1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global common subexpression elimination on machine 11 // instructions using a scoped hash table based value numbering scheme. It 12 // must be run while the machine function is still in SSA form. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "machine-cse" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/ScopedHashTable.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/RecyclingAllocator.h" 29 using namespace llvm; 30 31 STATISTIC(NumCoalesces, "Number of copies coalesced"); 32 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 33 STATISTIC(NumPhysCSEs, 34 "Number of physreg referencing common subexpr eliminated"); 35 STATISTIC(NumCrossBBCSEs, 36 "Number of cross-MBB physreg referencing CS eliminated"); 37 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 38 39 namespace { 40 class MachineCSE : public MachineFunctionPass { 41 const TargetInstrInfo *TII; 42 const TargetRegisterInfo *TRI; 43 AliasAnalysis *AA; 44 MachineDominatorTree *DT; 45 MachineRegisterInfo *MRI; 46 public: 47 static char ID; // Pass identification 48 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) { 49 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 50 } 51 52 virtual bool runOnMachineFunction(MachineFunction &MF); 53 54 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 55 AU.setPreservesCFG(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 AU.addRequired<AliasAnalysis>(); 58 AU.addPreservedID(MachineLoopInfoID); 59 AU.addRequired<MachineDominatorTree>(); 60 AU.addPreserved<MachineDominatorTree>(); 61 } 62 63 virtual void releaseMemory() { 64 ScopeMap.clear(); 65 Exps.clear(); 66 AllocatableRegs.clear(); 67 ReservedRegs.clear(); 68 } 69 70 private: 71 const unsigned LookAheadLimit; 72 typedef RecyclingAllocator<BumpPtrAllocator, 73 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy; 74 typedef ScopedHashTable<MachineInstr*, unsigned, 75 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType; 76 typedef ScopedHTType::ScopeTy ScopeType; 77 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap; 78 ScopedHTType VNT; 79 SmallVector<MachineInstr*, 64> Exps; 80 unsigned CurrVN; 81 BitVector AllocatableRegs; 82 BitVector ReservedRegs; 83 84 bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB); 85 bool isPhysDefTriviallyDead(unsigned Reg, 86 MachineBasicBlock::const_iterator I, 87 MachineBasicBlock::const_iterator E) const ; 88 bool hasLivePhysRegDefUses(const MachineInstr *MI, 89 const MachineBasicBlock *MBB, 90 SmallSet<unsigned,8> &PhysRefs, 91 SmallVector<unsigned,2> &PhysDefs) const; 92 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 93 SmallSet<unsigned,8> &PhysRefs, 94 SmallVector<unsigned,2> &PhysDefs, 95 bool &NonLocal) const; 96 bool isCSECandidate(MachineInstr *MI); 97 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 98 MachineInstr *CSMI, MachineInstr *MI); 99 void EnterScope(MachineBasicBlock *MBB); 100 void ExitScope(MachineBasicBlock *MBB); 101 bool ProcessBlock(MachineBasicBlock *MBB); 102 void ExitScopeIfDone(MachineDomTreeNode *Node, 103 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 104 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap); 105 bool PerformCSE(MachineDomTreeNode *Node); 106 }; 107 } // end anonymous namespace 108 109 char MachineCSE::ID = 0; 110 char &llvm::MachineCSEID = MachineCSE::ID; 111 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse", 112 "Machine Common Subexpression Elimination", false, false) 113 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 114 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 115 INITIALIZE_PASS_END(MachineCSE, "machine-cse", 116 "Machine Common Subexpression Elimination", false, false) 117 118 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI, 119 MachineBasicBlock *MBB) { 120 bool Changed = false; 121 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 122 MachineOperand &MO = MI->getOperand(i); 123 if (!MO.isReg() || !MO.isUse()) 124 continue; 125 unsigned Reg = MO.getReg(); 126 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 127 continue; 128 if (!MRI->hasOneNonDBGUse(Reg)) 129 // Only coalesce single use copies. This ensure the copy will be 130 // deleted. 