1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global common subexpression elimination on machine 10 // instructions using a scoped hash table based value numbering scheme. It 11 // must be run while the machine function is still in SSA form. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/ScopedHashTable.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/MC/MCInstrDesc.h" 37 #include "llvm/MC/MCRegisterInfo.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/Allocator.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/RecyclingAllocator.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cassert> 44 #include <iterator> 45 #include <utility> 46 #include <vector> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "machine-cse" 51 52 STATISTIC(NumCoalesces, "Number of copies coalesced"); 53 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 54 STATISTIC(NumPREs, "Number of partial redundant expression" 55 " transformed to fully redundant"); 56 STATISTIC(NumPhysCSEs, 57 "Number of physreg referencing common subexpr eliminated"); 58 STATISTIC(NumCrossBBCSEs, 59 "Number of cross-MBB physreg referencing CS eliminated"); 60 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 61 62 namespace { 63 64 class MachineCSE : public MachineFunctionPass { 65 const TargetInstrInfo *TII; 66 const TargetRegisterInfo *TRI; 67 AliasAnalysis *AA; 68 MachineDominatorTree *DT; 69 MachineRegisterInfo *MRI; 70 MachineBlockFrequencyInfo *MBFI; 71 72 public: 73 static char ID; // Pass identification 74 75 MachineCSE() : MachineFunctionPass(ID) { 76 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 77 } 78 79 bool runOnMachineFunction(MachineFunction &MF) override; 80 81 void getAnalysisUsage(AnalysisUsage &AU) const override { 82 AU.setPreservesCFG(); 83 MachineFunctionPass::getAnalysisUsage(AU); 84 AU.addRequired<AAResultsWrapperPass>(); 85 AU.addPreservedID(MachineLoopInfoID); 86 AU.addRequired<MachineDominatorTree>(); 87 AU.addPreserved<MachineDominatorTree>(); 88 AU.addRequired<MachineBlockFrequencyInfo>(); 89 AU.addPreserved<MachineBlockFrequencyInfo>(); 90 } 91 92 void releaseMemory() override { 93 ScopeMap.clear(); 94 PREMap.clear(); 95 Exps.clear(); 96 } 97 98 private: 99 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator, 100 ScopedHashTableVal<MachineInstr *, unsigned>>; 101 using ScopedHTType = 102 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait, 103 AllocatorTy>; 104 using ScopeType = ScopedHTType::ScopeTy; 105 using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>; 106 107 unsigned LookAheadLimit = 0; 108 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap; 109 DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait> 110 PREMap; 111 ScopedHTType VNT; 112 SmallVector<MachineInstr *, 64> Exps; 113 unsigned CurrVN = 0; 114 115 bool PerformTrivialCopyPropagation(MachineInstr *MI, 116 MachineBasicBlock *MBB); 117 bool isPhysDefTriviallyDead(unsigned Reg, 118 MachineBasicBlock::const_iterator I, 119 MachineBasicBlock::const_iterator E) const; 120 bool hasLivePhysRegDefUses(const MachineInstr *MI, 121 const MachineBasicBlock *MBB, 122 SmallSet<unsigned, 8> &PhysRefs, 123 PhysDefVector &PhysDefs, bool &PhysUseDef) const; 124 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 125 SmallSet<unsigned, 8> &PhysRefs, 126 PhysDefVector &PhysDefs, bool &NonLocal) const; 127 bool isCSECandidate(MachineInstr *MI); 128 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 129 MachineBasicBlock *CSBB, MachineInstr *MI); 130 void EnterScope(MachineBasicBlock *MBB); 131 void ExitScope(MachineBasicBlock *MBB); 132 bool ProcessBlockCSE(MachineBasicBlock *MBB); 133 void ExitScopeIfDone(MachineDomTreeNode *Node, 134 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 135 bool PerformCSE(MachineDomTreeNode *Node); 136 137 bool isPRECandidate(MachineInstr *MI); 138 bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB); 139 bool PerformSimplePRE(MachineDominatorTree *DT); 140 /// Heuristics to see if it's beneficial to move common computations of MBB 141 /// and MBB1 to CandidateBB. 