1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global common subexpression elimination on machine 11 // instructions using a scoped hash table based value numbering scheme. It 12 // must be run while the machine function is still in SSA form. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "machine-cse" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/ScopedHashTable.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/RecyclingAllocator.h" 29 using namespace llvm; 30 31 STATISTIC(NumCoalesces, "Number of copies coalesced"); 32 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 33 STATISTIC(NumPhysCSEs, 34 "Number of physreg referencing common subexpr eliminated"); 35 STATISTIC(NumCrossBBCSEs, 36 "Number of cross-MBB physreg referencing CS eliminated"); 37 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 38 39 namespace { 40 class MachineCSE : public MachineFunctionPass { 41 const TargetInstrInfo *TII; 42 const TargetRegisterInfo *TRI; 43 AliasAnalysis *AA; 44 MachineDominatorTree *DT; 45 MachineRegisterInfo *MRI; 46 public: 47 static char ID; // Pass identification 48 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) { 49 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 50 } 51 52 virtual bool runOnMachineFunction(MachineFunction &MF); 53 54 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 55 AU.setPreservesCFG(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 AU.addRequired<AliasAnalysis>(); 58 AU.addPreservedID(MachineLoopInfoID); 59 AU.addRequired<MachineDominatorTree>(); 60 AU.addPreserved<MachineDominatorTree>(); 61 } 62 63 virtual void releaseMemory() { 64 ScopeMap.clear(); 65 Exps.clear(); 66 } 67 68 private: 69 const unsigned LookAheadLimit; 70 typedef RecyclingAllocator<BumpPtrAllocator, 71 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy; 72 typedef ScopedHashTable<MachineInstr*, unsigned, 73 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType; 74 typedef ScopedHTType::ScopeTy ScopeType; 75 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap; 76 ScopedHTType VNT; 77 SmallVector<MachineInstr*, 64> Exps; 78 unsigned CurrVN; 79 80 bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB); 81 bool isPhysDefTriviallyDead(unsigned Reg, 82 MachineBasicBlock::const_iterator I, 83 MachineBasicBlock::const_iterator E) const ; 84 bool hasLivePhysRegDefUses(const MachineInstr *MI, 85 const MachineBasicBlock *MBB, 86 SmallSet<unsigned,8> &PhysRefs, 87 SmallVector<unsigned,2> &PhysDefs) const; 88 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 89 SmallSet<unsigned,8> &PhysRefs, 90 SmallVector<unsigned,2> &PhysDefs, 91 bool &NonLocal) const; 92 bool isCSECandidate(MachineInstr *MI); 93 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 94 MachineInstr *CSMI, MachineInstr *MI); 95 void EnterScope(MachineBasicBlock *MBB); 96 void ExitScope(MachineBasicBlock *MBB); 97 bool ProcessBlock(MachineBasicBlock *MBB); 98 void ExitScopeIfDone(MachineDomTreeNode *Node, 99 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 100 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap); 101 bool PerformCSE(MachineDomTreeNode *Node); 102 }; 103 } // end anonymous namespace 104 105 char MachineCSE::ID = 0; 106 char &llvm::MachineCSEID = MachineCSE::ID; 107 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse", 108 "Machine Common Subexpression Elimination", false, false) 109 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 110 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 111 INITIALIZE_PASS_END(MachineCSE, "machine-cse", 112 "Machine Common Subexpression Elimination", false, false) 113 114 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI, 115 MachineBasicBlock *MBB) { 116 bool Changed = false; 117 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 118 MachineOperand &MO = MI->getOperand(i); 119 if (!MO.isReg() || !MO.isUse()) 120 continue; 121 unsigned Reg = MO.getReg(); 122 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 123 continue; 124 if (!MRI->hasOneNonDBGUse(Reg)) 125 // Only coalesce single use copies. This ensure the copy will be 126 // deleted. 