NewMI);
535         if (NewMI != MI) {
536           // New instruction. It doesn't need to be kept.
537           NewMI->eraseFromParent();
538           Changed = true;
539         } else if (!FoundCSE)
540           // MI was changed but it didn't help, commute it back!
541           (void)TII->commuteInstruction(*MI);
542       }
543     }
544 
545     // If the instruction defines physical registers and the values *may* be
546     // used, then it's not safe to replace it with a common subexpression.
547     // It's also not safe if the instruction uses physical registers.
548     bool CrossMBBPhysDef = false;
549     SmallSet<unsigned, 8> PhysRefs;
550     PhysDefVector PhysDefs;
551     bool PhysUseDef = false;
552     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
553                                           PhysDefs, PhysUseDef)) {
554       FoundCSE = false;
555 
556       // ... Unless the CS is local or is in the sole predecessor block
557       // and it also defines the physical register which is not clobbered
558       // in between and the physical register uses were not clobbered.
559       // This can never be the case if the instruction both uses and
560       // defines the same physical register, which was detected above.
561       if (!PhysUseDef) {
562         unsigned CSVN = VNT.lookup(MI);
563         MachineInstr *CSMI = Exps[CSVN];
564         if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
565           FoundCSE = true;
566       }
567     }
568 
569     if (!FoundCSE) {
570       VNT.insert(MI, CurrVN++);
571       Exps.push_back(MI);
572       continue;
573     }
574 
575     // Found a common subexpression, eliminate it.
576     unsigned CSVN = VNT.lookup(MI);
577     MachineInstr *CSMI = Exps[CSVN];
578     LLVM_DEBUG(dbgs() << "Examining: " << *MI);
579     LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
580 
581     // Check if it's profitable to perform this CSE.
582     bool DoCSE = true;
583     unsigned NumDefs = MI->getNumDefs();
584 
585     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
586       MachineOperand &MO = MI->getOperand(i);
587       if (!MO.isReg() || !MO.isDef())
588         continue;
589       unsigned OldReg = MO.getReg();
590       unsigned NewReg = CSMI->getOperand(i).getReg();
591 
592       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
593       // we should make sure it is not dead at CSMI.
594       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
595         ImplicitDefsToUpdate.push_back(i);
596 
597       // Keep track of implicit defs of CSMI and MI, to clear possibly
598       // made-redundant kill flags.
599       if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
600         ImplicitDefs.push_back(OldReg);
601 
602       if (OldReg == NewReg) {
603         --NumDefs;
604         continue;
605       }
606 
607       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
608              TargetRegisterInfo::isVirtualRegister(NewReg) &&
609              "Do not CSE physical register defs!");
610 
611       if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), MI)) {
612         LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
613         DoCSE = false;
614         break;
615       }
616 
617       // Don't perform CSE if the result of the new instruction cannot exist
618       // within the constraints (register class, bank, or low-level type) of
619       // the old instruction.
620       if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
621         LLVM_DEBUG(
622             dbgs() << "*** Not the same register constraints, avoid CSE!\n");
623         DoCSE = false;
624         break;
625       }
626 
627       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
628       --NumDefs;
629     }
630 
631     // Actually perform the elimination.
632     if (DoCSE) {
633       for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
634         unsigned OldReg = CSEPair.first;
635         unsigned NewReg = CSEPair.second;
636         // OldReg may have been unused but is used now, clear the Dead flag
637         MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
638         assert(Def != nullptr && "CSEd register has no unique definition?");
639         Def->clearRegisterDeads(NewReg);
640         // Replace with NewReg and clear kill flags which may be wrong now.
641         MRI->replaceRegWith(OldReg, NewReg);
642         MRI->clearKillFlags(NewReg);
643       }
644 
645       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
646       // we should make sure it is not dead at CSMI.