142 bool isBeneficalToHoistInto(MachineBasicBlock *CandidateBB, 143 MachineBasicBlock *MBB, 144 MachineBasicBlock *MBB1); 145 }; 146 147 } // end anonymous namespace 148 149 char MachineCSE::ID = 0; 150 151 char &llvm::MachineCSEID = MachineCSE::ID; 152 153 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, 154 "Machine Common Subexpression Elimination", false, false) 155 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 156 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 157 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, 158 "Machine Common Subexpression Elimination", false, false) 159 160 /// The source register of a COPY machine instruction can be propagated to all 161 /// its users, and this propagation could increase the probability of finding 162 /// common subexpressions. If the COPY has only one user, the COPY itself can 163 /// be removed. 164 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, 165 MachineBasicBlock *MBB) { 166 bool Changed = false; 167 for (MachineOperand &MO : MI->operands()) { 168 if (!MO.isReg() || !MO.isUse()) 169 continue; 170 unsigned Reg = MO.getReg(); 171 if (!Register::isVirtualRegister(Reg)) 172 continue; 173 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); 174 MachineInstr *DefMI = MRI->getVRegDef(Reg); 175 if (!DefMI->isCopy()) 176 continue; 177 unsigned SrcReg = DefMI->getOperand(1).getReg(); 178 if (!Register::isVirtualRegister(SrcReg)) 179 continue; 180 if (DefMI->getOperand(0).getSubReg()) 181 continue; 182 // FIXME: We should trivially coalesce subregister copies to expose CSE 183 // opportunities on instructions with truncated operands (see 184 // cse-add-with-overflow.ll). This can be done here as follows: 185 // if (SrcSubReg) 186 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 187 // SrcSubReg); 188 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 189 // 190 // The 2-addr pass has been updated to handle coalesced subregs. However, 191 // some machine-specific code still can't handle it. 192 // To handle it properly we also need a way find a constrained subregister 193 // class given a super-reg class and subreg index. 194 if (DefMI->getOperand(1).getSubReg()) 195 continue; 196 if (!MRI->constrainRegAttrs(SrcReg, Reg)) 197 continue; 198 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 199 LLVM_DEBUG(dbgs() << "*** to: " << *MI); 200 201 // Update matching debug values. 202 DefMI->changeDebugValuesDefReg(SrcReg); 203 204 // Propagate SrcReg of copies to MI. 205 MO.setReg(SrcReg); 206 MRI->clearKillFlags(SrcReg); 207 // Coalesce single use copies. 208 if (OnlyOneUse) { 209 DefMI->eraseFromParent(); 210 ++NumCoalesces; 211 } 212 Changed = true; 213 } 214 215 return Changed; 216 } 217 218 bool 219 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 220 MachineBasicBlock::const_iterator I, 221 MachineBasicBlock::const_iterator E) const { 222 unsigned LookAheadLeft = LookAheadLimit; 223 while (LookAheadLeft) { 224 // Skip over dbg_value's. 225 I = skipDebugInstructionsForward(I, E); 226 227 if (I == E) 228 // Reached end of block, we don't know if register is dead or not. 229 return false; 230 231 bool SeenDef = false; 232 for (const MachineOperand &MO : I->operands()) { 233 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 234 SeenDef = true; 235 if (!MO.isReg() || !MO.getReg()) 236 continue; 237 if (!TRI->regsOverlap(MO.getReg(), Reg)) 238 continue; 239 if (MO.isUse()) 240 // Found a use! 241 return false; 242 SeenDef = true; 243 } 244 if (SeenDef) 245 // See a def of Reg (or an alias) before encountering any use, it's 246 // trivially dead. 247 return true; 248 249 --LookAheadLeft; 250 ++I; 251 } 252 return false; 253 } 254 255 static bool isCallerPreservedOrConstPhysReg(unsigned Reg, 256 const MachineFunction &MF, 257 const TargetRegisterInfo &TRI) { 258 // MachineRegisterInfo::isConstantPhysReg directly called by 259 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the 260 // reserved registers to be frozen. That doesn't cause a problem post-ISel as 261 // most (if not all) targets freeze reserved registers right after ISel. 262 // 263 // It does cause issues mid-GlobalISel, however, hence the additional 264 // reservedRegsFrozen check. 