127 continue; 128 MachineInstr *DefMI = MRI->getVRegDef(Reg); 129 if (DefMI->getParent() != MBB) 130 continue; 131 if (!DefMI->isCopy()) 132 continue; 133 unsigned SrcReg = DefMI->getOperand(1).getReg(); 134 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 135 continue; 136 if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg()) 137 continue; 138 if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg))) 139 continue; 140 DEBUG(dbgs() << "Coalescing: " << *DefMI); 141 DEBUG(dbgs() << "*** to: " << *MI); 142 MO.setReg(SrcReg); 143 MRI->clearKillFlags(SrcReg); 144 DefMI->eraseFromParent(); 145 ++NumCoalesces; 146 Changed = true; 147 } 148 149 return Changed; 150 } 151 152 bool 153 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 154 MachineBasicBlock::const_iterator I, 155 MachineBasicBlock::const_iterator E) const { 156 unsigned LookAheadLeft = LookAheadLimit; 157 while (LookAheadLeft) { 158 // Skip over dbg_value's. 159 while (I != E && I->isDebugValue()) 160 ++I; 161 162 if (I == E) 163 // Reached end of block, register is obviously dead. 164 return true; 165 166 bool SeenDef = false; 167 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 168 const MachineOperand &MO = I->getOperand(i); 169 if (!MO.isReg() || !MO.getReg()) 170 continue; 171 if (!TRI->regsOverlap(MO.getReg(), Reg)) 172 continue; 173 if (MO.isUse()) 174 // Found a use! 175 return false; 176 SeenDef = true; 177 } 178 if (SeenDef) 179 // See a def of Reg (or an alias) before encountering any use, it's 180 // trivially dead. 181 return true; 182 183 --LookAheadLeft; 184 ++I; 185 } 186 return false; 187 } 188 189 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 190 /// physical registers (except for dead defs of physical registers). It also 191 /// returns the physical register def by reference if it's the only one and the 192 /// instruction does not uses a physical register. 193 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 194 const MachineBasicBlock *MBB, 195 SmallSet<unsigned,8> &PhysRefs, 196 SmallVector<unsigned,2> &PhysDefs) const{ 197 MachineBasicBlock::const_iterator I = MI; I = llvm::next(I); 198 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 199 const MachineOperand &MO = MI->getOperand(i); 200 if (!MO.isReg()) 201 continue; 202 unsigned Reg = MO.getReg(); 203 if (!Reg) 204 continue; 205 if (TargetRegisterInfo::isVirtualRegister(Reg)) 206 continue; 207 // If the def is dead, it's ok. But the def may not marked "dead". That's 208 // common since this pass is run before livevariables. We can scan 209 // forward a few instructions and check if it is obviously dead. 210 if (MO.isDef() && 211 (MO.isDead() || isPhysDefTriviallyDead(Reg, I, MBB->end()))) 212 continue; 213 PhysRefs.insert(Reg); 214 if (MO.isDef()) 215 PhysDefs.push_back(Reg); 216 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) 217 PhysRefs.insert(*Alias); 218 } 219 220 return !PhysRefs.empty(); 221 } 222 223 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 224 SmallSet<unsigned,8> &PhysRefs, 225 SmallVector<unsigned,2> &PhysDefs, 226 bool &NonLocal) const { 227 // For now conservatively returns false if the common subexpression is 228 // not in the same basic block as the given instruction. The only exception 229 // is if the common subexpression is in the sole predecessor block. 230 const MachineBasicBlock *MBB = MI->getParent(); 231 const MachineBasicBlock *CSMBB = CSMI->getParent(); 232 233 bool CrossMBB = false; 234 if (CSMBB != MBB) { 235 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 236 return false; 237 238 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 239 if (TRI->isInAllocatableClass(PhysDefs[i])) 240 // Avoid extending live range of physical registers unless 241 // they are unallocatable. 242 return false; 243 } 244 CrossMBB = true; 245 } 246 MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I); 247 MachineBasicBlock::const_iterator E = MI; 248 MachineBasicBlock::const_iterator EE = CSMBB->end(); 249 unsigned LookAheadLeft = LookAheadLimit; 250 while (LookAheadLeft) { 251 // Skip over dbg_value's. 252 while (I != E && I != EE && I->isDebugValue()) 253 ++I; 254 255 if (I == EE) { 256 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 257 (void)CrossMBB; 258 CrossMBB = false; 259 NonLocal = true; 260 I = MBB->begin(); 261 EE = MBB->end(); 262 continue; 263 } 264 265 if (I == E) 266 return true; 267 268 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 269 const MachineOperand &MO = I->getOperand(i); 270 if (!MO.isReg() || !MO.isDef()) 271 continue; 272 unsigned MOReg = MO.getReg(); 273 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 274 continue; 275 if (PhysRefs.count(MOReg)) 276 return false; 277 } 278 279 --LookAheadLeft; 280 ++I; 281 } 282 283 return false; 284 } 285 286 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 287 if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() || 288 MI->isKill() || MI->isInlineAsm() || MI->isDebugValue()) 289 return false; 290 291 // Ignore copies. 