1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global common subexpression elimination on machine 11 // instructions using a scoped hash table based value numbering scheme. It 12 // must be run while the machine function is still in SSA form. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/RecyclingAllocator.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetSubtargetInfo.h" 29 using namespace llvm; 30 31 #define DEBUG_TYPE "machine-cse" 32 33 STATISTIC(NumCoalesces, "Number of copies coalesced"); 34 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 35 STATISTIC(NumPhysCSEs, 36 "Number of physreg referencing common subexpr eliminated"); 37 STATISTIC(NumCrossBBCSEs, 38 "Number of cross-MBB physreg referencing CS eliminated"); 39 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 40 41 namespace { 42 class MachineCSE : public MachineFunctionPass { 43 const TargetInstrInfo *TII; 44 const TargetRegisterInfo *TRI; 45 AliasAnalysis *AA; 46 MachineDominatorTree *DT; 47 MachineRegisterInfo *MRI; 48 public: 49 static char ID; // Pass identification 50 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) { 51 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 52 } 53 54 bool runOnMachineFunction(MachineFunction &MF) override; 55 56 void getAnalysisUsage(AnalysisUsage &AU) const override { 57 AU.setPreservesCFG(); 58 MachineFunctionPass::getAnalysisUsage(AU); 59 AU.addRequired<AliasAnalysis>(); 60 AU.addPreservedID(MachineLoopInfoID); 61 AU.addRequired<MachineDominatorTree>(); 62 AU.addPreserved<MachineDominatorTree>(); 63 } 64 65 void releaseMemory() override { 66 ScopeMap.clear(); 67 Exps.clear(); 68 } 69 70 private: 71 const unsigned LookAheadLimit; 72 typedef RecyclingAllocator<BumpPtrAllocator, 73 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy; 74 typedef ScopedHashTable<MachineInstr*, unsigned, 75 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType; 76 typedef ScopedHTType::ScopeTy ScopeType; 77 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap; 78 ScopedHTType VNT; 79 SmallVector<MachineInstr*, 64> Exps; 80 unsigned CurrVN; 81 82 bool PerformTrivialCopyPropagation(MachineInstr *MI, 83 MachineBasicBlock *MBB); 84 bool isPhysDefTriviallyDead(unsigned Reg, 85 MachineBasicBlock::const_iterator I, 86 MachineBasicBlock::const_iterator E) const; 87 bool hasLivePhysRegDefUses(const MachineInstr *MI, 88 const MachineBasicBlock *MBB, 89 SmallSet<unsigned,8> &PhysRefs, 90 SmallVectorImpl<unsigned> &PhysDefs, 91 bool &PhysUseDef) const; 92 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 93 SmallSet<unsigned,8> &PhysRefs, 94 SmallVectorImpl<unsigned> &PhysDefs, 95 bool &NonLocal) const; 96 bool isCSECandidate(MachineInstr *MI); 97 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 98 MachineInstr *CSMI, MachineInstr *MI); 99 void EnterScope(MachineBasicBlock *MBB); 100 void ExitScope(MachineBasicBlock *MBB); 101 bool ProcessBlock(MachineBasicBlock *MBB); 102 void ExitScopeIfDone(MachineDomTreeNode *Node, 103 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 104 bool PerformCSE(MachineDomTreeNode *Node); 105 }; 106 } // end anonymous namespace 107 108 char MachineCSE::ID = 0; 109 char &llvm::MachineCSEID = MachineCSE::ID; 110 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse", 111 "Machine Common Subexpression Elimination", false, false) 112 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 113 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 114 INITIALIZE_PASS_END(MachineCSE, "machine-cse", 115 "Machine Common Subexpression Elimination", false, false) 116 117 /// The source register of a COPY machine instruction can be propagated to all 118 /// its users, and this propagation could increase the probability of finding 119 /// common subexpressions. If the COPY has only one user, the COPY itself can 120 /// be removed. 121 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, 122 MachineBasicBlock *MBB) { 123 bool Changed = false; 124 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 125 MachineOperand &MO = MI->getOperand(i); 126 if (!MO.isReg() || !MO.isUse()) 127 continue; 128 unsigned Reg = MO.getReg(); 129 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 130 continue; 131 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); 132 MachineInstr *DefMI = MRI->getVRegDef(Reg); 133 if (!DefMI->isCopy()) 134 continue; 135 unsigned SrcReg = DefMI->getOperand(1).getReg(); 136 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 137 continue; 138 if (DefMI->getOperand(0).getSubReg()) 139 continue; 140 // FIXME: We should trivially coalesce subregister copies to expose CSE 141 // opportunities on instructions with truncated operands (see 142 // cse-add-with-overflow.ll). This can be done here as follows: 143 // if (SrcSubReg) 144 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 145 // SrcSubReg); 146 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 147 // 148 // The 2-addr pass has been updated to handle coalesced subregs. However, 149 // some machine-specific code still can't handle it. 150 // To handle it properly we also need a way find a constrained subregister 151 // class given a super-reg class and subreg index. 