265 const MachineRegisterInfo &MRI = MF.getRegInfo(); 266 return TRI.isCallerPreservedPhysReg(Reg, MF) || 267 (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg)); 268 } 269 270 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 271 /// physical registers (except for dead defs of physical registers). It also 272 /// returns the physical register def by reference if it's the only one and the 273 /// instruction does not uses a physical register. 274 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 275 const MachineBasicBlock *MBB, 276 SmallSet<unsigned, 8> &PhysRefs, 277 PhysDefVector &PhysDefs, 278 bool &PhysUseDef) const { 279 // First, add all uses to PhysRefs. 280 for (const MachineOperand &MO : MI->operands()) { 281 if (!MO.isReg() || MO.isDef()) 282 continue; 283 unsigned Reg = MO.getReg(); 284 if (!Reg) 285 continue; 286 if (Register::isVirtualRegister(Reg)) 287 continue; 288 // Reading either caller preserved or constant physregs is ok. 289 if (!isCallerPreservedOrConstPhysReg(Reg, *MI->getMF(), *TRI)) 290 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 291 PhysRefs.insert(*AI); 292 } 293 294 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 295 // (which currently contains only uses), set the PhysUseDef flag. 296 PhysUseDef = false; 297 MachineBasicBlock::const_iterator I = MI; I = std::next(I); 298 for (const auto &MOP : llvm::enumerate(MI->operands())) { 299 const MachineOperand &MO = MOP.value(); 300 if (!MO.isReg() || !MO.isDef()) 301 continue; 302 unsigned Reg = MO.getReg(); 303 if (!Reg) 304 continue; 305 if (Register::isVirtualRegister(Reg)) 306 continue; 307 // Check against PhysRefs even if the def is "dead". 308 if (PhysRefs.count(Reg)) 309 PhysUseDef = true; 310 // If the def is dead, it's ok. But the def may not marked "dead". That's 311 // common since this pass is run before livevariables. We can scan 312 // forward a few instructions and check if it is obviously dead. 313 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) 314 PhysDefs.push_back(std::make_pair(MOP.index(), Reg)); 315 } 316 317 // Finally, add all defs to PhysRefs as well. 318 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 319 for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid(); 320 ++AI) 321 PhysRefs.insert(*AI); 322 323 return !PhysRefs.empty(); 324 } 325 326 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 327 SmallSet<unsigned, 8> &PhysRefs, 328 PhysDefVector &PhysDefs, 329 bool &NonLocal) const { 330 // For now conservatively returns false if the common subexpression is 331 // not in the same basic block as the given instruction. The only exception 332 // is if the common subexpression is in the sole predecessor block. 333 const MachineBasicBlock *MBB = MI->getParent(); 334 const MachineBasicBlock *CSMBB = CSMI->getParent(); 335 336 bool CrossMBB = false; 337 if (CSMBB != MBB) { 338 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 339 return false; 340 341 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 342 if (MRI->isAllocatable(PhysDefs[i].second) || 343 MRI->isReserved(PhysDefs[i].second)) 344 // Avoid extending live range of physical registers if they are 345 //allocatable or reserved. 346 return false; 347 } 348 CrossMBB = true; 349 } 350 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); 351 MachineBasicBlock::const_iterator E = MI; 352 MachineBasicBlock::const_iterator EE = CSMBB->end(); 353 unsigned LookAheadLeft = LookAheadLimit; 354 while (LookAheadLeft) { 355 // Skip over dbg_value's. 356 while (I != E && I != EE && I->isDebugInstr()) 357 ++I; 358 359 if (I == EE) { 360 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 361 (void)CrossMBB; 362 CrossMBB = false; 363 NonLocal = true; 364 I = MBB->begin(); 365 EE = MBB->end(); 366 continue; 367 } 368 369 if (I == E) 370 return true; 371 372 for (const MachineOperand &MO : I->operands()) { 373 // RegMasks go on instructions like calls that clobber lots of physregs. 374 // Don't attempt to CSE across such an instruction. 375 if (MO.isRegMask()) 376 return false; 377 if (!MO.isReg() || !MO.isDef()) 378 continue; 379 unsigned MOReg = MO.getReg(); 380 if (Register::isVirtualRegister(MOReg)) 381 continue; 382 if (PhysRefs.count(MOReg)) 383 return false; 384 } 385 386 --LookAheadLeft; 387 ++I; 388 } 389 390 return false; 391 } 392 393 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 394 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || 395 MI->isInlineAsm() || MI->isDebugInstr()) 396 return false; 397 398 // Ignore copies. 