1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/DataTypes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 if (B) 46 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 47 } 48 49 MachineBasicBlock::~MachineBasicBlock() { 50 } 51 52 /// Return the MCSymbol for this basic block. 53 MCSymbol *MachineBasicBlock::getSymbol() const { 54 if (!CachedMCSymbol) { 55 const MachineFunction *MF = getParent(); 56 MCContext &Ctx = MF->getContext(); 57 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 58 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 59 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 60 Twine(MF->getFunctionNumber()) + 61 "_" + Twine(getNumber())); 62 } 63 64 return CachedMCSymbol; 65 } 66 67 68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 69 MBB.print(OS); 70 return OS; 71 } 72 73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 74 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 75 } 76 77 /// When an MBB is added to an MF, we need to update the parent pointer of the 78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 79 /// operand list for registers. 80 /// 81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 82 /// gets the next available unique MBB number. If it is removed from a 83 /// MachineFunction, it goes back to being #-1. 84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 85 MachineBasicBlock *N) { 86 MachineFunction &MF = *N->getParent(); 87 N->Number = MF.addToMBBNumbering(N); 88 89 // Make sure the instructions have their operands in the reginfo lists. 90 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 91 for (MachineBasicBlock::instr_iterator 92 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 93 I->AddRegOperandsToUseLists(RegInfo); 94 } 95 96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 97 MachineBasicBlock *N) { 98 N->getParent()->removeFromMBBNumbering(N->Number); 99 N->Number = -1; 100 } 101 102 /// When we add an instruction to a basic block list, we update its parent 103 /// pointer and add its operands from reg use/def lists if appropriate. 104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 105 assert(!N->getParent() && "machine instruction already in a basic block"); 106 N->setParent(Parent); 107 108 // Add the instruction's register operands to their corresponding 109 // use/def lists. 110 MachineFunction *MF = Parent->getParent(); 111 N->AddRegOperandsToUseLists(MF->getRegInfo()); 112 } 113 114 /// When we remove an instruction from a basic block list, we update its parent 115 /// pointer and remove its operands from reg use/def lists if appropriate. 116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 117 assert(N->getParent() && "machine instruction not in a basic block"); 118 119 // Remove from the use/def lists. 120 if (MachineFunction *MF = N->getMF()) 121 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 122 123 N->setParent(nullptr); 124 } 125 126 /// When moving a range of instructions from one MBB list to another, we need to 127 /// update the parent pointers and the use/def lists. 128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 129 instr_iterator First, 130 instr_iterator Last) { 131 assert(Parent->getParent() == FromList.Parent->getParent() && 132 "MachineInstr parent mismatch!"); 133 assert(this != &FromList && "Called without a real transfer..."); 134 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 135 136 // If splicing between two blocks within the same function, just update the 137 // parent pointers. 138 for (; First != Last; ++First) 139 First->setParent(Parent); 140 } 141 142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 143 assert(!MI->getParent() && "MI is still in a block!"); 144 Parent->getParent()->DeleteMachineInstr(MI); 145 } 146 147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 148 instr_iterator I = instr_begin(), E = instr_end(); 149 while (I != E && I->isPHI()) 150 ++I; 151 assert((I == E || !I->isInsideBundle()) && 152 "First non-phi MI cannot be inside a bundle!"); 153 return I; 154 } 155 156 MachineBasicBlock::iterator 157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 158 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 159 160 iterator E = end(); 161 while (I != E && (I->isPHI() || I->isPosition() || 162 TII->isBasicBlockPrologue(*I))) 163 ++I; 164 // FIXME: This needs to change if we wish to bundle labels 165 // inside the bundle. 166 assert((I == E || !I->isInsideBundle()) && 167 "First non-phi / non-label instruction is inside a bundle!"); 168 return I; 169 } 170 171 MachineBasicBlock::iterator 172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 173 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 174 175 iterator E = end(); 176 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 177 TII->isBasicBlockPrologue(*I))) 178 ++I; 179 // FIXME: This needs to change if we wish to bundle labels / dbg_values 180 // inside the bundle. 181 assert((I == E || !I->isInsideBundle()) && 182 "First non-phi / non-label / non-debug " 183 "instruction is inside a bundle!"); 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 188 iterator B = begin(), E = end(), I = E; 189 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 190 ; /*noop */ 191 while (I != E && !I->isTerminator()) 192 ++I; 193 return I; 194 } 195 196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 197 instr_iterator B = instr_begin(), E = instr_end(), I = E; 198 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 199 ; /*noop */ 200 while (I != E && !I->isTerminator()) 201 ++I; 202 return I; 203 } 204 205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 206 // Skip over begin-of-block dbg_value instructions. 207 return skipDebugInstructionsForward(begin(), end()); 208 } 209 210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 211 // Skip over end-of-block dbg_value instructions. 