292 if (MI->isCopyLike()) 293 return false; 294 295 // Ignore stuff that we obviously can't move. 296 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 297 MI->hasUnmodeledSideEffects()) 298 return false; 299 300 if (MI->mayLoad()) { 301 // Okay, this instruction does a load. As a refinement, we allow the target 302 // to decide whether the loaded value is actually a constant. If so, we can 303 // actually use it as a load. 304 if (!MI->isInvariantLoad(AA)) 305 // FIXME: we should be able to hoist loads with no other side effects if 306 // there are no other instructions which can change memory in this loop. 307 // This is a trivial form of alias analysis. 308 return false; 309 } 310 return true; 311 } 312 313 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 314 /// common expression that defines Reg. 315 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 316 MachineInstr *CSMI, MachineInstr *MI) { 317 // FIXME: Heuristics that works around the lack the live range splitting. 318 319 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 320 // an immediate predecessor. We don't want to increase register pressure and 321 // end up causing other computation to be spilled. 322 if (MI->isAsCheapAsAMove()) { 323 MachineBasicBlock *CSBB = CSMI->getParent(); 324 MachineBasicBlock *BB = MI->getParent(); 325 if (CSBB != BB && !CSBB->isSuccessor(BB)) 326 return false; 327 } 328 329 // Heuristics #2: If the expression doesn't not use a vr and the only use 330 // of the redundant computation are copies, do not cse. 331 bool HasVRegUse = false; 332 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 333 const MachineOperand &MO = MI->getOperand(i); 334 if (MO.isReg() && MO.isUse() && 335 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 336 HasVRegUse = true; 337 break; 338 } 339 } 340 if (!HasVRegUse) { 341 bool HasNonCopyUse = false; 342 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), 343 E = MRI->use_nodbg_end(); I != E; ++I) { 344 MachineInstr *Use = &*I; 345 // Ignore copies. 346 if (!Use->isCopyLike()) { 347 HasNonCopyUse = true; 348 break; 349 } 350 } 351 if (!HasNonCopyUse) 352 return false; 353 } 354 355 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 356 // it unless the defined value is already used in the BB of the new use. 357 bool HasPHI = false; 358 SmallPtrSet<MachineBasicBlock*, 4> CSBBs; 359 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg), 360 E = MRI->use_nodbg_end(); I != E; ++I) { 361 MachineInstr *Use = &*I; 362 HasPHI |= Use->isPHI(); 363 CSBBs.insert(Use->getParent()); 364 } 365 366 if (!HasPHI) 367 return true; 368 return CSBBs.count(MI->getParent()); 369 } 370 371 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 372 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 373 ScopeType *Scope = new ScopeType(VNT); 374 ScopeMap[MBB] = Scope; 375 } 376 377 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 378 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 379 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 380 assert(SI != ScopeMap.end()); 381 ScopeMap.erase(SI); 382 delete SI->second; 383 } 384 385 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 386 bool Changed = false; 387 388 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 389 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 390 MachineInstr *MI = &*I; 391 ++I; 392 393 if (!isCSECandidate(MI)) 394 continue; 395 396 bool FoundCSE = VNT.count(MI); 397 if (!FoundCSE) { 398 // Look for trivial copy coalescing opportunities. 399 if (PerformTrivialCoalescing(MI, MBB)) { 400 Changed = true; 401 402 // After coalescing MI itself may become a copy. 403 if (MI->isCopyLike()) 404 continue; 405 FoundCSE = VNT.count(MI); 406 } 407 } 408 409 // Commute commutable instructions. 410 bool Commuted = false; 411 if (!FoundCSE && MI->isCommutable()) { 412 MachineInstr *NewMI = TII->commuteInstruction(MI); 413 if (NewMI) { 414 Commuted = true; 415 FoundCSE = VNT.count(NewMI); 416 if (NewMI != MI) { 417 // New instruction. It doesn't need to be kept. 418 NewMI->eraseFromParent(); 419 Changed = true; 420 } else if (!FoundCSE) 421 // MI was changed but it didn't help, commute it back! 422 (void)TII->commuteInstruction(MI); 423 } 424 } 425 426 // If the instruction defines physical registers and the values *may* be 427 // used, then it's not safe to replace it with a common subexpression. 428 // It's also not safe if the instruction uses physical registers. 429 bool CrossMBBPhysDef = false; 430 SmallSet<unsigned,8> PhysRefs; 431 SmallVector<unsigned, 2> PhysDefs; 432 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, PhysDefs)) { 433 FoundCSE = false; 434 435 // ... Unless the CS is local or is in the sole predecessor block 436 // and it also defines the physical register which is not clobbered 437 // in between and the physical register uses were not clobbered. 