152 if (DefMI->getOperand(1).getSubReg()) 153 continue; 154 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 155 if (!MRI->constrainRegClass(SrcReg, RC)) 156 continue; 157 DEBUG(dbgs() << "Coalescing: " << *DefMI); 158 DEBUG(dbgs() << "*** to: " << *MI); 159 // Propagate SrcReg of copies to MI. 160 MO.setReg(SrcReg); 161 MRI->clearKillFlags(SrcReg); 162 // Coalesce single use copies. 163 if (OnlyOneUse) { 164 DefMI->eraseFromParent(); 165 ++NumCoalesces; 166 } 167 Changed = true; 168 } 169 170 return Changed; 171 } 172 173 bool 174 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 175 MachineBasicBlock::const_iterator I, 176 MachineBasicBlock::const_iterator E) const { 177 unsigned LookAheadLeft = LookAheadLimit; 178 while (LookAheadLeft) { 179 // Skip over dbg_value's. 180 while (I != E && I->isDebugValue()) 181 ++I; 182 183 if (I == E) 184 // Reached end of block, register is obviously dead. 185 return true; 186 187 bool SeenDef = false; 188 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 189 const MachineOperand &MO = I->getOperand(i); 190 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 191 SeenDef = true; 192 if (!MO.isReg() || !MO.getReg()) 193 continue; 194 if (!TRI->regsOverlap(MO.getReg(), Reg)) 195 continue; 196 if (MO.isUse()) 197 // Found a use! 198 return false; 199 SeenDef = true; 200 } 201 if (SeenDef) 202 // See a def of Reg (or an alias) before encountering any use, it's 203 // trivially dead. 204 return true; 205 206 --LookAheadLeft; 207 ++I; 208 } 209 return false; 210 } 211 212 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 213 /// physical registers (except for dead defs of physical registers). It also 214 /// returns the physical register def by reference if it's the only one and the 215 /// instruction does not uses a physical register. 216 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 217 const MachineBasicBlock *MBB, 218 SmallSet<unsigned,8> &PhysRefs, 219 SmallVectorImpl<unsigned> &PhysDefs, 220 bool &PhysUseDef) const{ 221 // First, add all uses to PhysRefs. 222 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 223 const MachineOperand &MO = MI->getOperand(i); 224 if (!MO.isReg() || MO.isDef()) 225 continue; 226 unsigned Reg = MO.getReg(); 227 if (!Reg) 228 continue; 229 if (TargetRegisterInfo::isVirtualRegister(Reg)) 230 continue; 231 // Reading constant physregs is ok. 232 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) 233 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 234 PhysRefs.insert(*AI); 235 } 236 237 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 238 // (which currently contains only uses), set the PhysUseDef flag. 239 PhysUseDef = false; 240 MachineBasicBlock::const_iterator I = MI; I = std::next(I); 241 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 242 const MachineOperand &MO = MI->getOperand(i); 243 if (!MO.isReg() || !MO.isDef()) 244 continue; 245 unsigned Reg = MO.getReg(); 246 if (!Reg) 247 continue; 248 if (TargetRegisterInfo::isVirtualRegister(Reg)) 249 continue; 250 // Check against PhysRefs even if the def is "dead". 251 if (PhysRefs.count(Reg)) 252 PhysUseDef = true; 253 // If the def is dead, it's ok. But the def may not marked "dead". That's 254 // common since this pass is run before livevariables. We can scan 255 // forward a few instructions and check if it is obviously dead. 256 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) 257 PhysDefs.push_back(Reg); 258 } 259 260 // Finally, add all defs to PhysRefs as well. 261 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 262 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI) 263 PhysRefs.insert(*AI); 264 265 return !PhysRefs.empty(); 266 } 267 268 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 269 SmallSet<unsigned,8> &PhysRefs, 270 SmallVectorImpl<unsigned> &PhysDefs, 271 bool &NonLocal) const { 272 // For now conservatively returns false if the common subexpression is 273 // not in the same basic block as the given instruction. The only exception 274 // is if the common subexpression is in the sole predecessor block. 