212 instr_iterator B = instr_begin(), I = instr_end(); 213 while (I != B) { 214 --I; 215 // Return instruction that starts a bundle. 216 if (I->isDebugValue() || I->isInsideBundle()) 217 continue; 218 return I; 219 } 220 // The block is all debug values. 221 return end(); 222 } 223 224 bool MachineBasicBlock::hasEHPadSuccessor() const { 225 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 226 if ((*I)->isEHPad()) 227 return true; 228 return false; 229 } 230 231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 233 print(dbgs()); 234 } 235 #endif 236 237 bool MachineBasicBlock::isLegalToHoistInto() const { 238 if (isReturnBlock() || hasEHPadSuccessor()) 239 return false; 240 return true; 241 } 242 243 StringRef MachineBasicBlock::getName() const { 244 if (const BasicBlock *LBB = getBasicBlock()) 245 return LBB->getName(); 246 else 247 return StringRef("", 0); 248 } 249 250 /// Return a hopefully unique identifier for this block. 251 std::string MachineBasicBlock::getFullName() const { 252 std::string Name; 253 if (getParent()) 254 Name = (getParent()->getName() + ":").str(); 255 if (getBasicBlock()) 256 Name += getBasicBlock()->getName(); 257 else 258 Name += ("BB" + Twine(getNumber())).str(); 259 return Name; 260 } 261 262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 263 bool IsStandalone) const { 264 const MachineFunction *MF = getParent(); 265 if (!MF) { 266 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 267 << " is null\n"; 268 return; 269 } 270 const Function &F = MF->getFunction(); 271 const Module *M = F.getParent(); 272 ModuleSlotTracker MST(M); 273 MST.incorporateFunction(F); 274 print(OS, MST, Indexes, IsStandalone); 275 } 276 277 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 278 const SlotIndexes *Indexes, 279 bool IsStandalone) const { 280 const MachineFunction *MF = getParent(); 281 if (!MF) { 282 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 283 << " is null\n"; 284 return; 285 } 286 287 if (Indexes) 288 OS << Indexes->getMBBStartIdx(this) << '\t'; 289 290 OS << "bb." << getNumber(); 291 bool HasAttributes = false; 292 if (const auto *BB = getBasicBlock()) { 293 if (BB->hasName()) { 294 OS << "." << BB->getName(); 295 } else { 296 HasAttributes = true; 297 OS << " ("; 298 int Slot = MST.getLocalSlot(BB); 299 if (Slot == -1) 300 OS << "<ir-block badref>"; 301 else 302 OS << (Twine("%ir-block.") + Twine(Slot)).str(); 303 } 304 } 305 306 if (hasAddressTaken()) { 307 OS << (HasAttributes ? ", " : " ("); 308 OS << "address-taken"; 309 HasAttributes = true; 310 } 311 if (isEHPad()) { 312 OS << (HasAttributes ? ", " : " ("); 313 OS << "landing-pad"; 314 HasAttributes = true; 315 } 316 if (getAlignment()) { 317 OS << (HasAttributes ? ", " : " ("); 318 OS << "align " << getAlignment(); 319 HasAttributes = true; 320 } 321 if (HasAttributes) 322 OS << ")"; 323 OS << ":\n"; 324 325 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 326 const MachineRegisterInfo &MRI = MF->getRegInfo(); 327 if (!livein_empty() && MRI.tracksLiveness()) { 328 if (Indexes) OS << '\t'; 329 OS.indent(2) << "liveins: "; 330 331 bool First = true; 332 for (const auto &LI : liveins()) { 333 if (!First) 334 OS << ", "; 335 First = false; 336 OS << printReg(LI.PhysReg, TRI); 337 if (!LI.LaneMask.all()) 338 OS << ":0x" << PrintLaneMask(LI.LaneMask); 339 } 340 OS << '\n'; 341 } 342 343 if (!succ_empty()) { 344 if (Indexes) OS << '\t'; 345 // Print the successors 346 OS.indent(2) << "successors: "; 347 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 348 if (I != succ_begin()) 349 OS << ", "; 350 OS << printMBBReference(**I); 351 if (!Probs.empty()) 352 OS << '(' 353 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 354 << ')'; 355 } 356 if (!Probs.empty()) { 357 // Print human readable probabilities as comments. 358 OS << "; "; 359 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 360 const BranchProbability &BP = *getProbabilityIterator(I); 361 if (I != succ_begin()) 362 OS << ", "; 363 OS << printMBBReference(**I) << '(' 364 << format("%.2f%%", 365 rint(((double)BP.getNumerator() / BP.getDenominator()) * 366 100.0 * 100.0) / 367 100.0) 368 << ')'; 369 } 370 OS << '\n'; 371 } 372 } 373 374 // Print the preds of this block according to the CFG. 375 if (!pred_empty()) { 376 if (Indexes) OS << '\t'; 377 OS << " Predecessors according to CFG:"; 378 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 379 OS << " " << printMBBReference(*(*PI)); 380 OS << '\n'; 381 } 382 383 for (auto &I : instrs()) { 384 if (Indexes) { 385 if (Indexes->hasIndex(I)) 386 OS << Indexes->getInstructionIndex(I); 387 OS << '\t'; 388 } 389 OS << '\t'; 390 if (I.isInsideBundle()) 391 OS << " * "; 392 I.print(OS, MST, IsStandalone); 393 OS << '\n'; 394 } 395 396 if (IrrLoopHeaderWeight) { 397 if (Indexes) OS << '\t'; 398 OS << " Irreducible loop header weight: " 399 << IrrLoopHeaderWeight.getValue(); 400 OS << '\n'; 401 } 402 } 403 404 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 405 bool /*PrintType*/) const { 406 OS << "%bb." << getNumber(); 407 } 408 409 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 410 LiveInVector::iterator I = find_if( 411 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 412 if (I == LiveIns.end()) 413 return; 414 415 I->LaneMask &= ~LaneMask; 416 if (I->LaneMask.none()) 417 LiveIns.erase(I); 418 } 419 420 MachineBasicBlock::livein_iterator 421 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 422 // Get non-const version of iterator. 