647       for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
648         CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
649       for (auto PhysDef : PhysDefs)
650         if (!MI->getOperand(PhysDef.first).isDead())
651           CSMI->getOperand(PhysDef.first).setIsDead(false);
652 
653       // Go through implicit defs of CSMI and MI, and clear the kill flags on
654       // their uses in all the instructions between CSMI and MI.
655       // We might have made some of the kill flags redundant, consider:
656       //   subs  ... implicit-def %nzcv    <- CSMI
657       //   csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
658       //   subs  ... implicit-def %nzcv    <- MI, to be eliminated
659       //   csinc ... implicit killed %nzcv
660       // Since we eliminated MI, and reused a register imp-def'd by CSMI
661       // (here %nzcv), that register, if it was killed before MI, should have
662       // that kill flag removed, because it's lifetime was extended.
663       if (CSMI->getParent() == MI->getParent()) {
664         for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
665           for (auto ImplicitDef : ImplicitDefs)
666             if (MachineOperand *MO = II->findRegisterUseOperand(
667                     ImplicitDef, /*isKill=*/true, TRI))
668               MO->setIsKill(false);
669       } else {
670         // If the instructions aren't in the same BB, bail out and clear the
671         // kill flag on all uses of the imp-def'd register.
672         for (auto ImplicitDef : ImplicitDefs)
673           MRI->clearKillFlags(ImplicitDef);
674       }
675 
676       if (CrossMBBPhysDef) {
677         // Add physical register defs now coming in from a predecessor to MBB
678         // livein list.
679         while (!PhysDefs.empty()) {
680           auto LiveIn = PhysDefs.pop_back_val();
681           if (!MBB->isLiveIn(LiveIn.second))
682             MBB->addLiveIn(LiveIn.second);
683         }
684         ++NumCrossBBCSEs;
685       }
686 
687       MI->eraseFromParent();
688       ++NumCSEs;
689       if (!PhysRefs.empty())
690         ++NumPhysCSEs;
691       if (Commuted)
692         ++NumCommutes;
693       Changed = true;
694     } else {
695       VNT.insert(MI, CurrVN++);
696       Exps.push_back(MI);
697     }
698     CSEPairs.clear();
699     ImplicitDefsToUpdate.clear();
700     ImplicitDefs.clear();
701   }
702 
703   return Changed;
704 }
705 
706 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
707 /// dominator tree node if its a leaf or all of its children are done. Walk
708 /// up the dominator tree to destroy ancestors which are now done.
709 void
710 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
711                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
712   if (OpenChildren[Node])
713     return;
714 
715   // Pop scope.
716   ExitScope(Node->getBlock());
717 
718   // Now traverse upwards to pop ancestors whose offsprings are all done.
719   while (MachineDomTreeNode *Parent = Node->getIDom()) {
720     unsigned Left = --OpenChildren[Parent];
721     if (Left != 0)
722       break;
723     ExitScope(Parent->getBlock());
724     Node = Parent;
725   }
726 }
727 
728 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
729   SmallVector<MachineDomTreeNode*, 32> Scopes;
730   SmallVector<MachineDomTreeNode*, 8> WorkList;
731   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
732 
733   CurrVN = 0;
734 
735   // Perform a DFS walk to determine the order of visit.
736   WorkList.push_back(Node);
737   do {
738     Node = WorkList.pop_back_val();
739     Scopes.push_back(Node);
740     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
741     OpenChildren[Node] = Children.size();
742     for (MachineDomTreeNode *Child : Children)
743       WorkList.push_back(Child);
744   } while (!WorkList.empty());
745 
746   // Now perform CSE.
747   bool Changed = false;
748   for (MachineDomTreeNode *Node : Scopes) {
749     MachineBasicBlock *MBB = Node->getBlock();
750     EnterScope(MBB);
751     Changed |= ProcessBlockCSE(MBB);
752     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
753     ExitScopeIfDone(Node, OpenChildren);
754   }
755 
756   return Changed;
757 }
758 
759 // We use stronger checks for PRE candidate rather than for CSE ones to embrace
760 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
761 // to exclude instrs created by PRE that won't be CSEed later.