275 const MachineBasicBlock *MBB = MI->getParent(); 276 const MachineBasicBlock *CSMBB = CSMI->getParent(); 277 278 bool CrossMBB = false; 279 if (CSMBB != MBB) { 280 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 281 return false; 282 283 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 284 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i])) 285 // Avoid extending live range of physical registers if they are 286 //allocatable or reserved. 287 return false; 288 } 289 CrossMBB = true; 290 } 291 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); 292 MachineBasicBlock::const_iterator E = MI; 293 MachineBasicBlock::const_iterator EE = CSMBB->end(); 294 unsigned LookAheadLeft = LookAheadLimit; 295 while (LookAheadLeft) { 296 // Skip over dbg_value's. 297 while (I != E && I != EE && I->isDebugValue()) 298 ++I; 299 300 if (I == EE) { 301 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 302 (void)CrossMBB; 303 CrossMBB = false; 304 NonLocal = true; 305 I = MBB->begin(); 306 EE = MBB->end(); 307 continue; 308 } 309 310 if (I == E) 311 return true; 312 313 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 314 const MachineOperand &MO = I->getOperand(i); 315 // RegMasks go on instructions like calls that clobber lots of physregs. 316 // Don't attempt to CSE across such an instruction. 317 if (MO.isRegMask()) 318 return false; 319 if (!MO.isReg() || !MO.isDef()) 320 continue; 321 unsigned MOReg = MO.getReg(); 322 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 323 continue; 324 if (PhysRefs.count(MOReg)) 325 return false; 326 } 327 328 --LookAheadLeft; 329 ++I; 330 } 331 332 return false; 333 } 334 335 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 336 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || 337 MI->isInlineAsm() || MI->isDebugValue()) 338 return false; 339 340 // Ignore copies. 341 if (MI->isCopyLike()) 342 return false; 343 344 // Ignore stuff that we obviously can't move. 345 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 346 MI->hasUnmodeledSideEffects()) 347 return false; 348 349 if (MI->mayLoad()) { 350 // Okay, this instruction does a load. As a refinement, we allow the target 351 // to decide whether the loaded value is actually a constant. If so, we can 352 // actually use it as a load. 353 if (!MI->isInvariantLoad(AA)) 354 // FIXME: we should be able to hoist loads with no other side effects if 355 // there are no other instructions which can change memory in this loop. 356 // This is a trivial form of alias analysis. 357 return false; 358 } 359 return true; 360 } 361 362 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 363 /// common expression that defines Reg. 364 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 365 MachineInstr *CSMI, MachineInstr *MI) { 366 // FIXME: Heuristics that works around the lack the live range splitting. 367 368 // If CSReg is used at all uses of Reg, CSE should not increase register 369 // pressure of CSReg. 370 bool MayIncreasePressure = true; 371 if (TargetRegisterInfo::isVirtualRegister(CSReg) && 372 TargetRegisterInfo::isVirtualRegister(Reg)) { 373 MayIncreasePressure = false; 374 SmallPtrSet<MachineInstr*, 8> CSUses; 375 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 376 CSUses.insert(&MI); 377 } 378 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 379 if (!CSUses.count(&MI)) { 380 MayIncreasePressure = true; 381 break; 382 } 383 } 384 } 385 if (!MayIncreasePressure) return true; 386 387 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 388 // an immediate predecessor. We don't want to increase register pressure and 389 // end up causing other computation to be spilled. 390 if (TII->isAsCheapAsAMove(MI)) { 391 MachineBasicBlock *CSBB = CSMI->getParent(); 392 MachineBasicBlock *BB = MI->getParent(); 393 if (CSBB != BB && !CSBB->isSuccessor(BB)) 394 return false; 395 } 396 397 // Heuristics #2: If the expression doesn't not use a vr and the only use 398 // of the redundant computation are copies, do not cse. 399 bool HasVRegUse = false; 400 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 401 const MachineOperand &MO = MI->getOperand(i); 402 if (MO.isReg() && MO.isUse() && 403 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 404 HasVRegUse = true; 405 break; 406 } 407 } 408 if (!HasVRegUse) { 409 bool HasNonCopyUse = false; 410 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 411 // Ignore copies. 