423 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 424 return LiveIns.erase(LI); 425 } 426 427 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 428 livein_iterator I = find_if( 429 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 430 return I != livein_end() && (I->LaneMask & LaneMask).any(); 431 } 432 433 void MachineBasicBlock::sortUniqueLiveIns() { 434 std::sort(LiveIns.begin(), LiveIns.end(), 435 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 436 return LI0.PhysReg < LI1.PhysReg; 437 }); 438 // Liveins are sorted by physreg now we can merge their lanemasks. 439 LiveInVector::const_iterator I = LiveIns.begin(); 440 LiveInVector::const_iterator J; 441 LiveInVector::iterator Out = LiveIns.begin(); 442 for (; I != LiveIns.end(); ++Out, I = J) { 443 unsigned PhysReg = I->PhysReg; 444 LaneBitmask LaneMask = I->LaneMask; 445 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 446 LaneMask |= J->LaneMask; 447 Out->PhysReg = PhysReg; 448 Out->LaneMask = LaneMask; 449 } 450 LiveIns.erase(Out, LiveIns.end()); 451 } 452 453 unsigned 454 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 455 assert(getParent() && "MBB must be inserted in function"); 456 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 457 assert(RC && "Register class is required"); 458 assert((isEHPad() || this == &getParent()->front()) && 459 "Only the entry block and landing pads can have physreg live ins"); 460 461 bool LiveIn = isLiveIn(PhysReg); 462 iterator I = SkipPHIsAndLabels(begin()), E = end(); 463 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 464 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 465 466 // Look for an existing copy. 467 if (LiveIn) 468 for (;I != E && I->isCopy(); ++I) 469 if (I->getOperand(1).getReg() == PhysReg) { 470 unsigned VirtReg = I->getOperand(0).getReg(); 471 if (!MRI.constrainRegClass(VirtReg, RC)) 472 llvm_unreachable("Incompatible live-in register class."); 473 return VirtReg; 474 } 475 476 // No luck, create a virtual register. 477 unsigned VirtReg = MRI.createVirtualRegister(RC); 478 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 479 .addReg(PhysReg, RegState::Kill); 480 if (!LiveIn) 481 addLiveIn(PhysReg); 482 return VirtReg; 483 } 484 485 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 486 getParent()->splice(NewAfter->getIterator(), getIterator()); 487 } 488 489 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 490 getParent()->splice(++NewBefore->getIterator(), getIterator()); 491 } 492 493 void MachineBasicBlock::updateTerminator() { 494 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 495 // A block with no successors has no concerns with fall-through edges. 496 if (this->succ_empty()) 497 return; 498 499 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 500 SmallVector<MachineOperand, 4> Cond; 501 DebugLoc DL = findBranchDebugLoc(); 502 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 503 (void) B; 504 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 505 if (Cond.empty()) { 506 if (TBB) { 507 // The block has an unconditional branch. If its successor is now its 508 // layout successor, delete the branch. 509 if (isLayoutSuccessor(TBB)) 510 TII->removeBranch(*this); 511 } else { 512 // The block has an unconditional fallthrough. If its successor is not its 513 // layout successor, insert a branch. First we have to locate the only 514 // non-landing-pad successor, as that is the fallthrough block. 515 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 516 if ((*SI)->isEHPad()) 517 continue; 518 assert(!TBB && "Found more than one non-landing-pad successor!"); 519 TBB = *SI; 520 } 521 522 // If there is no non-landing-pad successor, the block has no fall-through 523 // edges to be concerned with. 524 if (!TBB) 525 return; 526 527 // Finally update the unconditional successor to be reached via a branch 528 // if it would not be reached by fallthrough. 529 if (!isLayoutSuccessor(TBB)) 530 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 531 } 532 return; 533 } 534 535 if (FBB) { 536 // The block has a non-fallthrough conditional branch. If one of its 537 // successors is its layout successor, rewrite it to a fallthrough 538 // conditional branch. 539 if (isLayoutSuccessor(TBB)) { 540 if (TII->reverseBranchCondition(Cond)) 541 return; 542 TII->removeBranch(*this); 543 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 544 } else if (isLayoutSuccessor(FBB)) { 545 TII->removeBranch(*this); 546 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 547 } 548 return; 549 } 550 551 // Walk through the successors and find the successor which is not a landing 552 // pad and is not the conditional branch destination (in TBB) as the 553 // fallthrough successor. 554 MachineBasicBlock *FallthroughBB = nullptr; 555 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 556 if ((*SI)->isEHPad() || *SI == TBB) 557 continue; 558 assert(!FallthroughBB && "Found more than one fallthrough successor."); 559 FallthroughBB = *SI; 560 } 561 562 if (!FallthroughBB) { 563 if (canFallThrough()) { 564 // We fallthrough to the same basic block as the conditional jump targets. 565 // Remove the conditional jump, leaving unconditional fallthrough. 566 // FIXME: This does not seem like a reasonable pattern to support, but it 567 // has been seen in the wild coming out of degenerate ARM test cases. 568 TII->removeBranch(*this); 569 570 // Finally update the unconditional successor to be reached via a branch if 571 // it would not be reached by fallthrough. 572 if (!isLayoutSuccessor(TBB)) 573 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 574 return; 575 } 576 577 // We enter here iff exactly one successor is TBB which cannot fallthrough 578 // and the rest successors if any are EHPads. In this case, we need to 579 // change the conditional branch into unconditional branch. 580 TII->removeBranch(*this); 581 Cond.clear(); 582 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 583 return; 584 } 585 586 // The block has a fallthrough conditional branch. 