xref: /llvm-project/llvm/lib/CodeGen/MachineCSE.cpp (revision 09bf5b0d3560992553b593b774c2d3dfff1cd683)
1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global common subexpression elimination on machine
10 // instructions using a scoped hash table based value numbering scheme. It
11 // must be run while the machine function is still in SSA form.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineCSE.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/MC/MCRegister.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/RecyclingAllocator.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <cassert>
46 #include <iterator>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "machine-cse"
52 
53 STATISTIC(NumCoalesces, "Number of copies coalesced");
54 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
55 STATISTIC(NumPREs,      "Number of partial redundant expression"
56                         " transformed to fully redundant");
57 STATISTIC(NumPhysCSEs,
58           "Number of physreg referencing common subexpr eliminated");
59 STATISTIC(NumCrossBBCSEs,
60           "Number of cross-MBB physreg referencing CS eliminated");
61 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
62 
63 // Threshold to avoid excessive cost to compute isProfitableToCSE.
64 static cl::opt<int>
65     CSUsesThreshold("csuses-threshold", cl::Hidden, cl::init(1024),
66                     cl::desc("Threshold for the size of CSUses"));
67 
68 static cl::opt<bool> AggressiveMachineCSE(
69     "aggressive-machine-cse", cl::Hidden, cl::init(false),
70     cl::desc("Override the profitability heuristics for Machine CSE"));
71 
72 namespace {
73 
74 class MachineCSEImpl {
75   const TargetInstrInfo *TII = nullptr;
76   const TargetRegisterInfo *TRI = nullptr;
77   MachineDominatorTree *DT = nullptr;
78   MachineRegisterInfo *MRI = nullptr;
79   MachineBlockFrequencyInfo *MBFI = nullptr;
80 
81 public:
82   MachineCSEImpl(MachineDominatorTree *DT, MachineBlockFrequencyInfo *MBFI)
83       : DT(DT), MBFI(MBFI) {}
84   bool run(MachineFunction &MF);
85 
86 private:
87   using AllocatorTy =
88       RecyclingAllocator<BumpPtrAllocator,
89                          ScopedHashTableVal<MachineInstr *, unsigned>>;
90   using ScopedHTType =
91       ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
92                       AllocatorTy>;
93   using ScopeType = ScopedHTType::ScopeTy;
94   using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;
95 
96   unsigned LookAheadLimit = 0;
97   DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
98   DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
99       PREMap;
100   ScopedHTType VNT;
101   SmallVector<MachineInstr *, 64> Exps;
102   unsigned CurrVN = 0;
103 
104   bool PerformTrivialCopyPropagation(MachineInstr *MI, MachineBasicBlock *MBB);
105   bool isPhysDefTriviallyDead(MCRegister Reg,
106                               MachineBasicBlock::const_iterator I,
107                               MachineBasicBlock::const_iterator E) const;
108   bool hasLivePhysRegDefUses(const MachineInstr *MI,
109                              const MachineBasicBlock *MBB,
110                              SmallSet<MCRegister, 8> &PhysRefs,
111                              PhysDefVector &PhysDefs, bool &PhysUseDef) const;
112   bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
113                         SmallSet<MCRegister, 8> &PhysRefs,
114                         PhysDefVector &PhysDefs, bool &NonLocal) const;
115   bool isCSECandidate(MachineInstr *MI);
116   bool isProfitableToCSE(Register CSReg, Register Reg, MachineBasicBlock *CSBB,
117                          MachineInstr *MI);
118   void EnterScope(MachineBasicBlock *MBB);
119   void ExitScope(MachineBasicBlock *MBB);
120   bool ProcessBlockCSE(MachineBasicBlock *MBB);
121   void ExitScopeIfDone(MachineDomTreeNode *Node,
122                        DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren);
123   bool PerformCSE(MachineDomTreeNode *Node);
124 
125   bool isPRECandidate(MachineInstr *MI, SmallSet<MCRegister, 8> &PhysRefs);
126   bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
127   bool PerformSimplePRE(MachineDominatorTree *DT);
128   /// Heuristics to see if it's profitable to move common computations of MBB
129   /// and MBB1 to CandidateBB.