412 if (!MI.isCopyLike()) { 413 HasNonCopyUse = true; 414 break; 415 } 416 } 417 if (!HasNonCopyUse) 418 return false; 419 } 420 421 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 422 // it unless the defined value is already used in the BB of the new use. 423 bool HasPHI = false; 424 SmallPtrSet<MachineBasicBlock*, 4> CSBBs; 425 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 426 HasPHI |= MI.isPHI(); 427 CSBBs.insert(MI.getParent()); 428 } 429 430 if (!HasPHI) 431 return true; 432 return CSBBs.count(MI->getParent()); 433 } 434 435 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 436 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 437 ScopeType *Scope = new ScopeType(VNT); 438 ScopeMap[MBB] = Scope; 439 } 440 441 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 442 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 443 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 444 assert(SI != ScopeMap.end()); 445 delete SI->second; 446 ScopeMap.erase(SI); 447 } 448 449 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 450 bool Changed = false; 451 452 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 453 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 454 SmallVector<unsigned, 2> ImplicitDefs; 455 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 456 MachineInstr *MI = &*I; 457 ++I; 458 459 if (!isCSECandidate(MI)) 460 continue; 461 462 bool FoundCSE = VNT.count(MI); 463 if (!FoundCSE) { 464 // Using trivial copy propagation to find more CSE opportunities. 465 if (PerformTrivialCopyPropagation(MI, MBB)) { 466 Changed = true; 467 468 // After coalescing MI itself may become a copy. 469 if (MI->isCopyLike()) 470 continue; 471 472 // Try again to see if CSE is possible. 473 FoundCSE = VNT.count(MI); 474 } 475 } 476 477 // Commute commutable instructions. 478 bool Commuted = false; 479 if (!FoundCSE && MI->isCommutable()) { 480 MachineInstr *NewMI = TII->commuteInstruction(MI); 481 if (NewMI) { 482 Commuted = true; 483 FoundCSE = VNT.count(NewMI); 484 if (NewMI != MI) { 485 // New instruction. It doesn't need to be kept. 486 NewMI->eraseFromParent(); 487 Changed = true; 488 } else if (!FoundCSE) 489 // MI was changed but it didn't help, commute it back! 490 (void)TII->commuteInstruction(MI); 491 } 492 } 493 494 // If the instruction defines physical registers and the values *may* be 495 // used, then it's not safe to replace it with a common subexpression. 496 // It's also not safe if the instruction uses physical registers. 497 bool CrossMBBPhysDef = false; 498 SmallSet<unsigned, 8> PhysRefs; 499 SmallVector<unsigned, 2> PhysDefs; 500 bool PhysUseDef = false; 501 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, 502 PhysDefs, PhysUseDef)) { 503 FoundCSE = false; 504 505 // ... Unless the CS is local or is in the sole predecessor block 506 // and it also defines the physical register which is not clobbered 507 // in between and the physical register uses were not clobbered. 508 // This can never be the case if the instruction both uses and 509 // defines the same physical register, which was detected above. 510 if (!PhysUseDef) { 511 unsigned CSVN = VNT.lookup(MI); 512 MachineInstr *CSMI = Exps[CSVN]; 513 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 514 FoundCSE = true; 515 } 516 } 517 518 if (!FoundCSE) { 519 VNT.insert(MI, CurrVN++); 520 Exps.push_back(MI); 521 continue; 522 } 523 524 // Found a common subexpression, eliminate it. 525 unsigned CSVN = VNT.lookup(MI); 526 MachineInstr *CSMI = Exps[CSVN]; 527 DEBUG(dbgs() << "Examining: " << *MI); 528 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 529 530 // Check if it's profitable to perform this CSE. 531 bool DoCSE = true; 532 unsigned NumDefs = MI->getDesc().getNumDefs() + 533 MI->getDesc().getNumImplicitDefs(); 534 535 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 536 MachineOperand &MO = MI->getOperand(i); 537 if (!MO.isReg() || !MO.isDef()) 538 continue; 539 unsigned OldReg = MO.getReg(); 540 unsigned NewReg = CSMI->getOperand(i).getReg(); 541 542 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 543 // we should make sure it is not dead at CSMI. 544 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 545 ImplicitDefsToUpdate.push_back(i); 546 547 // Keep track of implicit defs of CSMI and MI, to clear possibly 548 // made-redundant kill flags. 549 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) 550 ImplicitDefs.push_back(OldReg); 551 552 if (OldReg == NewReg) { 553 --NumDefs; 554 continue; 555 } 556 557 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 558 TargetRegisterInfo::isVirtualRegister(NewReg) && 559 "Do not CSE physical register defs!"); 560 561 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 562 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 563 DoCSE = false; 564 break; 565 } 566 567 // Don't perform CSE if the result of the old instruction cannot exist 568 // within the register class of the new instruction. 