587 if (isLayoutSuccessor(TBB)) { 588 if (TII->reverseBranchCondition(Cond)) { 589 // We can't reverse the condition, add an unconditional branch. 590 Cond.clear(); 591 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 592 return; 593 } 594 TII->removeBranch(*this); 595 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 596 } else if (!isLayoutSuccessor(FallthroughBB)) { 597 TII->removeBranch(*this); 598 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 599 } 600 } 601 602 void MachineBasicBlock::validateSuccProbs() const { 603 #ifndef NDEBUG 604 int64_t Sum = 0; 605 for (auto Prob : Probs) 606 Sum += Prob.getNumerator(); 607 // Due to precision issue, we assume that the sum of probabilities is one if 608 // the difference between the sum of their numerators and the denominator is 609 // no greater than the number of successors. 610 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 611 Probs.size() && 612 "The sum of successors's probabilities exceeds one."); 613 #endif // NDEBUG 614 } 615 616 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 617 BranchProbability Prob) { 618 // Probability list is either empty (if successor list isn't empty, this means 619 // disabled optimization) or has the same size as successor list. 620 if (!(Probs.empty() && !Successors.empty())) 621 Probs.push_back(Prob); 622 Successors.push_back(Succ); 623 Succ->addPredecessor(this); 624 } 625 626 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 627 // We need to make sure probability list is either empty or has the same size 628 // of successor list. When this function is called, we can safely delete all 629 // probability in the list. 630 Probs.clear(); 631 Successors.push_back(Succ); 632 Succ->addPredecessor(this); 633 } 634 635 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 636 bool NormalizeSuccProbs) { 637 succ_iterator I = find(Successors, Succ); 638 removeSuccessor(I, NormalizeSuccProbs); 639 } 640 641 MachineBasicBlock::succ_iterator 642 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 643 assert(I != Successors.end() && "Not a current successor!"); 644 645 // If probability list is empty it means we don't use it (disabled 646 // optimization). 647 if (!Probs.empty()) { 648 probability_iterator WI = getProbabilityIterator(I); 649 Probs.erase(WI); 650 if (NormalizeSuccProbs) 651 normalizeSuccProbs(); 652 } 653 654 (*I)->removePredecessor(this); 655 return Successors.erase(I); 656 } 657 658 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 659 MachineBasicBlock *New) { 660 if (Old == New) 661 return; 662 663 succ_iterator E = succ_end(); 664 succ_iterator NewI = E; 665 succ_iterator OldI = E; 666 for (succ_iterator I = succ_begin(); I != E; ++I) { 667 if (*I == Old) { 668 OldI = I; 669 if (NewI != E) 670 break; 671 } 672 if (*I == New) { 673 NewI = I; 674 if (OldI != E) 675 break; 676 } 677 } 678 assert(OldI != E && "Old is not a successor of this block"); 679 680 // If New isn't already a successor, let it take Old's place. 681 if (NewI == E) { 682 Old->removePredecessor(this); 683 New->addPredecessor(this); 684 *OldI = New; 685 return; 686 } 687 688 // New is already a successor. 689 // Update its probability instead of adding a duplicate edge. 690 if (!Probs.empty()) { 691 auto ProbIter = getProbabilityIterator(NewI); 692 if (!ProbIter->isUnknown()) 693 *ProbIter += *getProbabilityIterator(OldI); 694 } 695 removeSuccessor(OldI); 696 } 697 698 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 699 Predecessors.push_back(Pred); 700 } 701 702 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 703 pred_iterator I = find(Predecessors, Pred); 704 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 705 Predecessors.erase(I); 706 } 707 708 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 709 if (this == FromMBB) 710 return; 711 712 while (!FromMBB->succ_empty()) { 713 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 714 715 // If probability list is empty it means we don't use it (disabled optimization). 716 if (!FromMBB->Probs.empty()) { 717 auto Prob = *FromMBB->Probs.begin(); 718 addSuccessor(Succ, Prob); 719 } else 720 addSuccessorWithoutProb(Succ); 721 722 FromMBB->removeSuccessor(Succ); 723 } 724 } 725 726 void 727 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 728 if (this == FromMBB) 729 return; 730 731 while (!FromMBB->succ_empty()) { 732 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 733 if (!FromMBB->Probs.empty()) { 734 auto Prob = *FromMBB->Probs.begin(); 735 addSuccessor(Succ, Prob); 736 } else 737 addSuccessorWithoutProb(Succ); 738 FromMBB->removeSuccessor(Succ); 739 740 // Fix up any PHI nodes in the successor. 741 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 742 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 743 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 744 MachineOperand &MO = MI->getOperand(i); 745 if (MO.getMBB() == FromMBB) 746 MO.setMBB(this); 747 } 748 } 749 normalizeSuccProbs(); 750 } 751 752 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 753 return is_contained(predecessors(), MBB); 754 } 755 756 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 757 return is_contained(successors(), MBB); 758 } 759 760 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 761 MachineFunction::const_iterator I(this); 762 return std::next(I) == MachineFunction::const_iterator(MBB); 763 } 764 765 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 766 MachineFunction::iterator Fallthrough = getIterator(); 767 ++Fallthrough; 768 // If FallthroughBlock is off the end of the function, it can't fall through. 769 if (Fallthrough == getParent()->end()) 770 return nullptr; 771 772 // If FallthroughBlock isn't a successor, no fallthrough is possible. 