762 bool MachineCSE::isPRECandidate(MachineInstr *MI) {
763   if (!isCSECandidate(MI) ||
764       MI->isNotDuplicable() ||
765       MI->mayLoad() ||
766       MI->isAsCheapAsAMove() ||
767       MI->getNumDefs() != 1 ||
768       MI->getNumExplicitDefs() != 1)
769     return false;
770 
771   for (auto def : MI->defs())
772     if (!TRI->isVirtualRegister(def.getReg()))
773       return false;
774 
775   for (auto use : MI->uses())
776     if (use.isReg() && !TRI->isVirtualRegister(use.getReg()))
777       return false;
778 
779   return true;
780 }
781 
782 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT,
783                                  MachineBasicBlock *MBB) {
784   bool Changed = false;
785   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
786     MachineInstr *MI = &*I;
787     ++I;
788 
789     if (!isPRECandidate(MI))
790       continue;
791 
792     if (!PREMap.count(MI)) {
793       PREMap[MI] = MBB;
794       continue;
795     }
796 
797     auto MBB1 = PREMap[MI];
798     assert(
799         !DT->properlyDominates(MBB, MBB1) &&
800         "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
801     auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
802 
803     // Two instrs are partial redundant if their basic blocks are reachable
804     // from one to another but one doesn't dominate another.
805     if (CMBB != MBB1) {
806       auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
807       if (BB != nullptr && BB1 != nullptr &&
808           (isPotentiallyReachable(BB1, BB) ||
809            isPotentiallyReachable(BB, BB1))) {
810 
811         assert(MI->getOperand(0).isDef() &&
812                "First operand of instr with one explicit def must be this def");
813         unsigned VReg = MI->getOperand(0).getReg();
814         unsigned NewReg = MRI->cloneVirtualRegister(VReg);
815         if (!isProfitableToCSE(NewReg, VReg, CMBB, MI))
816           continue;
817         MachineInstr &NewMI =
818             TII->duplicate(*CMBB, CMBB->getFirstTerminator(), *MI);
819         NewMI.getOperand(0).setReg(NewReg);
820 
821         PREMap[MI] = CMBB;
822         ++NumPREs;
823         Changed = true;
824       }
825     }
826   }
827   return Changed;
828 }
829 
830 // This simple PRE (partial redundancy elimination) pass doesn't actually
831 // eliminate partial redundancy but transforms it to full redundancy,
832 // anticipating that the next CSE step will eliminate this created redundancy.
833 // If CSE doesn't eliminate this, than created instruction will remain dead
834 // and eliminated later by Remove Dead Machine Instructions pass.
835 bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) {
836   SmallVector<MachineDomTreeNode *, 32> BBs;
837 
838   PREMap.clear();
839   bool Changed = false;
840   BBs.push_back(DT->getRootNode());
841   do {
842     auto Node = BBs.pop_back_val();
843     const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
844     for (MachineDomTreeNode *Child : Children)
845       BBs.push_back(Child);
846 
847     MachineBasicBlock *MBB = Node->getBlock();
848     Changed |= ProcessBlockPRE(DT, MBB);
849 
850   } while (!BBs.empty());
851 
852   return Changed;
853 }
854 
855 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
856   if (skipFunction(MF.getFunction()))
857     return false;
858 
859   TII = MF.getSubtarget().getInstrInfo();
860   TRI = MF.getSubtarget().getRegisterInfo();
861   MRI = &MF.getRegInfo();
862   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
863   DT = &getAnalysis<MachineDominatorTree>();
864   LookAheadLimit = TII->getMachineCSELookAheadLimit();
865   bool ChangedPRE, ChangedCSE;
866   ChangedPRE = PerformSimplePRE(DT);
867   ChangedCSE = PerformCSE(DT->getRootNode());
868   return ChangedPRE || ChangedCSE;
869 }
870