130   bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
131                                MachineBasicBlock *MBB, MachineBasicBlock *MBB1);
132   void releaseMemory();
133 };
134 
135 class MachineCSELegacy : public MachineFunctionPass {
136 public:
137   static char ID; // Pass identification
138 
139   MachineCSELegacy() : MachineFunctionPass(ID) {
140     initializeMachineCSELegacyPass(*PassRegistry::getPassRegistry());
141   }
142 
143   bool runOnMachineFunction(MachineFunction &MF) override;
144 
145   void getAnalysisUsage(AnalysisUsage &AU) const override {
146     AU.setPreservesCFG();
147     MachineFunctionPass::getAnalysisUsage(AU);
148     AU.addPreservedID(MachineLoopInfoID);
149     AU.addRequired<MachineDominatorTreeWrapperPass>();
150     AU.addPreserved<MachineDominatorTreeWrapperPass>();
151     AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
152     AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>();
153   }
154 
155   MachineFunctionProperties getRequiredProperties() const override {
156     return MachineFunctionProperties().set(
157         MachineFunctionProperties::Property::IsSSA);
158   }
159 };
160 } // end anonymous namespace
161 
162 char MachineCSELegacy::ID = 0;
163 
164 char &llvm::MachineCSELegacyID = MachineCSELegacy::ID;
165 
166 INITIALIZE_PASS_BEGIN(MachineCSELegacy, DEBUG_TYPE,
167                       "Machine Common Subexpression Elimination", false, false)
168 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
169 INITIALIZE_PASS_END(MachineCSELegacy, DEBUG_TYPE,
170                     "Machine Common Subexpression Elimination", false, false)
171 
172 /// The source register of a COPY machine instruction can be propagated to all
173 /// its users, and this propagation could increase the probability of finding
174 /// common subexpressions. If the COPY has only one user, the COPY itself can
175 /// be removed.
176 bool MachineCSEImpl::PerformTrivialCopyPropagation(MachineInstr *MI,
177                                                    MachineBasicBlock *MBB) {
178   bool Changed = false;
179   for (MachineOperand &MO : MI->all_uses()) {
180     Register Reg = MO.getReg();
181     if (!Reg.isVirtual())
182       continue;
183     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
184     MachineInstr *DefMI = MRI->getVRegDef(Reg);
185     if (!DefMI || !DefMI->isCopy())
186       continue;
187     Register SrcReg = DefMI->getOperand(1).getReg();
188     if (!SrcReg.isVirtual())
189       continue;
190     if (DefMI->getOperand(0).getSubReg())
191       continue;
192     // FIXME: We should trivially coalesce subregister copies to expose CSE
193     // opportunities on instructions with truncated operands (see
194     // cse-add-with-overflow.ll). This can be done here as follows:
195     // if (SrcSubReg)
196     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
197     //                                     SrcSubReg);
198     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
199     //
200     // The 2-addr pass has been updated to handle coalesced subregs. However,
201     // some machine-specific code still can't handle it.
202     // To handle it properly we also need a way find a constrained subregister
203     // class given a super-reg class and subreg index.
204     if (DefMI->getOperand(1).getSubReg())
205       continue;
206     if (!MRI->constrainRegAttrs(SrcReg, Reg))
207       continue;
208     LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
209     LLVM_DEBUG(dbgs() << "***     to: " << *MI);
210 
211     // Propagate SrcReg of copies to MI.
212     MO.setReg(SrcReg);
213     MRI->clearKillFlags(SrcReg);
214     // Coalesce single use copies.
215     if (OnlyOneUse) {
216       // If (and only if) we've eliminated all uses of the copy, also
217       // copy-propagate to any debug-users of MI, or they'll be left using
218       // an undefined value.
219       DefMI->changeDebugValuesDefReg(SrcReg);
220 
221       DefMI->eraseFromParent();
222       ++NumCoalesces;
223     }
224     Changed = true;
225   }
226 
227   return Changed;
228 }
229 
230 bool MachineCSEImpl::isPhysDefTriviallyDead(
231     MCRegister Reg, MachineBasicBlock::const_iterator I,
232     MachineBasicBlock::const_iterator E) const {
233   unsigned LookAheadLeft = LookAheadLimit;
234   while (LookAheadLeft) {
235     // Skip over dbg_value's.
236     I = skipDebugInstructionsForward(I, E);
237 
238     if (I == E)
239       // Reached end of block, we don't know if register is dead or not.
240       return false;
241 
242     bool SeenDef = false;
243     for (const MachineOperand &MO : I->operands()) {
244       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
245         SeenDef = true;
246       if (!MO.isReg() || !MO.getReg())
247         continue;
248       if (!TRI->regsOverlap(MO.getReg(), Reg))
249         continue;
250       if (MO.isUse())
251         // Found a use!