773 if (!isSuccessor(&*Fallthrough)) 774 return nullptr; 775 776 // Analyze the branches, if any, at the end of the block. 777 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 778 SmallVector<MachineOperand, 4> Cond; 779 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 780 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 781 // If we couldn't analyze the branch, examine the last instruction. 782 // If the block doesn't end in a known control barrier, assume fallthrough 783 // is possible. The isPredicated check is needed because this code can be 784 // called during IfConversion, where an instruction which is normally a 785 // Barrier is predicated and thus no longer an actual control barrier. 786 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 787 ? &*Fallthrough 788 : nullptr; 789 } 790 791 // If there is no branch, control always falls through. 792 if (!TBB) return &*Fallthrough; 793 794 // If there is some explicit branch to the fallthrough block, it can obviously 795 // reach, even though the branch should get folded to fall through implicitly. 796 if (MachineFunction::iterator(TBB) == Fallthrough || 797 MachineFunction::iterator(FBB) == Fallthrough) 798 return &*Fallthrough; 799 800 // If it's an unconditional branch to some block not the fall through, it 801 // doesn't fall through. 802 if (Cond.empty()) return nullptr; 803 804 // Otherwise, if it is conditional and has no explicit false block, it falls 805 // through. 806 return (FBB == nullptr) ? &*Fallthrough : nullptr; 807 } 808 809 bool MachineBasicBlock::canFallThrough() { 810 return getFallThrough() != nullptr; 811 } 812 813 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 814 Pass &P) { 815 if (!canSplitCriticalEdge(Succ)) 816 return nullptr; 817 818 MachineFunction *MF = getParent(); 819 DebugLoc DL; // FIXME: this is nowhere 820 821 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 822 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 823 DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 824 << " -- " << printMBBReference(*NMBB) << " -- " 825 << printMBBReference(*Succ) << '\n'); 826 827 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 828 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 829 if (LIS) 830 LIS->insertMBBInMaps(NMBB); 831 else if (Indexes) 832 Indexes->insertMBBInMaps(NMBB); 833 834 // On some targets like Mips, branches may kill virtual registers. Make sure 835 // that LiveVariables is properly updated after updateTerminator replaces the 836 // terminators. 837 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 838 839 // Collect a list of virtual registers killed by the terminators. 840 SmallVector<unsigned, 4> KilledRegs; 841 if (LV) 842 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 843 I != E; ++I) { 844 MachineInstr *MI = &*I; 845 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 846 OE = MI->operands_end(); OI != OE; ++OI) { 847 if (!OI->isReg() || OI->getReg() == 0 || 848 !OI->isUse() || !OI->isKill() || OI->isUndef()) 849 continue; 850 unsigned Reg = OI->getReg(); 851 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 852 LV->getVarInfo(Reg).removeKill(*MI)) { 853 KilledRegs.push_back(Reg); 854 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 855 OI->setIsKill(false); 856 } 857 } 858 } 859 860 SmallVector<unsigned, 4> UsedRegs; 861 if (LIS) { 862 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 863 I != E; ++I) { 864 MachineInstr *MI = &*I; 865 866 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 867 OE = MI->operands_end(); OI != OE; ++OI) { 868 if (!OI->isReg() || OI->getReg() == 0) 869 continue; 870 871 unsigned Reg = OI->getReg(); 872 if (!is_contained(UsedRegs, Reg)) 873 UsedRegs.push_back(Reg); 874 } 875 } 876 } 877 878 ReplaceUsesOfBlockWith(Succ, NMBB); 879 880 // If updateTerminator() removes instructions, we need to remove them from 881 // SlotIndexes. 882 SmallVector<MachineInstr*, 4> Terminators; 883 if (Indexes) { 884 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 885 I != E; ++I) 886 Terminators.push_back(&*I); 887 } 888 889 updateTerminator(); 890 891 if (Indexes) { 892 SmallVector<MachineInstr*, 4> NewTerminators; 893 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 894 I != E; ++I) 895 NewTerminators.push_back(&*I); 896 897 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 898 E = Terminators.end(); I != E; ++I) { 899 if (!is_contained(NewTerminators, *I)) 900 Indexes->removeMachineInstrFromMaps(**I); 901 } 902 } 903 904 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 905 NMBB->addSuccessor(Succ); 906 if (!NMBB->isLayoutSuccessor(Succ)) { 907 SmallVector<MachineOperand, 4> Cond; 908 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 909 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 910 911 if (Indexes) { 912 for (MachineInstr &MI : NMBB->instrs()) { 913 // Some instructions may have been moved to NMBB by updateTerminator(), 914 // so we first remove any instruction that already has an index. 915 if (Indexes->hasIndex(MI)) 916 Indexes->removeMachineInstrFromMaps(MI); 917 Indexes->insertMachineInstrInMaps(MI); 918 } 919 } 920 } 921 922 // Fix PHI nodes in Succ so they refer to NMBB instead of this 923 for (MachineBasicBlock::instr_iterator 924 i = Succ->instr_begin(),e = Succ->instr_end(); 925 i != e && i->isPHI(); ++i) 926 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 927 if (i->getOperand(ni+1).getMBB() == this) 928 i->getOperand(ni+1).setMBB(NMBB); 929 930 // Inherit live-ins from the successor 931 for (const auto &LI : Succ->liveins()) 932 NMBB->addLiveIn(LI); 933 934 // Update LiveVariables. 935 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 936 if (LV) { 937 // Restore kills of virtual registers that were killed by the terminators. 