399 if (MI->isCopyLike()) 400 return false; 401 402 // Ignore stuff that we obviously can't move. 403 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 404 MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects()) 405 return false; 406 407 if (MI->mayLoad()) { 408 // Okay, this instruction does a load. As a refinement, we allow the target 409 // to decide whether the loaded value is actually a constant. If so, we can 410 // actually use it as a load. 411 if (!MI->isDereferenceableInvariantLoad(AA)) 412 // FIXME: we should be able to hoist loads with no other side effects if 413 // there are no other instructions which can change memory in this loop. 414 // This is a trivial form of alias analysis. 415 return false; 416 } 417 418 // Ignore stack guard loads, otherwise the register that holds CSEed value may 419 // be spilled and get loaded back with corrupted data. 420 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) 421 return false; 422 423 return true; 424 } 425 426 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 427 /// common expression that defines Reg. CSBB is basic block where CSReg is 428 /// defined. 429 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 430 MachineBasicBlock *CSBB, MachineInstr *MI) { 431 // FIXME: Heuristics that works around the lack the live range splitting. 432 433 // If CSReg is used at all uses of Reg, CSE should not increase register 434 // pressure of CSReg. 435 bool MayIncreasePressure = true; 436 if (Register::isVirtualRegister(CSReg) && Register::isVirtualRegister(Reg)) { 437 MayIncreasePressure = false; 438 SmallPtrSet<MachineInstr*, 8> CSUses; 439 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 440 CSUses.insert(&MI); 441 } 442 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 443 if (!CSUses.count(&MI)) { 444 MayIncreasePressure = true; 445 break; 446 } 447 } 448 } 449 if (!MayIncreasePressure) return true; 450 451 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 452 // an immediate predecessor. We don't want to increase register pressure and 453 // end up causing other computation to be spilled. 454 if (TII->isAsCheapAsAMove(*MI)) { 455 MachineBasicBlock *BB = MI->getParent(); 456 if (CSBB != BB && !CSBB->isSuccessor(BB)) 457 return false; 458 } 459 460 // Heuristics #2: If the expression doesn't not use a vr and the only use 461 // of the redundant computation are copies, do not cse. 462 bool HasVRegUse = false; 463 for (const MachineOperand &MO : MI->operands()) { 464 if (MO.isReg() && MO.isUse() && Register::isVirtualRegister(MO.getReg())) { 465 HasVRegUse = true; 466 break; 467 } 468 } 469 if (!HasVRegUse) { 470 bool HasNonCopyUse = false; 471 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 472 // Ignore copies. 473 if (!MI.isCopyLike()) { 474 HasNonCopyUse = true; 475 break; 476 } 477 } 478 if (!HasNonCopyUse) 479 return false; 480 } 481 482 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 483 // it unless the defined value is already used in the BB of the new use. 484 bool HasPHI = false; 485 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) { 486 HasPHI |= UseMI.isPHI(); 487 if (UseMI.getParent() == MI->getParent()) 488 return true; 489 } 490 491 return !HasPHI; 492 } 493 494 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 495 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 496 ScopeType *Scope = new ScopeType(VNT); 497 ScopeMap[MBB] = Scope; 498 } 499 500 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 501 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 502 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 503 assert(SI != ScopeMap.end()); 504 delete SI->second; 505 ScopeMap.erase(SI); 506 } 507 508 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) { 509 bool Changed = false; 510 511 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 512 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 513 SmallVector<unsigned, 2> ImplicitDefs; 514 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 515 MachineInstr *MI = &*I; 516 ++I; 517 518 if (!isCSECandidate(MI)) 519 continue; 520 521 bool FoundCSE = VNT.count(MI); 522 if (!FoundCSE) { 523 // Using trivial copy propagation to find more CSE opportunities. 