252         return false;
253       SeenDef = true;
254     }
255     if (SeenDef)
256       // See a def of Reg (or an alias) before encountering any use, it's
257       // trivially dead.
258       return true;
259 
260     --LookAheadLeft;
261     ++I;
262   }
263   return false;
264 }
265 
266 static bool isCallerPreservedOrConstPhysReg(MCRegister Reg,
267                                             const MachineOperand &MO,
268                                             const MachineFunction &MF,
269                                             const TargetRegisterInfo &TRI,
270                                             const TargetInstrInfo &TII) {
271   // MachineRegisterInfo::isConstantPhysReg directly called by
272   // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
273   // reserved registers to be frozen. That doesn't cause a problem  post-ISel as
274   // most (if not all) targets freeze reserved registers right after ISel.
275   //
276   // It does cause issues mid-GlobalISel, however, hence the additional
277   // reservedRegsFrozen check.
278   const MachineRegisterInfo &MRI = MF.getRegInfo();
279   return TRI.isCallerPreservedPhysReg(Reg, MF) || TII.isIgnorableUse(MO) ||
280          (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
281 }
282 
283 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
284 /// physical registers (except for dead defs of physical registers). It also
285 /// returns the physical register def by reference if it's the only one and the
286 /// instruction does not uses a physical register.
287 bool MachineCSEImpl::hasLivePhysRegDefUses(const MachineInstr *MI,
288                                            const MachineBasicBlock *MBB,
289                                            SmallSet<MCRegister, 8> &PhysRefs,
290                                            PhysDefVector &PhysDefs,
291                                            bool &PhysUseDef) const {
292   // First, add all uses to PhysRefs.
293   for (const MachineOperand &MO : MI->all_uses()) {
294     Register Reg = MO.getReg();
295     if (!Reg)
296       continue;
297     if (Reg.isVirtual())
298       continue;
299     // Reading either caller preserved or constant physregs is ok.
300     if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), MO, *MI->getMF(), *TRI,
301                                          *TII))
302       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
303         PhysRefs.insert(*AI);
304   }
305 
306   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
307   // (which currently contains only uses), set the PhysUseDef flag.
308   PhysUseDef = false;
309   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
310   for (const auto &MOP : llvm::enumerate(MI->operands())) {
311     const MachineOperand &MO = MOP.value();
312     if (!MO.isReg() || !MO.isDef())
313       continue;
314     Register Reg = MO.getReg();
315     if (!Reg)
316       continue;
317     if (Reg.isVirtual())
318       continue;
319     // Check against PhysRefs even if the def is "dead".
320     if (PhysRefs.count(Reg.asMCReg()))
321       PhysUseDef = true;
322     // If the def is dead, it's ok. But the def may not marked "dead". That's
323     // common since this pass is run before livevariables. We can scan
324     // forward a few instructions and check if it is obviously dead.
325     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end()))
326       PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
327   }
328 
329   // Finally, add all defs to PhysRefs as well.
330   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
331     for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
332          ++AI)
333       PhysRefs.insert(*AI);
334 
335   return !PhysRefs.empty();
336 }
337 
338 bool MachineCSEImpl::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
339                                       SmallSet<MCRegister, 8> &PhysRefs,
340                                       PhysDefVector &PhysDefs,
341                                       bool &NonLocal) const {
342   // For now conservatively returns false if the common subexpression is
343   // not in the same basic block as the given instruction. The only exception
344   // is if the common subexpression is in the sole predecessor block.
345   const MachineBasicBlock *MBB = MI->getParent();
346   const MachineBasicBlock *CSMBB = CSMI->getParent();
347 
348   bool CrossMBB = false;
349   if (CSMBB != MBB) {
350     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
351       return false;
352 
353     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
354       if (MRI->isAllocatable(PhysDefs[i].second) ||
355           MRI->isReserved(PhysDefs[i].second))
356         // Avoid extending live range of physical registers if they are
357         //allocatable or reserved.
358         return false;
359     }
360     CrossMBB = true;
361   }
362   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
363   MachineBasicBlock::const_iterator E = MI;
364   MachineBasicBlock::const_iterator EE = CSMBB->end();
365   unsigned LookAheadLeft = LookAheadLimit;
366   while (LookAheadLeft) {
367     // Skip over dbg_value's.