938 while (!KilledRegs.empty()) { 939 unsigned Reg = KilledRegs.pop_back_val(); 940 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 941 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 942 continue; 943 if (TargetRegisterInfo::isVirtualRegister(Reg)) 944 LV->getVarInfo(Reg).Kills.push_back(&*I); 945 DEBUG(dbgs() << "Restored terminator kill: " << *I); 946 break; 947 } 948 } 949 // Update relevant live-through information. 950 LV->addNewBlock(NMBB, this, Succ); 951 } 952 953 if (LIS) { 954 // After splitting the edge and updating SlotIndexes, live intervals may be 955 // in one of two situations, depending on whether this block was the last in 956 // the function. If the original block was the last in the function, all 957 // live intervals will end prior to the beginning of the new split block. If 958 // the original block was not at the end of the function, all live intervals 959 // will extend to the end of the new split block. 960 961 bool isLastMBB = 962 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 963 964 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 965 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 966 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 967 968 // Find the registers used from NMBB in PHIs in Succ. 969 SmallSet<unsigned, 8> PHISrcRegs; 970 for (MachineBasicBlock::instr_iterator 971 I = Succ->instr_begin(), E = Succ->instr_end(); 972 I != E && I->isPHI(); ++I) { 973 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 974 if (I->getOperand(ni+1).getMBB() == NMBB) { 975 MachineOperand &MO = I->getOperand(ni); 976 unsigned Reg = MO.getReg(); 977 PHISrcRegs.insert(Reg); 978 if (MO.isUndef()) 979 continue; 980 981 LiveInterval &LI = LIS->getInterval(Reg); 982 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 983 assert(VNI && 984 "PHI sources should be live out of their predecessors."); 985 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 986 } 987 } 988 } 989 990 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 991 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 992 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 993 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 994 continue; 995 996 LiveInterval &LI = LIS->getInterval(Reg); 997 if (!LI.liveAt(PrevIndex)) 998 continue; 999 1000 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1001 if (isLiveOut && isLastMBB) { 1002 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1003 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1004 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1005 } else if (!isLiveOut && !isLastMBB) { 1006 LI.removeSegment(StartIndex, EndIndex); 1007 } 1008 } 1009 1010 // Update all intervals for registers whose uses may have been modified by 1011 // updateTerminator(). 1012 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1013 } 1014 1015 if (MachineDominatorTree *MDT = 1016 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1017 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1018 1019 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1020 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1021 // If one or the other blocks were not in a loop, the new block is not 1022 // either, and thus LI doesn't need to be updated. 1023 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1024 if (TIL == DestLoop) { 1025 // Both in the same loop, the NMBB joins loop. 1026 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1027 } else if (TIL->contains(DestLoop)) { 1028 // Edge from an outer loop to an inner loop. Add to the outer loop. 1029 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1030 } else if (DestLoop->contains(TIL)) { 1031 // Edge from an inner loop to an outer loop. Add to the outer loop. 1032 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1033 } else { 1034 // Edge from two loops with no containment relation. Because these 1035 // are natural loops, we know that the destination block must be the 1036 // header of its loop (adding a branch into a loop elsewhere would 1037 // create an irreducible loop). 1038 assert(DestLoop->getHeader() == Succ && 1039 "Should not create irreducible loops!"); 1040 if (MachineLoop *P = DestLoop->getParentLoop()) 1041 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1042 } 1043 } 1044 } 1045 1046 return NMBB; 1047 } 1048 1049 bool MachineBasicBlock::canSplitCriticalEdge( 1050 const MachineBasicBlock *Succ) const { 1051 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1052 // it in this generic function. 1053 if (Succ->isEHPad()) 1054 return false; 1055 1056 const MachineFunction *MF = getParent(); 1057 1058 // Performance might be harmed on HW that implements branching using exec mask 1059 // where both sides of the branches are always executed. 1060 if (MF->getTarget().requiresStructuredCFG()) 1061 return false; 1062 1063 // We may need to update this's terminator, but we can't do that if 1064 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1065 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1066 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1067 SmallVector<MachineOperand, 4> Cond; 1068 // AnalyzeBanch should modify this, since we did not allow modification. 1069 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1070 /*AllowModify*/ false)) 1071 return false; 1072 1073 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1074 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1075 // case that we can't handle. Since this never happens in properly optimized 1076 // code, just skip those edges. 1077 if (TBB && TBB == FBB) { 1078 DEBUG(dbgs() << "Won't split critical edge after degenerate " 1079 << printMBBReference(*this) << '\n'); 1080 return false; 1081 } 1082 return true; 1083 } 1084 1085 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1086 /// neighboring instructions so the bundle won't be broken by removing MI. 1087 static void unbundleSingleMI(MachineInstr *MI) { 1088 // Removing the first instruction in a bundle. 