524 if (PerformTrivialCopyPropagation(MI, MBB)) { 525 Changed = true; 526 527 // After coalescing MI itself may become a copy. 528 if (MI->isCopyLike()) 529 continue; 530 531 // Try again to see if CSE is possible. 532 FoundCSE = VNT.count(MI); 533 } 534 } 535 536 // Commute commutable instructions. 537 bool Commuted = false; 538 if (!FoundCSE && MI->isCommutable()) { 539 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) { 540 Commuted = true; 541 FoundCSE = VNT.count(NewMI); 542 if (NewMI != MI) { 543 // New instruction. It doesn't need to be kept. 544 NewMI->eraseFromParent(); 545 Changed = true; 546 } else if (!FoundCSE) 547 // MI was changed but it didn't help, commute it back! 548 (void)TII->commuteInstruction(*MI); 549 } 550 } 551 552 // If the instruction defines physical registers and the values *may* be 553 // used, then it's not safe to replace it with a common subexpression. 554 // It's also not safe if the instruction uses physical registers. 555 bool CrossMBBPhysDef = false; 556 SmallSet<unsigned, 8> PhysRefs; 557 PhysDefVector PhysDefs; 558 bool PhysUseDef = false; 559 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, 560 PhysDefs, PhysUseDef)) { 561 FoundCSE = false; 562 563 // ... Unless the CS is local or is in the sole predecessor block 564 // and it also defines the physical register which is not clobbered 565 // in between and the physical register uses were not clobbered. 566 // This can never be the case if the instruction both uses and 567 // defines the same physical register, which was detected above. 568 if (!PhysUseDef) { 569 unsigned CSVN = VNT.lookup(MI); 570 MachineInstr *CSMI = Exps[CSVN]; 571 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 572 FoundCSE = true; 573 } 574 } 575 576 if (!FoundCSE) { 577 VNT.insert(MI, CurrVN++); 578 Exps.push_back(MI); 579 continue; 580 } 581 582 // Found a common subexpression, eliminate it. 583 unsigned CSVN = VNT.lookup(MI); 584 MachineInstr *CSMI = Exps[CSVN]; 585 LLVM_DEBUG(dbgs() << "Examining: " << *MI); 586 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 587 588 // Check if it's profitable to perform this CSE. 589 bool DoCSE = true; 590 unsigned NumDefs = MI->getNumDefs(); 591 592 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 593 MachineOperand &MO = MI->getOperand(i); 594 if (!MO.isReg() || !MO.isDef()) 595 continue; 596 unsigned OldReg = MO.getReg(); 597 unsigned NewReg = CSMI->getOperand(i).getReg(); 598 599 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 600 // we should make sure it is not dead at CSMI. 601 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 602 ImplicitDefsToUpdate.push_back(i); 603 604 // Keep track of implicit defs of CSMI and MI, to clear possibly 605 // made-redundant kill flags. 606 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) 607 ImplicitDefs.push_back(OldReg); 608 609 if (OldReg == NewReg) { 610 --NumDefs; 611 continue; 612 } 613 614 assert(Register::isVirtualRegister(OldReg) && 615 Register::isVirtualRegister(NewReg) && 616 "Do not CSE physical register defs!"); 617 618 if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), MI)) { 619 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 620 DoCSE = false; 621 break; 622 } 623 624 // Don't perform CSE if the result of the new instruction cannot exist 625 // within the constraints (register class, bank, or low-level type) of 626 // the old instruction. 627 if (!MRI->constrainRegAttrs(NewReg, OldReg)) { 628 LLVM_DEBUG( 629 dbgs() << "*** Not the same register constraints, avoid CSE!\n"); 630 DoCSE = false; 631 break; 632 } 633 634 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 635 --NumDefs; 636 } 637 638 // Actually perform the elimination. 