368     while (I != E && I != EE && I->isDebugInstr())
369       ++I;
370 
371     if (I == EE) {
372       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
373       (void)CrossMBB;
374       CrossMBB = false;
375       NonLocal = true;
376       I = MBB->begin();
377       EE = MBB->end();
378       continue;
379     }
380 
381     if (I == E)
382       return true;
383 
384     for (const MachineOperand &MO : I->operands()) {
385       // RegMasks go on instructions like calls that clobber lots of physregs.
386       // Don't attempt to CSE across such an instruction.
387       if (MO.isRegMask())
388         return false;
389       if (!MO.isReg() || !MO.isDef())
390         continue;
391       Register MOReg = MO.getReg();
392       if (MOReg.isVirtual())
393         continue;
394       if (PhysRefs.count(MOReg.asMCReg()))
395         return false;
396     }
397 
398     --LookAheadLeft;
399     ++I;
400   }
401 
402   return false;
403 }
404 
405 bool MachineCSEImpl::isCSECandidate(MachineInstr *MI) {
406   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
407       MI->isInlineAsm() || MI->isDebugInstr() || MI->isJumpTableDebugInfo() ||
408       MI->isFakeUse())
409     return false;
410 
411   // Ignore copies.
412   if (MI->isCopyLike())
413     return false;
414 
415   // Ignore stuff that we obviously can't move.
416   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
417       MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
418     return false;
419 
420   if (MI->mayLoad()) {
421     // Okay, this instruction does a load. As a refinement, we allow the target
422     // to decide whether the loaded value is actually a constant. If so, we can
423     // actually use it as a load.
424     if (!MI->isDereferenceableInvariantLoad())
425       // FIXME: we should be able to hoist loads with no other side effects if
426       // there are no other instructions which can change memory in this loop.
427       // This is a trivial form of alias analysis.
428       return false;
429   }
430 
431   // Ignore stack guard loads, otherwise the register that holds CSEed value may
432   // be spilled and get loaded back with corrupted data.
433   if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
434     return false;
435 
436   return true;
437 }
438 
439 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
440 /// common expression that defines Reg. CSBB is basic block where CSReg is
441 /// defined.
442 bool MachineCSEImpl::isProfitableToCSE(Register CSReg, Register Reg,
443                                        MachineBasicBlock *CSBB,
444                                        MachineInstr *MI) {
445   if (AggressiveMachineCSE)
446     return true;
447 
448   // FIXME: Heuristics that works around the lack the live range splitting.
449 
450   // If CSReg is used at all uses of Reg, CSE should not increase register
451   // pressure of CSReg.
452   bool MayIncreasePressure = true;
453   if (CSReg.isVirtual() && Reg.isVirtual()) {
454     MayIncreasePressure = false;
455     SmallPtrSet<MachineInstr*, 8> CSUses;
456     int NumOfUses = 0;
457     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
458       CSUses.insert(&MI);
459       // Too costly to compute if NumOfUses is very large. Conservatively assume
460       // MayIncreasePressure to avoid spending too much time here.
461       if (++NumOfUses > CSUsesThreshold) {
462         MayIncreasePressure = true;
463         break;
464       }
465     }
466     if (!MayIncreasePressure)
467       for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
468         if (!CSUses.count(&MI)) {
469           MayIncreasePressure = true;
470           break;
471         }
472       }
473   }
474   if (!MayIncreasePressure) return true;
475 
476   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
477   // an immediate predecessor. We don't want to increase register pressure and
478   // end up causing other computation to be spilled.
479   if (TII->isAsCheapAsAMove(*MI)) {
480     MachineBasicBlock *BB = MI->getParent();
481     if (CSBB != BB && !CSBB->isSuccessor(BB))
482       return false;
483   }
484 
485   // Heuristics #2: If the expression doesn't not use a vr and the only use
486   // of the redundant computation are copies, do not cse.
487   bool HasVRegUse = false;
488   for (const MachineOperand &MO : MI->all_uses()) {
489     if (MO.getReg().isVirtual()) {
490       HasVRegUse = true;
491       break;
492     }
493   }
494   if (!HasVRegUse) {
495     bool HasNonCopyUse = false;
496     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
497       // Ignore copies.
498       if (!MI.isCopyLike()) {
499         HasNonCopyUse = true;
500         break;
501       }
502     }
503     if (!HasNonCopyUse)
504       return false;
505   }
506 
507   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
508   // it unless the defined value is already used in the BB of the new use.