131 continue; 132 MachineInstr *DefMI = MRI->getVRegDef(Reg); 133 if (DefMI->getParent() != MBB) 134 continue; 135 if (!DefMI->isCopy()) 136 continue; 137 unsigned SrcReg = DefMI->getOperand(1).getReg(); 138 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 139 continue; 140 if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg()) 141 continue; 142 if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg))) 143 continue; 144 DEBUG(dbgs() << "Coalescing: " << *DefMI); 145 DEBUG(dbgs() << "*** to: " << *MI); 146 MO.setReg(SrcReg); 147 MRI->clearKillFlags(SrcReg); 148 DefMI->eraseFromParent(); 149 ++NumCoalesces; 150 Changed = true; 151 } 152 153 return Changed; 154 } 155 156 bool 157 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 158 MachineBasicBlock::const_iterator I, 159 MachineBasicBlock::const_iterator E) const { 160 unsigned LookAheadLeft = LookAheadLimit; 161 while (LookAheadLeft) { 162 // Skip over dbg_value's. 163 while (I != E && I->isDebugValue()) 164 ++I; 165 166 if (I == E) 167 // Reached end of block, register is obviously dead. 168 return true; 169 170 bool SeenDef = false; 171 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 172 const MachineOperand &MO = I->getOperand(i); 173 if (!MO.isReg() || !MO.getReg()) 174 continue; 175 if (!TRI->regsOverlap(MO.getReg(), Reg)) 176 continue; 177 if (MO.isUse()) 178 // Found a use! 179 return false; 180 SeenDef = true; 181 } 182 if (SeenDef) 183 // See a def of Reg (or an alias) before encountering any use, it's 184 // trivially dead. 185 return true; 186 187 --LookAheadLeft; 188 ++I; 189 } 190 return false; 191 } 192 193 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 194 /// physical registers (except for dead defs of physical registers). It also 195 /// returns the physical register def by reference if it's the only one and the 196 /// instruction does not uses a physical register. 197 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 198 const MachineBasicBlock *MBB, 199 SmallSet<unsigned,8> &PhysRefs, 200 SmallVector<unsigned,2> &PhysDefs) const{ 201 MachineBasicBlock::const_iterator I = MI; I = llvm::next(I); 202 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 203 const MachineOperand &MO = MI->getOperand(i); 204 if (!MO.isReg()) 205 continue; 206 unsigned Reg = MO.getReg(); 207 if (!Reg) 208 continue; 209 if (TargetRegisterInfo::isVirtualRegister(Reg)) 210 continue; 211 // If the def is dead, it's ok. But the def may not marked "dead". That's 212 // common since this pass is run before livevariables. We can scan 213 // forward a few instructions and check if it is obviously dead. 214 if (MO.isDef() && 215 (MO.isDead() || isPhysDefTriviallyDead(Reg, I, MBB->end()))) 216 continue; 217 PhysRefs.insert(Reg); 218 if (MO.isDef()) 219 PhysDefs.push_back(Reg); 220 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) 221 PhysRefs.insert(*Alias); 222 } 223 224 return !PhysRefs.empty(); 225 } 226 227 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 228 SmallSet<unsigned,8> &PhysRefs, 229 SmallVector<unsigned,2> &PhysDefs, 230 bool &NonLocal) const { 231 // For now conservatively returns false if the common subexpression is 232 // not in the same basic block as the given instruction. The only exception 233 // is if the common subexpression is in the sole predecessor block. 234 const MachineBasicBlock *MBB = MI->getParent(); 235 const MachineBasicBlock *CSMBB = CSMI->getParent(); 236 237 bool CrossMBB = false; 238 if (CSMBB != MBB) { 239 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 240 return false; 241 242 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 243 if (AllocatableRegs.test(PhysDefs[i]) || ReservedRegs.test(PhysDefs[i])) 244 // Avoid extending live range of physical registers if they are 245 //allocatable or reserved. 246 return false; 247 } 248 CrossMBB = true; 249 } 250 MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I); 251 MachineBasicBlock::const_iterator E = MI; 252 MachineBasicBlock::const_iterator EE = CSMBB->end(); 253 unsigned LookAheadLeft = LookAheadLimit; 254 while (LookAheadLeft) { 255 // Skip over dbg_value's. 256 while (I != E && I != EE && I->isDebugValue()) 257 ++I; 258 259 if (I == EE) { 260 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 261 (void)CrossMBB; 262 CrossMBB = false; 263 NonLocal = true; 264 I = MBB->begin(); 265 EE = MBB->end(); 266 continue; 267 } 268 269 if (I == E) 270 return true; 271 272 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 273 const MachineOperand &MO = I->getOperand(i); 274 if (!MO.isReg() || !MO.isDef()) 275 continue; 276 unsigned MOReg = MO.getReg(); 277 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 278 continue; 279 if (PhysRefs.count(MOReg)) 280 return false; 281 } 282 283 --LookAheadLeft; 284 ++I; 285 } 286 287 return false; 288 } 289 290 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 291 if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() || 292 MI->isKill() || MI->isInlineAsm() || MI->isDebugValue()) 293 return false; 294 295 // Ignore copies. 