639 if (DoCSE) { 640 for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { 641 unsigned OldReg = CSEPair.first; 642 unsigned NewReg = CSEPair.second; 643 // OldReg may have been unused but is used now, clear the Dead flag 644 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); 645 assert(Def != nullptr && "CSEd register has no unique definition?"); 646 Def->clearRegisterDeads(NewReg); 647 // Replace with NewReg and clear kill flags which may be wrong now. 648 MRI->replaceRegWith(OldReg, NewReg); 649 MRI->clearKillFlags(NewReg); 650 } 651 652 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 653 // we should make sure it is not dead at CSMI. 654 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) 655 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); 656 for (auto PhysDef : PhysDefs) 657 if (!MI->getOperand(PhysDef.first).isDead()) 658 CSMI->getOperand(PhysDef.first).setIsDead(false); 659 660 // Go through implicit defs of CSMI and MI, and clear the kill flags on 661 // their uses in all the instructions between CSMI and MI. 662 // We might have made some of the kill flags redundant, consider: 663 // subs ... implicit-def %nzcv <- CSMI 664 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore 665 // subs ... implicit-def %nzcv <- MI, to be eliminated 666 // csinc ... implicit killed %nzcv 667 // Since we eliminated MI, and reused a register imp-def'd by CSMI 668 // (here %nzcv), that register, if it was killed before MI, should have 669 // that kill flag removed, because it's lifetime was extended. 670 if (CSMI->getParent() == MI->getParent()) { 671 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II) 672 for (auto ImplicitDef : ImplicitDefs) 673 if (MachineOperand *MO = II->findRegisterUseOperand( 674 ImplicitDef, /*isKill=*/true, TRI)) 675 MO->setIsKill(false); 676 } else { 677 // If the instructions aren't in the same BB, bail out and clear the 678 // kill flag on all uses of the imp-def'd register. 679 for (auto ImplicitDef : ImplicitDefs) 680 MRI->clearKillFlags(ImplicitDef); 681 } 682 683 if (CrossMBBPhysDef) { 684 // Add physical register defs now coming in from a predecessor to MBB 685 // livein list. 686 while (!PhysDefs.empty()) { 687 auto LiveIn = PhysDefs.pop_back_val(); 688 if (!MBB->isLiveIn(LiveIn.second)) 689 MBB->addLiveIn(LiveIn.second); 690 } 691 ++NumCrossBBCSEs; 692 } 693 694 MI->eraseFromParent(); 695 ++NumCSEs; 696 if (!PhysRefs.empty()) 697 ++NumPhysCSEs; 698 if (Commuted) 699 ++NumCommutes; 700 Changed = true; 701 } else { 702 VNT.insert(MI, CurrVN++); 703 Exps.push_back(MI); 704 } 705 CSEPairs.clear(); 706 ImplicitDefsToUpdate.clear(); 707 ImplicitDefs.clear(); 708 } 709 710 return Changed; 711 } 712 713 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 714 /// dominator tree node if its a leaf or all of its children are done. Walk 715 /// up the dominator tree to destroy ancestors which are now done. 716 void 717 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 718 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 719 if (OpenChildren[Node]) 720 return; 721 722 // Pop scope. 723 ExitScope(Node->getBlock()); 724 725 // Now traverse upwards to pop ancestors whose offsprings are all done. 726 while (MachineDomTreeNode *Parent = Node->getIDom()) { 727 unsigned Left = --OpenChildren[Parent]; 728 if (Left != 0) 729 break; 730 ExitScope(Parent->getBlock()); 731 Node = Parent; 732 } 733 } 734 735 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 736 SmallVector<MachineDomTreeNode*, 32> Scopes; 737 SmallVector<MachineDomTreeNode*, 8> WorkList; 738 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 739 740 CurrVN = 0; 741 742 // Perform a DFS walk to determine the order of visit. 743 WorkList.push_back(Node); 744 do { 745 Node = WorkList.pop_back_val(); 746 Scopes.push_back(Node); 747 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 748 OpenChildren[Node] = Children.size(); 749 for (MachineDomTreeNode *Child : Children) 750 WorkList.push_back(Child); 751 } while (!WorkList.empty()); 752 753 // Now perform CSE. 754 bool Changed = false; 755 for (MachineDomTreeNode *Node : Scopes) { 756 MachineBasicBlock *MBB = Node->getBlock(); 757 EnterScope(MBB); 758 Changed |= ProcessBlockCSE(MBB); 759 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 760 ExitScopeIfDone(Node, OpenChildren); 761 } 762 763 return Changed; 764 } 765 766 // We use stronger checks for PRE candidate rather than for CSE ones to embrace 767 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps 768 // to exclude instrs created by PRE that won't be CSEed later. 