509   bool HasPHI = false;
510   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
511     HasPHI |= UseMI.isPHI();
512     if (UseMI.getParent() == MI->getParent())
513       return true;
514   }
515 
516   return !HasPHI;
517 }
518 
519 void MachineCSEImpl::EnterScope(MachineBasicBlock *MBB) {
520   LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
521   ScopeType *Scope = new ScopeType(VNT);
522   ScopeMap[MBB] = Scope;
523 }
524 
525 void MachineCSEImpl::ExitScope(MachineBasicBlock *MBB) {
526   LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
527   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
528   assert(SI != ScopeMap.end());
529   delete SI->second;
530   ScopeMap.erase(SI);
531 }
532 
533 bool MachineCSEImpl::ProcessBlockCSE(MachineBasicBlock *MBB) {
534   bool Changed = false;
535 
536   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
537   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
538   SmallVector<unsigned, 2> ImplicitDefs;
539   for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
540     if (!isCSECandidate(&MI))
541       continue;
542 
543     bool FoundCSE = VNT.count(&MI);
544     if (!FoundCSE) {
545       // Using trivial copy propagation to find more CSE opportunities.
546       if (PerformTrivialCopyPropagation(&MI, MBB)) {
547         Changed = true;
548 
549         // After coalescing MI itself may become a copy.
550         if (MI.isCopyLike())
551           continue;
552 
553         // Try again to see if CSE is possible.
554         FoundCSE = VNT.count(&MI);
555       }
556     }
557 
558     // Commute commutable instructions.
559     bool Commuted = false;
560     if (!FoundCSE && MI.isCommutable()) {
561       if (MachineInstr *NewMI = TII->commuteInstruction(MI)) {
562         Commuted = true;
563         FoundCSE = VNT.count(NewMI);
564         if (NewMI != &MI) {
565           // New instruction. It doesn't need to be kept.
566           NewMI->eraseFromParent();
567           Changed = true;
568         } else if (!FoundCSE)
569           // MI was changed but it didn't help, commute it back!
570           (void)TII->commuteInstruction(MI);
571       }
572     }
573 
574     // If the instruction defines physical registers and the values *may* be
575     // used, then it's not safe to replace it with a common subexpression.
576     // It's also not safe if the instruction uses physical registers.
577     bool CrossMBBPhysDef = false;
578     SmallSet<MCRegister, 8> PhysRefs;
579     PhysDefVector PhysDefs;
580     bool PhysUseDef = false;
581     if (FoundCSE &&
582         hasLivePhysRegDefUses(&MI, MBB, PhysRefs, PhysDefs, PhysUseDef)) {
583       FoundCSE = false;
584 
585       // ... Unless the CS is local or is in the sole predecessor block
586       // and it also defines the physical register which is not clobbered
587       // in between and the physical register uses were not clobbered.
588       // This can never be the case if the instruction both uses and
589       // defines the same physical register, which was detected above.
590       if (!PhysUseDef) {
591         unsigned CSVN = VNT.lookup(&MI);
592         MachineInstr *CSMI = Exps[CSVN];
593         if (PhysRegDefsReach(CSMI, &MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
594           FoundCSE = true;
595       }
596     }
597 
598     if (!FoundCSE) {
599       VNT.insert(&MI, CurrVN++);
600       Exps.push_back(&MI);
601       continue;
602     }
603 
604     // Found a common subexpression, eliminate it.
605     unsigned CSVN = VNT.lookup(&MI);
606     MachineInstr *CSMI = Exps[CSVN];
607     LLVM_DEBUG(dbgs() << "Examining: " << MI);
608     LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
609 
610     // Prevent CSE-ing non-local convergent instructions.
611     // LLVM's current definition of `isConvergent` does not necessarily prove
612     // that non-local CSE is illegal. The following check extends the definition
613     // of `isConvergent` to assume a convergent instruction is dependent not
614     // only on additional conditions, but also on fewer conditions. LLVM does
615     // not have a MachineInstr attribute which expresses this extended
616     // definition, so it's necessary to use `isConvergent` to prevent illegally
617     // CSE-ing the subset of `isConvergent` instructions which do fall into this
618     // extended definition.
619     if (MI.isConvergent() && MI.getParent() != CSMI->getParent()) {
620       LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in "
621                            "different BBs, avoid CSE!\n");
622       VNT.insert(&MI, CurrVN++);
623       Exps.push_back(&MI);
624       continue;
625     }
626 
627     // Check if it's profitable to perform this CSE.
628     bool DoCSE = true;
629     unsigned NumDefs = MI.getNumDefs();
630 
631     for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
632       MachineOperand &MO = MI.getOperand(i);
633       if (!MO.isReg() || !MO.isDef())
634         continue;
635       Register OldReg = MO.getReg();
636       Register NewReg = CSMI->getOperand(i).getReg();
637 
638       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
639       // we should make sure it is not dead at CSMI.