296 if (MI->isCopyLike()) 297 return false; 298 299 // Ignore stuff that we obviously can't move. 300 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 301 MI->hasUnmodeledSideEffects()) 302 return false; 303 304 if (MI->mayLoad()) { 305 // Okay, this instruction does a load. As a refinement, we allow the target 306 // to decide whether the loaded value is actually a constant. If so, we can 307 // actually use it as a load. 308 if (!MI->isInvariantLoad(AA)) 309 // FIXME: we should be able to hoist loads with no other side effects if 310 // there are no other instructions which can change memory in this loop. 311 // This is a trivial form of alias analysis. 312 return false; 313 } 314 return true; 315 } 316 317 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 318 /// common expression that defines Reg. 319 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 320 MachineInstr *CSMI, MachineInstr *MI) { 321 // FIXME: Heuristics that works around the lack the live range splitting. 322 323 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 324 // an immediate predecessor. We don't want to increase register pressure and 325 // end up causing other computation to be spilled. 326 if (MI->isAsCheapAsAMove()) { 327 MachineBasicBlock *CSBB = CSMI->getParent(); 328 MachineBasicBlock *BB = MI->getParent(); 329 if (CSBB != BB && !CSBB->isSuccessor(BB)) 330 return false; 331 } 332 333 // Heuristics #2: If the expression doesn't not use a vr and the only use 334 // of the redundant computation are copies, do not cse. 335 bool HasVRegUse = false; 336 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 337 const MachineOperand &MO = MI->getOperand(i); 338 if (MO.isReg() && MO.isUse() && 339 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 340 HasVRegUse = true; 341 break; 342 } 343 } 344 if (!HasVRegUse) { 345 bool HasNonCopyUse = false; 346 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), 347 E = MRI->use_nodbg_end(); I != E; ++I) { 348 MachineInstr *Use = &*I; 349 // Ignore copies. 350 if (!Use->isCopyLike()) { 351 HasNonCopyUse = true; 352 break; 353 } 354 } 355 if (!HasNonCopyUse) 356 return false; 357 } 358 359 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 360 // it unless the defined value is already used in the BB of the new use. 361 bool HasPHI = false; 362 SmallPtrSet<MachineBasicBlock*, 4> CSBBs; 363 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg), 364 E = MRI->use_nodbg_end(); I != E; ++I) { 365 MachineInstr *Use = &*I; 366 HasPHI |= Use->isPHI(); 367 CSBBs.insert(Use->getParent()); 368 } 369 370 if (!HasPHI) 371 return true; 372 return CSBBs.count(MI->getParent()); 373 } 374 375 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 376 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 377 ScopeType *Scope = new ScopeType(VNT); 378 ScopeMap[MBB] = Scope; 379 } 380 381 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 382 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 383 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 384 assert(SI != ScopeMap.end()); 385 ScopeMap.erase(SI); 386 delete SI->second; 387 } 388 389 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 390 bool Changed = false; 391 392 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 393 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 394 MachineInstr *MI = &*I; 395 ++I; 396 397 if (!isCSECandidate(MI)) 398 continue; 399 400 bool FoundCSE = VNT.count(MI); 401 if (!FoundCSE) { 402 // Look for trivial copy coalescing opportunities. 403 if (PerformTrivialCoalescing(MI, MBB)) { 404 Changed = true; 405 406 // After coalescing MI itself may become a copy. 407 if (MI->isCopyLike()) 408 continue; 409 FoundCSE = VNT.count(MI); 410 } 411 } 412 413 // Commute commutable instructions. 414 bool Commuted = false; 415 if (!FoundCSE && MI->isCommutable()) { 416 MachineInstr *NewMI = TII->commuteInstruction(MI); 417 if (NewMI) { 418 Commuted = true; 419 FoundCSE = VNT.count(NewMI); 420 if (NewMI != MI) { 421 // New instruction. It doesn't need to be kept. 422 NewMI->eraseFromParent(); 423 Changed = true; 424 } else if (!FoundCSE) 425 // MI was changed but it didn't help, commute it back! 426 (void)TII->commuteInstruction(MI); 427 } 428 } 429 430 // If the instruction defines physical registers and the values *may* be 431 // used, then it's not safe to replace it with a common subexpression. 432 // It's also not safe if the instruction uses physical registers. 433 bool CrossMBBPhysDef = false; 434 SmallSet<unsigned,8> PhysRefs; 435 SmallVector<unsigned, 2> PhysDefs; 436 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, PhysDefs)) { 437 FoundCSE = false; 438 439 // ... Unless the CS is local or is in the sole predecessor block 440 // and it also defines the physical register which is not clobbered 441 // in between and the physical register uses were not clobbered. 