1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 42 : BB(B), Number(-1), xParent(&MF) { 43 Insts.Parent = this; 44 } 45 46 MachineBasicBlock::~MachineBasicBlock() { 47 } 48 49 /// Return the MCSymbol for this basic block. 50 MCSymbol *MachineBasicBlock::getSymbol() const { 51 if (!CachedMCSymbol) { 52 const MachineFunction *MF = getParent(); 53 MCContext &Ctx = MF->getContext(); 54 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 55 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 56 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 57 Twine(MF->getFunctionNumber()) + 58 "_" + Twine(getNumber())); 59 } 60 61 return CachedMCSymbol; 62 } 63 64 65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 66 MBB.print(OS); 67 return OS; 68 } 69 70 /// When an MBB is added to an MF, we need to update the parent pointer of the 71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 72 /// operand list for registers. 73 /// 74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 75 /// gets the next available unique MBB number. If it is removed from a 76 /// MachineFunction, it goes back to being #-1. 77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 78 MachineFunction &MF = *N->getParent(); 79 N->Number = MF.addToMBBNumbering(N); 80 81 // Make sure the instructions have their operands in the reginfo lists. 82 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 83 for (MachineBasicBlock::instr_iterator 84 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 85 I->AddRegOperandsToUseLists(RegInfo); 86 } 87 88 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 89 N->getParent()->removeFromMBBNumbering(N->Number); 90 N->Number = -1; 91 } 92 93 /// When we add an instruction to a basic block list, we update its parent 94 /// pointer and add its operands from reg use/def lists if appropriate. 95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 96 assert(!N->getParent() && "machine instruction already in a basic block"); 97 N->setParent(Parent); 98 99 // Add the instruction's register operands to their corresponding 100 // use/def lists. 101 MachineFunction *MF = Parent->getParent(); 102 N->AddRegOperandsToUseLists(MF->getRegInfo()); 103 } 104 105 /// When we remove an instruction from a basic block list, we update its parent 106 /// pointer and remove its operands from reg use/def lists if appropriate. 107 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 108 assert(N->getParent() && "machine instruction not in a basic block"); 109 110 // Remove from the use/def lists. 111 if (MachineFunction *MF = N->getParent()->getParent()) 112 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 113 114 N->setParent(nullptr); 115 } 116 117 /// When moving a range of instructions from one MBB list to another, we need to 118 /// update the parent pointers and the use/def lists. 119 void ilist_traits<MachineInstr>:: 120 transferNodesFromList(ilist_traits<MachineInstr> &FromList, 121 ilist_iterator<MachineInstr> First, 122 ilist_iterator<MachineInstr> Last) { 123 assert(Parent->getParent() == FromList.Parent->getParent() && 124 "MachineInstr parent mismatch!"); 125 126 // Splice within the same MBB -> no change. 127 if (Parent == FromList.Parent) return; 128 129 // If splicing between two blocks within the same function, just update the 130 // parent pointers. 131 for (; First != Last; ++First) 132 First->setParent(Parent); 133 } 134 135 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 136 assert(!MI->getParent() && "MI is still in a block!"); 137 Parent->getParent()->DeleteMachineInstr(MI); 138 } 139 140 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 141 instr_iterator I = instr_begin(), E = instr_end(); 142 while (I != E && I->isPHI()) 143 ++I; 144 assert((I == E || !I->isInsideBundle()) && 145 "First non-phi MI cannot be inside a bundle!"); 146 return I; 147 } 148 149 MachineBasicBlock::iterator 150 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 151 iterator E = end(); 152 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 153 ++I; 154 // FIXME: This needs to change if we wish to bundle labels / dbg_values 155 // inside the bundle. 156 assert((I == E || !I->isInsideBundle()) && 157 "First non-phi / non-label instruction is inside a bundle!"); 158 return I; 159 } 160 161 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 162 iterator B = begin(), E = end(), I = E; 163 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 164 ; /*noop */ 165 while (I != E && !I->isTerminator()) 166 ++I; 167 return I; 168 } 169 170 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 171 instr_iterator B = instr_begin(), E = instr_end(), I = E; 172 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 173 ; /*noop */ 174 while (I != E && !I->isTerminator()) 175 ++I; 176 return I; 177 } 178 179 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 180 // Skip over begin-of-block dbg_value instructions. 