640       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
641         ImplicitDefsToUpdate.push_back(i);
642 
643       // Keep track of implicit defs of CSMI and MI, to clear possibly
644       // made-redundant kill flags.
645       if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
646         ImplicitDefs.push_back(OldReg);
647 
648       if (OldReg == NewReg) {
649         --NumDefs;
650         continue;
651       }
652 
653       assert(OldReg.isVirtual() && NewReg.isVirtual() &&
654              "Do not CSE physical register defs!");
655 
656       if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), &MI)) {
657         LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
658         DoCSE = false;
659         break;
660       }
661 
662       // Don't perform CSE if the result of the new instruction cannot exist
663       // within the constraints (register class, bank, or low-level type) of
664       // the old instruction.
665       if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
666         LLVM_DEBUG(
667             dbgs() << "*** Not the same register constraints, avoid CSE!\n");
668         DoCSE = false;
669         break;
670       }
671 
672       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
673       --NumDefs;
674     }
675 
676     // Actually perform the elimination.
677     if (DoCSE) {
678       for (const std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
679         unsigned OldReg = CSEPair.first;
680         unsigned NewReg = CSEPair.second;
681         // OldReg may have been unused but is used now, clear the Dead flag
682         MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
683         assert(Def != nullptr && "CSEd register has no unique definition?");
684         Def->clearRegisterDeads(NewReg);
685         // Replace with NewReg and clear kill flags which may be wrong now.
686         MRI->replaceRegWith(OldReg, NewReg);
687         MRI->clearKillFlags(NewReg);
688       }
689 
690       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
691       // we should make sure it is not dead at CSMI.
692       for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
693         CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
694       for (const auto &PhysDef : PhysDefs)
695         if (!MI.getOperand(PhysDef.first).isDead())
696           CSMI->getOperand(PhysDef.first).setIsDead(false);
697 
698       // Go through implicit defs of CSMI and MI, and clear the kill flags on
699       // their uses in all the instructions between CSMI and MI.
700       // We might have made some of the kill flags redundant, consider:
701       //   subs  ... implicit-def %nzcv    <- CSMI
702       //   csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
703       //   subs  ... implicit-def %nzcv    <- MI, to be eliminated
704       //   csinc ... implicit killed %nzcv
705       // Since we eliminated MI, and reused a register imp-def'd by CSMI
706       // (here %nzcv), that register, if it was killed before MI, should have
707       // that kill flag removed, because it's lifetime was extended.
708       if (CSMI->getParent() == MI.getParent()) {
709         for (MachineBasicBlock::iterator II = CSMI, IE = &MI; II != IE; ++II)
710           for (auto ImplicitDef : ImplicitDefs)
711             if (MachineOperand *MO = II->findRegisterUseOperand(
712                     ImplicitDef, TRI, /*isKill=*/true))
713               MO->setIsKill(false);
714       } else {
715         // If the instructions aren't in the same BB, bail out and clear the
716         // kill flag on all uses of the imp-def'd register.
717         for (auto ImplicitDef : ImplicitDefs)
718           MRI->clearKillFlags(ImplicitDef);
719       }
720 
721       if (CrossMBBPhysDef) {
722         // Add physical register defs now coming in from a predecessor to MBB
723         // livein list.
724         while (!PhysDefs.empty()) {
725           auto LiveIn = PhysDefs.pop_back_val();
726           if (!MBB->isLiveIn(LiveIn.second))
727             MBB->addLiveIn(LiveIn.second);
728         }
729         ++NumCrossBBCSEs;
730       }
731 
732       MI.eraseFromParent();
733       ++NumCSEs;
734       if (!PhysRefs.empty())
735         ++NumPhysCSEs;
736       if (Commuted)
737         ++NumCommutes;
738       Changed = true;
739     } else {
740       VNT.insert(&MI, CurrVN++);
741       Exps.push_back(&MI);
742     }
743     CSEPairs.clear();
744     ImplicitDefsToUpdate.clear();
745     ImplicitDefs.clear();
746   }
747 
748   return Changed;
749 }
750 
751 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
752 /// dominator tree node if its a leaf or all of its children are done. Walk
753 /// up the dominator tree to destroy ancestors which are now done.
754 void MachineCSEImpl::ExitScopeIfDone(
755     MachineDomTreeNode *Node,
756     DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren) {
757   if (OpenChildren[Node])
758     return;
759 
760   // Pop scope.