769 bool MachineCSE::isPRECandidate(MachineInstr *MI) { 770 if (!isCSECandidate(MI) || 771 MI->isNotDuplicable() || 772 MI->mayLoad() || 773 MI->isAsCheapAsAMove() || 774 MI->getNumDefs() != 1 || 775 MI->getNumExplicitDefs() != 1) 776 return false; 777 778 for (auto def : MI->defs()) 779 if (!Register::isVirtualRegister(def.getReg())) 780 return false; 781 782 for (auto use : MI->uses()) 783 if (use.isReg() && !Register::isVirtualRegister(use.getReg())) 784 return false; 785 786 return true; 787 } 788 789 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT, 790 MachineBasicBlock *MBB) { 791 bool Changed = false; 792 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { 793 MachineInstr *MI = &*I; 794 ++I; 795 796 if (!isPRECandidate(MI)) 797 continue; 798 799 if (!PREMap.count(MI)) { 800 PREMap[MI] = MBB; 801 continue; 802 } 803 804 auto MBB1 = PREMap[MI]; 805 assert( 806 !DT->properlyDominates(MBB, MBB1) && 807 "MBB cannot properly dominate MBB1 while DFS through dominators tree!"); 808 auto CMBB = DT->findNearestCommonDominator(MBB, MBB1); 809 if (!CMBB->isLegalToHoistInto()) 810 continue; 811 812 if (!isBeneficalToHoistInto(CMBB, MBB, MBB1)) 813 continue; 814 815 // Two instrs are partial redundant if their basic blocks are reachable 816 // from one to another but one doesn't dominate another. 817 if (CMBB != MBB1) { 818 auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock(); 819 if (BB != nullptr && BB1 != nullptr && 820 (isPotentiallyReachable(BB1, BB) || 821 isPotentiallyReachable(BB, BB1))) { 822 823 assert(MI->getOperand(0).isDef() && 824 "First operand of instr with one explicit def must be this def"); 825 unsigned VReg = MI->getOperand(0).getReg(); 826 unsigned NewReg = MRI->cloneVirtualRegister(VReg); 827 if (!isProfitableToCSE(NewReg, VReg, CMBB, MI)) 828 continue; 829 MachineInstr &NewMI = 830 TII->duplicate(*CMBB, CMBB->getFirstTerminator(), *MI); 831 NewMI.getOperand(0).setReg(NewReg); 832 833 PREMap[MI] = CMBB; 834 ++NumPREs; 835 Changed = true; 836 } 837 } 838 } 839 return Changed; 840 } 841 842 // This simple PRE (partial redundancy elimination) pass doesn't actually 843 // eliminate partial redundancy but transforms it to full redundancy, 844 // anticipating that the next CSE step will eliminate this created redundancy. 845 // If CSE doesn't eliminate this, than created instruction will remain dead 846 // and eliminated later by Remove Dead Machine Instructions pass. 847 bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) { 848 SmallVector<MachineDomTreeNode *, 32> BBs; 849 850 PREMap.clear(); 851 bool Changed = false; 852 BBs.push_back(DT->getRootNode()); 853 do { 854 auto Node = BBs.pop_back_val(); 855 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren(); 856 for (MachineDomTreeNode *Child : Children) 857 BBs.push_back(Child); 858 859 MachineBasicBlock *MBB = Node->getBlock(); 860 Changed |= ProcessBlockPRE(DT, MBB); 861 862 } while (!BBs.empty()); 863 864 return Changed; 865 } 866 867 bool MachineCSE::isBeneficalToHoistInto(MachineBasicBlock *CandidateBB, 868 MachineBasicBlock *MBB, 869 MachineBasicBlock *MBB1) { 870 if (CandidateBB->getParent()->getFunction().hasMinSize()) 871 return true; 872 assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB"); 873 assert(DT->dominates(CandidateBB, MBB1) && 874 "CandidateBB should dominate MBB1"); 875 return MBFI->getBlockFreq(CandidateBB) <= 876 MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1); 877 } 878 879 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 880 if (skipFunction(MF.getFunction())) 881 return false; 882 883 TII = MF.getSubtarget().getInstrInfo(); 884 TRI = MF.getSubtarget().getRegisterInfo(); 885 MRI = &MF.getRegInfo(); 886 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 887 DT = &getAnalysis<MachineDominatorTree>(); 888 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 889 LookAheadLimit = TII->getMachineCSELookAheadLimit(); 890 bool ChangedPRE, ChangedCSE; 891 ChangedPRE = PerformSimplePRE(DT); 892 ChangedCSE = PerformCSE(DT->getRootNode()); 893 return ChangedPRE || ChangedCSE; 894 } 895