569 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg); 570 if (!MRI->constrainRegClass(NewReg, OldRC)) { 571 DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n"); 572 DoCSE = false; 573 break; 574 } 575 576 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 577 --NumDefs; 578 } 579 580 // Actually perform the elimination. 581 if (DoCSE) { 582 for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) { 583 MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second); 584 MRI->clearKillFlags(CSEPairs[i].second); 585 } 586 587 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 588 // we should make sure it is not dead at CSMI. 589 for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i) 590 CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false); 591 592 // Go through implicit defs of CSMI and MI, and clear the kill flags on 593 // their uses in all the instructions between CSMI and MI. 594 // We might have made some of the kill flags redundant, consider: 595 // subs ... %NZCV<imp-def> <- CSMI 596 // csinc ... %NZCV<imp-use,kill> <- this kill flag isn't valid anymore 597 // subs ... %NZCV<imp-def> <- MI, to be eliminated 598 // csinc ... %NZCV<imp-use,kill> 599 // Since we eliminated MI, and reused a register imp-def'd by CSMI 600 // (here %NZCV), that register, if it was killed before MI, should have 601 // that kill flag removed, because it's lifetime was extended. 602 if (CSMI->getParent() == MI->getParent()) { 603 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II) 604 for (auto ImplicitDef : ImplicitDefs) 605 if (MachineOperand *MO = II->findRegisterUseOperand( 606 ImplicitDef, /*isKill=*/true, TRI)) 607 MO->setIsKill(false); 608 } else { 609 // If the instructions aren't in the same BB, bail out and clear the 610 // kill flag on all uses of the imp-def'd register. 611 for (auto ImplicitDef : ImplicitDefs) 612 MRI->clearKillFlags(ImplicitDef); 613 } 614 615 if (CrossMBBPhysDef) { 616 // Add physical register defs now coming in from a predecessor to MBB 617 // livein list. 618 while (!PhysDefs.empty()) { 619 unsigned LiveIn = PhysDefs.pop_back_val(); 620 if (!MBB->isLiveIn(LiveIn)) 621 MBB->addLiveIn(LiveIn); 622 } 623 ++NumCrossBBCSEs; 624 } 625 626 MI->eraseFromParent(); 627 ++NumCSEs; 628 if (!PhysRefs.empty()) 629 ++NumPhysCSEs; 630 if (Commuted) 631 ++NumCommutes; 632 Changed = true; 633 } else { 634 VNT.insert(MI, CurrVN++); 635 Exps.push_back(MI); 636 } 637 CSEPairs.clear(); 638 ImplicitDefsToUpdate.clear(); 639 ImplicitDefs.clear(); 640 } 641 642 return Changed; 643 } 644 645 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 646 /// dominator tree node if its a leaf or all of its children are done. Walk 647 /// up the dominator tree to destroy ancestors which are now done. 648 void 649 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 650 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 651 if (OpenChildren[Node]) 652 return; 653 654 // Pop scope. 655 ExitScope(Node->getBlock()); 656 657 // Now traverse upwards to pop ancestors whose offsprings are all done. 658 while (MachineDomTreeNode *Parent = Node->getIDom()) { 659 unsigned Left = --OpenChildren[Parent]; 660 if (Left != 0) 661 break; 662 ExitScope(Parent->getBlock()); 663 Node = Parent; 664 } 665 } 666 667 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 668 SmallVector<MachineDomTreeNode*, 32> Scopes; 669 SmallVector<MachineDomTreeNode*, 8> WorkList; 670 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 671 672 CurrVN = 0; 673 674 // Perform a DFS walk to determine the order of visit. 675 WorkList.push_back(Node); 676 do { 677 Node = WorkList.pop_back_val(); 678 Scopes.push_back(Node); 679 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 680 unsigned NumChildren = Children.size(); 681 OpenChildren[Node] = NumChildren; 682 for (unsigned i = 0; i != NumChildren; ++i) { 683 MachineDomTreeNode *Child = Children[i]; 684 WorkList.push_back(Child); 685 } 686 } while (!WorkList.empty()); 687 688 // Now perform CSE. 689 bool Changed = false; 690 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 691 MachineDomTreeNode *Node = Scopes[i]; 692 MachineBasicBlock *MBB = Node->getBlock(); 693 EnterScope(MBB); 694 Changed |= ProcessBlock(MBB); 695 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 696 ExitScopeIfDone(Node, OpenChildren); 697 } 698 699 return Changed; 700 } 701 702 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 703 if (skipOptnoneFunction(*MF.getFunction())) 704 return false; 705 706 TII = MF.getSubtarget().getInstrInfo(); 707 TRI = MF.getSubtarget().getRegisterInfo(); 708 MRI = &MF.getRegInfo(); 709 AA = &getAnalysis<AliasAnalysis>(); 710 DT = &getAnalysis<MachineDominatorTree>(); 711 return PerformCSE(DT->getRootNode()); 712 } 713