1089 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1090 MI->unbundleFromSucc(); 1091 // Removing the last instruction in a bundle. 1092 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1093 MI->unbundleFromPred(); 1094 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1095 // are already fine. 1096 } 1097 1098 MachineBasicBlock::instr_iterator 1099 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1100 unbundleSingleMI(&*I); 1101 return Insts.erase(I); 1102 } 1103 1104 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1105 unbundleSingleMI(MI); 1106 MI->clearFlag(MachineInstr::BundledPred); 1107 MI->clearFlag(MachineInstr::BundledSucc); 1108 return Insts.remove(MI); 1109 } 1110 1111 MachineBasicBlock::instr_iterator 1112 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1113 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1114 "Cannot insert instruction with bundle flags"); 1115 // Set the bundle flags when inserting inside a bundle. 1116 if (I != instr_end() && I->isBundledWithPred()) { 1117 MI->setFlag(MachineInstr::BundledPred); 1118 MI->setFlag(MachineInstr::BundledSucc); 1119 } 1120 return Insts.insert(I, MI); 1121 } 1122 1123 /// This method unlinks 'this' from the containing function, and returns it, but 1124 /// does not delete it. 1125 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1126 assert(getParent() && "Not embedded in a function!"); 1127 getParent()->remove(this); 1128 return this; 1129 } 1130 1131 /// This method unlinks 'this' from the containing function, and deletes it. 1132 void MachineBasicBlock::eraseFromParent() { 1133 assert(getParent() && "Not embedded in a function!"); 1134 getParent()->erase(this); 1135 } 1136 1137 /// Given a machine basic block that branched to 'Old', change the code and CFG 1138 /// so that it branches to 'New' instead. 1139 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1140 MachineBasicBlock *New) { 1141 assert(Old != New && "Cannot replace self with self!"); 1142 1143 MachineBasicBlock::instr_iterator I = instr_end(); 1144 while (I != instr_begin()) { 1145 --I; 1146 if (!I->isTerminator()) break; 1147 1148 // Scan the operands of this machine instruction, replacing any uses of Old 1149 // with New. 1150 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1151 if (I->getOperand(i).isMBB() && 1152 I->getOperand(i).getMBB() == Old) 1153 I->getOperand(i).setMBB(New); 1154 } 1155 1156 // Update the successor information. 1157 replaceSuccessor(Old, New); 1158 } 1159 1160 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1161 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1162 /// MBB successors from the CFG. DestA and DestB can be null. 1163 /// 1164 /// Besides DestA and DestB, retain other edges leading to LandingPads 1165 /// (currently there can be only one; we don't check or require that here). 1166 /// Note it is possible that DestA and/or DestB are LandingPads. 1167 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1168 MachineBasicBlock *DestB, 1169 bool IsCond) { 1170 // The values of DestA and DestB frequently come from a call to the 1171 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1172 // values from there. 1173 // 1174 // 1. If both DestA and DestB are null, then the block ends with no branches 1175 // (it falls through to its successor). 1176 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1177 // with only an unconditional branch. 1178 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1179 // with a conditional branch that falls through to a successor (DestB). 1180 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1181 // conditional branch followed by an unconditional branch. DestA is the 1182 // 'true' destination and DestB is the 'false' destination. 1183 1184 bool Changed = false; 1185 1186 MachineBasicBlock *FallThru = getNextNode(); 1187 1188 if (!DestA && !DestB) { 1189 // Block falls through to successor. 1190 DestA = FallThru; 1191 DestB = FallThru; 1192 } else if (DestA && !DestB) { 1193 if (IsCond) 1194 // Block ends in conditional jump that falls through to successor. 1195 DestB = FallThru; 1196 } else { 1197 assert(DestA && DestB && IsCond && 1198 "CFG in a bad state. Cannot correct CFG edges"); 1199 } 1200 1201 // Remove superfluous edges. I.e., those which aren't destinations of this 1202 // basic block, duplicate edges, or landing pads. 1203 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1204 MachineBasicBlock::succ_iterator SI = succ_begin(); 1205 while (SI != succ_end()) { 1206 const MachineBasicBlock *MBB = *SI; 1207 if (!SeenMBBs.insert(MBB).second || 1208 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1209 // This is a superfluous edge, remove it. 1210 SI = removeSuccessor(SI); 1211 Changed = true; 1212 } else { 1213 ++SI; 1214 } 1215 } 1216 1217 if (Changed) 1218 normalizeSuccProbs(); 1219 return Changed; 1220 } 1221 1222 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1223 /// instructions. Return UnknownLoc if there is none. 1224 DebugLoc 1225 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1226 // Skip debug declarations, we don't want a DebugLoc from them. 1227 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1228 if (MBBI != instr_end()) 1229 return MBBI->getDebugLoc(); 1230 return {}; 1231 } 1232 1233 /// Find and return the merged DebugLoc of the branch instructions of the block. 