438 unsigned CSVN = VNT.lookup(MI); 439 MachineInstr *CSMI = Exps[CSVN]; 440 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 441 FoundCSE = true; 442 } 443 444 if (!FoundCSE) { 445 VNT.insert(MI, CurrVN++); 446 Exps.push_back(MI); 447 continue; 448 } 449 450 // Found a common subexpression, eliminate it. 451 unsigned CSVN = VNT.lookup(MI); 452 MachineInstr *CSMI = Exps[CSVN]; 453 DEBUG(dbgs() << "Examining: " << *MI); 454 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 455 456 // Check if it's profitable to perform this CSE. 457 bool DoCSE = true; 458 unsigned NumDefs = MI->getDesc().getNumDefs(); 459 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 460 MachineOperand &MO = MI->getOperand(i); 461 if (!MO.isReg() || !MO.isDef()) 462 continue; 463 unsigned OldReg = MO.getReg(); 464 unsigned NewReg = CSMI->getOperand(i).getReg(); 465 if (OldReg == NewReg) 466 continue; 467 468 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 469 TargetRegisterInfo::isVirtualRegister(NewReg) && 470 "Do not CSE physical register defs!"); 471 472 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 473 DoCSE = false; 474 break; 475 } 476 477 // Don't perform CSE if the result of the old instruction cannot exist 478 // within the register class of the new instruction. 479 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg); 480 if (!MRI->constrainRegClass(NewReg, OldRC)) { 481 DoCSE = false; 482 break; 483 } 484 485 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 486 --NumDefs; 487 } 488 489 // Actually perform the elimination. 490 if (DoCSE) { 491 for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) { 492 MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second); 493 MRI->clearKillFlags(CSEPairs[i].second); 494 } 495 496 if (CrossMBBPhysDef) { 497 // Add physical register defs now coming in from a predecessor to MBB 498 // livein list. 499 while (!PhysDefs.empty()) { 500 unsigned LiveIn = PhysDefs.pop_back_val(); 501 if (!MBB->isLiveIn(LiveIn)) 502 MBB->addLiveIn(LiveIn); 503 } 504 ++NumCrossBBCSEs; 505 } 506 507 MI->eraseFromParent(); 508 ++NumCSEs; 509 if (!PhysRefs.empty()) 510 ++NumPhysCSEs; 511 if (Commuted) 512 ++NumCommutes; 513 Changed = true; 514 } else { 515 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 516 VNT.insert(MI, CurrVN++); 517 Exps.push_back(MI); 518 } 519 CSEPairs.clear(); 520 } 521 522 return Changed; 523 } 524 525 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 526 /// dominator tree node if its a leaf or all of its children are done. Walk 527 /// up the dominator tree to destroy ancestors which are now done. 528 void 529 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 530 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 531 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 532 if (OpenChildren[Node]) 533 return; 534 535 // Pop scope. 536 ExitScope(Node->getBlock()); 537 538 // Now traverse upwards to pop ancestors whose offsprings are all done. 539 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 540 unsigned Left = --OpenChildren[Parent]; 541 if (Left != 0) 542 break; 543 ExitScope(Parent->getBlock()); 544 Node = Parent; 545 } 546 } 547 548 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 549 SmallVector<MachineDomTreeNode*, 32> Scopes; 550 SmallVector<MachineDomTreeNode*, 8> WorkList; 551 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 552 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 553 554 CurrVN = 0; 555 556 // Perform a DFS walk to determine the order of visit. 557 WorkList.push_back(Node); 558 do { 559 Node = WorkList.pop_back_val(); 560 Scopes.push_back(Node); 561 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 562 unsigned NumChildren = Children.size(); 563 OpenChildren[Node] = NumChildren; 564 for (unsigned i = 0; i != NumChildren; ++i) { 565 MachineDomTreeNode *Child = Children[i]; 566 ParentMap[Child] = Node; 567 WorkList.push_back(Child); 568 } 569 } while (!WorkList.empty()); 570 571 // Now perform CSE. 572 bool Changed = false; 573 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 574 MachineDomTreeNode *Node = Scopes[i]; 575 MachineBasicBlock *MBB = Node->getBlock(); 576 EnterScope(MBB); 577 Changed |= ProcessBlock(MBB); 578 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 579 ExitScopeIfDone(Node, OpenChildren, ParentMap); 580 } 581 582 return Changed; 583 } 584 585 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 586 TII = MF.getTarget().getInstrInfo(); 587 TRI = MF.getTarget().getRegisterInfo(); 588 MRI = &MF.getRegInfo(); 589 AA = &getAnalysis<AliasAnalysis>(); 590 DT = &getAnalysis<MachineDominatorTree>(); 591 return PerformCSE(DT->getRootNode()); 592 } 593