761   ExitScope(Node->getBlock());
762 
763   // Now traverse upwards to pop ancestors whose offsprings are all done.
764   while (MachineDomTreeNode *Parent = Node->getIDom()) {
765     unsigned Left = --OpenChildren[Parent];
766     if (Left != 0)
767       break;
768     ExitScope(Parent->getBlock());
769     Node = Parent;
770   }
771 }
772 
773 bool MachineCSEImpl::PerformCSE(MachineDomTreeNode *Node) {
774   SmallVector<MachineDomTreeNode*, 32> Scopes;
775   SmallVector<MachineDomTreeNode*, 8> WorkList;
776   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
777 
778   CurrVN = 0;
779 
780   // Perform a DFS walk to determine the order of visit.
781   WorkList.push_back(Node);
782   do {
783     Node = WorkList.pop_back_val();
784     Scopes.push_back(Node);
785     OpenChildren[Node] = Node->getNumChildren();
786     append_range(WorkList, Node->children());
787   } while (!WorkList.empty());
788 
789   // Now perform CSE.
790   bool Changed = false;
791   for (MachineDomTreeNode *Node : Scopes) {
792     MachineBasicBlock *MBB = Node->getBlock();
793     EnterScope(MBB);
794     Changed |= ProcessBlockCSE(MBB);
795     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
796     ExitScopeIfDone(Node, OpenChildren);
797   }
798 
799   return Changed;
800 }
801 
802 // We use stronger checks for PRE candidate rather than for CSE ones to embrace
803 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
804 // to exclude instrs created by PRE that won't be CSEed later.
805 bool MachineCSEImpl::isPRECandidate(MachineInstr *MI,
806                                     SmallSet<MCRegister, 8> &PhysRefs) {
807   if (!isCSECandidate(MI) ||
808       MI->isNotDuplicable() ||
809       MI->mayLoad() ||
810       TII->isAsCheapAsAMove(*MI) ||
811       MI->getNumDefs() != 1 ||
812       MI->getNumExplicitDefs() != 1)
813     return false;
814 
815   for (const MachineOperand &MO : MI->operands()) {
816     if (MO.isReg() && !MO.getReg().isVirtual()) {
817       if (MO.isDef())
818         return false;
819       else
820         PhysRefs.insert(MO.getReg());
821     }
822   }
823 
824   return true;
825 }
826 
827 bool MachineCSEImpl::ProcessBlockPRE(MachineDominatorTree *DT,
828                                      MachineBasicBlock *MBB) {
829   bool Changed = false;
830   for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
831     SmallSet<MCRegister, 8> PhysRefs;
832     if (!isPRECandidate(&MI, PhysRefs))
833       continue;
834 
835     auto [It, Inserted] = PREMap.try_emplace(&MI, MBB);
836     if (Inserted)
837       continue;
838 
839     auto *MBB1 = It->second;
840     assert(
841         !DT->properlyDominates(MBB, MBB1) &&
842         "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
843     auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
844     if (!CMBB->isLegalToHoistInto())
845       continue;
846 
847     if (!isProfitableToHoistInto(CMBB, MBB, MBB1))
848       continue;
849 
850     // Two instrs are partial redundant if their basic blocks are reachable
851     // from one to another but one doesn't dominate another.
852     if (CMBB != MBB1) {
853       auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
854       if (BB != nullptr && BB1 != nullptr &&
855           (isPotentiallyReachable(BB1, BB) ||
856            isPotentiallyReachable(BB, BB1))) {
857         // The following check extends the definition of `isConvergent` to
858         // assume a convergent instruction is dependent not only on additional
859         // conditions, but also on fewer conditions. LLVM does not have a
860         // MachineInstr attribute which expresses this extended definition, so
861         // it's necessary to use `isConvergent` to prevent illegally PRE-ing the
862         // subset of `isConvergent` instructions which do fall into this
863         // extended definition.
864         if (MI.isConvergent() && CMBB != MBB)
865           continue;
866 
867         // If this instruction uses physical registers then we can only do PRE
868         // if it's using the value that is live at the place we're hoisting to.