1234 /// Return UnknownLoc if there is none. 1235 DebugLoc 1236 MachineBasicBlock::findBranchDebugLoc() { 1237 DebugLoc DL; 1238 auto TI = getFirstTerminator(); 1239 while (TI != end() && !TI->isBranch()) 1240 ++TI; 1241 1242 if (TI != end()) { 1243 DL = TI->getDebugLoc(); 1244 for (++TI ; TI != end() ; ++TI) 1245 if (TI->isBranch()) 1246 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1247 } 1248 return DL; 1249 } 1250 1251 /// Return probability of the edge from this block to MBB. 1252 BranchProbability 1253 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1254 if (Probs.empty()) 1255 return BranchProbability(1, succ_size()); 1256 1257 const auto &Prob = *getProbabilityIterator(Succ); 1258 if (Prob.isUnknown()) { 1259 // For unknown probabilities, collect the sum of all known ones, and evenly 1260 // ditribute the complemental of the sum to each unknown probability. 1261 unsigned KnownProbNum = 0; 1262 auto Sum = BranchProbability::getZero(); 1263 for (auto &P : Probs) { 1264 if (!P.isUnknown()) { 1265 Sum += P; 1266 KnownProbNum++; 1267 } 1268 } 1269 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1270 } else 1271 return Prob; 1272 } 1273 1274 /// Set successor probability of a given iterator. 1275 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1276 BranchProbability Prob) { 1277 assert(!Prob.isUnknown()); 1278 if (Probs.empty()) 1279 return; 1280 *getProbabilityIterator(I) = Prob; 1281 } 1282 1283 /// Return probability iterator corresonding to the I successor iterator 1284 MachineBasicBlock::const_probability_iterator 1285 MachineBasicBlock::getProbabilityIterator( 1286 MachineBasicBlock::const_succ_iterator I) const { 1287 assert(Probs.size() == Successors.size() && "Async probability list!"); 1288 const size_t index = std::distance(Successors.begin(), I); 1289 assert(index < Probs.size() && "Not a current successor!"); 1290 return Probs.begin() + index; 1291 } 1292 1293 /// Return probability iterator corresonding to the I successor iterator. 1294 MachineBasicBlock::probability_iterator 1295 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1296 assert(Probs.size() == Successors.size() && "Async probability list!"); 1297 const size_t index = std::distance(Successors.begin(), I); 1298 assert(index < Probs.size() && "Not a current successor!"); 1299 return Probs.begin() + index; 1300 } 1301 1302 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1303 /// as of just before "MI". 1304 /// 1305 /// Search is localised to a neighborhood of 1306 /// Neighborhood instructions before (searching for defs or kills) and N 1307 /// instructions after (searching just for defs) MI. 1308 MachineBasicBlock::LivenessQueryResult 1309 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1310 unsigned Reg, const_iterator Before, 1311 unsigned Neighborhood) const { 1312 unsigned N = Neighborhood; 1313 1314 // Start by searching backwards from Before, looking for kills, reads or defs. 1315 const_iterator I(Before); 1316 // If this is the first insn in the block, don't search backwards. 1317 if (I != begin()) { 1318 do { 1319 --I; 1320 1321 MachineOperandIteratorBase::PhysRegInfo Info = 1322 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1323 1324 // Defs happen after uses so they take precedence if both are present. 1325 1326 // Register is dead after a dead def of the full register. 1327 if (Info.DeadDef) 1328 return LQR_Dead; 1329 // Register is (at least partially) live after a def. 1330 if (Info.Defined) { 1331 if (!Info.PartialDeadDef) 1332 return LQR_Live; 1333 // As soon as we saw a partial definition (dead or not), 1334 // we cannot tell if the value is partial live without 1335 // tracking the lanemasks. We are not going to do this, 1336 // so fall back on the remaining of the analysis. 1337 break; 1338 } 1339 // Register is dead after a full kill or clobber and no def. 1340 if (Info.Killed || Info.Clobbered) 1341 return LQR_Dead; 1342 // Register must be live if we read it. 1343 if (Info.Read) 1344 return LQR_Live; 1345 } while (I != begin() && --N > 0); 1346 } 1347 1348 // Did we get to the start of the block? 1349 if (I == begin()) { 1350 // If so, the register's state is definitely defined by the live-in state. 1351 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1352 ++RAI) 1353 if (isLiveIn(*RAI)) 1354 return LQR_Live; 1355 1356 return LQR_Dead; 1357 } 1358 1359 N = Neighborhood; 1360 1361 // Try searching forwards from Before, looking for reads or defs. 1362 I = const_iterator(Before); 1363 // If this is the last insn in the block, don't search forwards. 1364 if (I != end()) { 1365 for (++I; I != end() && N > 0; ++I, --N) { 1366 MachineOperandIteratorBase::PhysRegInfo Info = 1367 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1368 1369 // Register is live when we read it here. 1370 if (Info.Read) 1371 return LQR_Live; 1372 // Register is dead if we can fully overwrite or clobber it here. 1373 if (Info.FullyDefined || Info.Clobbered) 1374 return LQR_Dead; 1375 } 1376 } 1377 1378 // At this point we have no idea of the liveness of the register. 1379 return LQR_Unknown; 1380 } 1381 1382 const uint32_t * 1383 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1384 // EH funclet entry does not preserve any registers. 1385 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1386 } 1387 1388 const uint32_t * 1389 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1390 // If we see a return block with successors, this must be a funclet return, 1391 // which does not preserve any registers. If there are no successors, we don't 1392 // care what kind of return it is, putting a mask after it is a no-op. 1393 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1394 } 1395 1396 void MachineBasicBlock::clearLiveIns() { 1397 LiveIns.clear(); 1398 } 1399 1400 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1401 assert(getParent()->getProperties().hasProperty( 1402 MachineFunctionProperties::Property::TracksLiveness) && 1403 "Liveness information is accurate"); 1404 return LiveIns.begin(); 1405 } 1406