442 unsigned CSVN = VNT.lookup(MI); 443 MachineInstr *CSMI = Exps[CSVN]; 444 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 445 FoundCSE = true; 446 } 447 448 if (!FoundCSE) { 449 VNT.insert(MI, CurrVN++); 450 Exps.push_back(MI); 451 continue; 452 } 453 454 // Found a common subexpression, eliminate it. 455 unsigned CSVN = VNT.lookup(MI); 456 MachineInstr *CSMI = Exps[CSVN]; 457 DEBUG(dbgs() << "Examining: " << *MI); 458 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 459 460 // Check if it's profitable to perform this CSE. 461 bool DoCSE = true; 462 unsigned NumDefs = MI->getDesc().getNumDefs(); 463 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 464 MachineOperand &MO = MI->getOperand(i); 465 if (!MO.isReg() || !MO.isDef()) 466 continue; 467 unsigned OldReg = MO.getReg(); 468 unsigned NewReg = CSMI->getOperand(i).getReg(); 469 if (OldReg == NewReg) 470 continue; 471 472 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 473 TargetRegisterInfo::isVirtualRegister(NewReg) && 474 "Do not CSE physical register defs!"); 475 476 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 477 DoCSE = false; 478 break; 479 } 480 481 // Don't perform CSE if the result of the old instruction cannot exist 482 // within the register class of the new instruction. 483 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg); 484 if (!MRI->constrainRegClass(NewReg, OldRC)) { 485 DoCSE = false; 486 break; 487 } 488 489 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 490 --NumDefs; 491 } 492 493 // Actually perform the elimination. 494 if (DoCSE) { 495 for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) { 496 MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second); 497 MRI->clearKillFlags(CSEPairs[i].second); 498 } 499 500 if (CrossMBBPhysDef) { 501 // Add physical register defs now coming in from a predecessor to MBB 502 // livein list. 503 while (!PhysDefs.empty()) { 504 unsigned LiveIn = PhysDefs.pop_back_val(); 505 if (!MBB->isLiveIn(LiveIn)) 506 MBB->addLiveIn(LiveIn); 507 } 508 ++NumCrossBBCSEs; 509 } 510 511 MI->eraseFromParent(); 512 ++NumCSEs; 513 if (!PhysRefs.empty()) 514 ++NumPhysCSEs; 515 if (Commuted) 516 ++NumCommutes; 517 Changed = true; 518 } else { 519 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 520 VNT.insert(MI, CurrVN++); 521 Exps.push_back(MI); 522 } 523 CSEPairs.clear(); 524 } 525 526 return Changed; 527 } 528 529 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 530 /// dominator tree node if its a leaf or all of its children are done. Walk 531 /// up the dominator tree to destroy ancestors which are now done. 532 void 533 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 534 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 535 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 536 if (OpenChildren[Node]) 537 return; 538 539 // Pop scope. 540 ExitScope(Node->getBlock()); 541 542 // Now traverse upwards to pop ancestors whose offsprings are all done. 543 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 544 unsigned Left = --OpenChildren[Parent]; 545 if (Left != 0) 546 break; 547 ExitScope(Parent->getBlock()); 548 Node = Parent; 549 } 550 } 551 552 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 553 SmallVector<MachineDomTreeNode*, 32> Scopes; 554 SmallVector<MachineDomTreeNode*, 8> WorkList; 555 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 556 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 557 558 CurrVN = 0; 559 560 // Perform a DFS walk to determine the order of visit. 561 WorkList.push_back(Node); 562 do { 563 Node = WorkList.pop_back_val(); 564 Scopes.push_back(Node); 565 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 566 unsigned NumChildren = Children.size(); 567 OpenChildren[Node] = NumChildren; 568 for (unsigned i = 0; i != NumChildren; ++i) { 569 MachineDomTreeNode *Child = Children[i]; 570 ParentMap[Child] = Node; 571 WorkList.push_back(Child); 572 } 573 } while (!WorkList.empty()); 574 575 // Now perform CSE. 576 bool Changed = false; 577 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 578 MachineDomTreeNode *Node = Scopes[i]; 579 MachineBasicBlock *MBB = Node->getBlock(); 580 EnterScope(MBB); 581 Changed |= ProcessBlock(MBB); 582 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 583 ExitScopeIfDone(Node, OpenChildren, ParentMap); 584 } 585 586 return Changed; 587 } 588 589 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 590 TII = MF.getTarget().getInstrInfo(); 591 TRI = MF.getTarget().getRegisterInfo(); 592 MRI = &MF.getRegInfo(); 593 AA = &getAnalysis<AliasAnalysis>(); 594 DT = &getAnalysis<MachineDominatorTree>(); 595 AllocatableRegs = TRI->getAllocatableSet(MF); 596 ReservedRegs = TRI->getReservedRegs(MF); 597 return PerformCSE(DT->getRootNode()); 598 } 599