869         bool NonLocal;
870         PhysDefVector PhysDefs;
871         if (!PhysRefs.empty() &&
872             !PhysRegDefsReach(&*(CMBB->getFirstTerminator()), &MI, PhysRefs,
873                               PhysDefs, NonLocal))
874           continue;
875 
876         assert(MI.getOperand(0).isDef() &&
877                "First operand of instr with one explicit def must be this def");
878         Register VReg = MI.getOperand(0).getReg();
879         Register NewReg = MRI->cloneVirtualRegister(VReg);
880         if (!isProfitableToCSE(NewReg, VReg, CMBB, &MI))
881           continue;
882         MachineInstr &NewMI =
883             TII->duplicate(*CMBB, CMBB->getFirstTerminator(), MI);
884 
885         // When hoisting, make sure we don't carry the debug location of
886         // the original instruction, as that's not correct and can cause
887         // unexpected jumps when debugging optimized code.
888         auto EmptyDL = DebugLoc();
889         NewMI.setDebugLoc(EmptyDL);
890 
891         NewMI.getOperand(0).setReg(NewReg);
892 
893         PREMap[&MI] = CMBB;
894         ++NumPREs;
895         Changed = true;
896       }
897     }
898   }
899   return Changed;
900 }
901 
902 // This simple PRE (partial redundancy elimination) pass doesn't actually
903 // eliminate partial redundancy but transforms it to full redundancy,
904 // anticipating that the next CSE step will eliminate this created redundancy.
905 // If CSE doesn't eliminate this, than created instruction will remain dead
906 // and eliminated later by Remove Dead Machine Instructions pass.
907 bool MachineCSEImpl::PerformSimplePRE(MachineDominatorTree *DT) {
908   SmallVector<MachineDomTreeNode *, 32> BBs;
909 
910   PREMap.clear();
911   bool Changed = false;
912   BBs.push_back(DT->getRootNode());
913   do {
914     auto Node = BBs.pop_back_val();
915     append_range(BBs, Node->children());
916 
917     MachineBasicBlock *MBB = Node->getBlock();
918     Changed |= ProcessBlockPRE(DT, MBB);
919 
920   } while (!BBs.empty());
921 
922   return Changed;
923 }
924 
925 bool MachineCSEImpl::isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
926                                              MachineBasicBlock *MBB,
927                                              MachineBasicBlock *MBB1) {
928   if (CandidateBB->getParent()->getFunction().hasMinSize())
929     return true;
930   assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB");
931   assert(DT->dominates(CandidateBB, MBB1) &&
932          "CandidateBB should dominate MBB1");
933   return MBFI->getBlockFreq(CandidateBB) <=
934          MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1);
935 }
936 
937 void MachineCSEImpl::releaseMemory() {
938   ScopeMap.clear();
939   PREMap.clear();
940   Exps.clear();
941 }
942 
943 bool MachineCSEImpl::run(MachineFunction &MF) {
944   TII = MF.getSubtarget().getInstrInfo();
945   TRI = MF.getSubtarget().getRegisterInfo();
946   MRI = &MF.getRegInfo();
947   LookAheadLimit = TII->getMachineCSELookAheadLimit();
948   bool ChangedPRE, ChangedCSE;
949   ChangedPRE = PerformSimplePRE(DT);
950   ChangedCSE = PerformCSE(DT->getRootNode());
951   releaseMemory();
952   return ChangedPRE || ChangedCSE;
953 }
954 
955 PreservedAnalyses MachineCSEPass::run(MachineFunction &MF,
956                                       MachineFunctionAnalysisManager &MFAM) {
957   MFPropsModifier _(*this, MF);
958 
959   MachineDominatorTree &MDT = MFAM.getResult<MachineDominatorTreeAnalysis>(MF);
960   MachineBlockFrequencyInfo &MBFI =
961       MFAM.getResult<MachineBlockFrequencyAnalysis>(MF);
962   MachineCSEImpl Impl(&MDT, &MBFI);
963   bool Changed = Impl.run(MF);
964   if (!Changed)
965     return PreservedAnalyses::all();
966 
967   auto PA = getMachineFunctionPassPreservedAnalyses();
968   PA.preserve<MachineLoopAnalysis>();
969   PA.preserve<MachineDominatorTreeAnalysis>();
970   PA.preserve<MachineBlockFrequencyAnalysis>();
971   PA.preserveSet<CFGAnalyses>();
972   return PA;
973 }
974 
975 bool MachineCSELegacy::runOnMachineFunction(MachineFunction &MF) {
976   if (skipFunction(MF.getFunction()))
977     return false;
978 
979   MachineDominatorTree &MDT =
980       getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
981   MachineBlockFrequencyInfo &MBFI =
982       getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI();
983   MachineCSEImpl Impl(&MDT, &MBFI);
984   return Impl.run(MF);
985 }
986