181 iterator I = begin(), E = end(); 182 while (I != E && I->isDebugValue()) 183 ++I; 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 188 // Skip over end-of-block dbg_value instructions. 189 instr_iterator B = instr_begin(), I = instr_end(); 190 while (I != B) { 191 --I; 192 // Return instruction that starts a bundle. 193 if (I->isDebugValue() || I->isInsideBundle()) 194 continue; 195 return I; 196 } 197 // The block is all debug values. 198 return end(); 199 } 200 201 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 202 // A block with a landing pad successor only has one other successor. 203 if (succ_size() > 2) 204 return nullptr; 205 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 206 if ((*I)->isEHPad()) 207 return *I; 208 return nullptr; 209 } 210 211 bool MachineBasicBlock::hasEHPadSuccessor() const { 212 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 213 if ((*I)->isEHPad()) 214 return true; 215 return false; 216 } 217 218 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 219 void MachineBasicBlock::dump() const { 220 print(dbgs()); 221 } 222 #endif 223 224 StringRef MachineBasicBlock::getName() const { 225 if (const BasicBlock *LBB = getBasicBlock()) 226 return LBB->getName(); 227 else 228 return "(null)"; 229 } 230 231 /// Return a hopefully unique identifier for this block. 232 std::string MachineBasicBlock::getFullName() const { 233 std::string Name; 234 if (getParent()) 235 Name = (getParent()->getName() + ":").str(); 236 if (getBasicBlock()) 237 Name += getBasicBlock()->getName(); 238 else 239 Name += ("BB" + Twine(getNumber())).str(); 240 return Name; 241 } 242 243 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 244 const MachineFunction *MF = getParent(); 245 if (!MF) { 246 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 247 << " is null\n"; 248 return; 249 } 250 const Function *F = MF->getFunction(); 251 const Module *M = F ? F->getParent() : nullptr; 252 ModuleSlotTracker MST(M); 253 print(OS, MST, Indexes); 254 } 255 256 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 257 SlotIndexes *Indexes) const { 258 const MachineFunction *MF = getParent(); 259 if (!MF) { 260 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 261 << " is null\n"; 262 return; 263 } 264 265 if (Indexes) 266 OS << Indexes->getMBBStartIdx(this) << '\t'; 267 268 OS << "BB#" << getNumber() << ": "; 269 270 const char *Comma = ""; 271 if (const BasicBlock *LBB = getBasicBlock()) { 272 OS << Comma << "derived from LLVM BB "; 273 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 274 Comma = ", "; 275 } 276 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 277 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 278 if (Alignment) 279 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 280 << " bytes)"; 281 282 OS << '\n'; 283 284 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 285 if (!livein_empty()) { 286 if (Indexes) OS << '\t'; 287 OS << " Live Ins:"; 288 for (const auto &LI : make_range(livein_begin(), livein_end())) { 289 OS << ' ' << PrintReg(LI.PhysReg, TRI); 290 if (LI.LaneMask != ~0u) 291 OS << ':' << PrintLaneMask(LI.LaneMask); 292 } 293 OS << '\n'; 294 } 295 // Print the preds of this block according to the CFG. 296 if (!pred_empty()) { 297 if (Indexes) OS << '\t'; 298 OS << " Predecessors according to CFG:"; 299 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 300 OS << " BB#" << (*PI)->getNumber(); 301 OS << '\n'; 302 } 303 304 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 305 if (Indexes) { 306 if (Indexes->hasIndex(&*I)) 307 OS << Indexes->getInstructionIndex(&*I); 308 OS << '\t'; 309 } 310 OS << '\t'; 311 if (I->isInsideBundle()) 312 OS << " * "; 313 I->print(OS, MST); 314 } 315 316 // Print the successors of this block according to the CFG. 317 if (!succ_empty()) { 318 if (Indexes) OS << '\t'; 319 OS << " Successors according to CFG:"; 320 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 321 OS << " BB#" << (*SI)->getNumber(); 322 if (!Probs.empty()) 323 OS << '(' << *getProbabilityIterator(SI) << ')'; 324 } 325 OS << '\n'; 326 } 327 } 328 329 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 330 bool /*PrintType*/) const { 331 OS << "BB#" << getNumber(); 332 } 333 334 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 335 LiveInVector::iterator I = std::find_if( 336 LiveIns.begin(), LiveIns.end(), 337 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 338 if (I == LiveIns.end()) 339 return; 340 341 I->LaneMask &= ~LaneMask; 342 if (I->LaneMask == 0) 343 LiveIns.erase(I); 344 } 345 346 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 347 livein_iterator I = std::find_if( 348 LiveIns.begin(), LiveIns.end(), 349 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 350 return I != livein_end() && (I->LaneMask & LaneMask) != 0; 351 } 352 353 void MachineBasicBlock::sortUniqueLiveIns() { 354 std::sort(LiveIns.begin(), LiveIns.end(), 355 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 356 return LI0.PhysReg < LI1.PhysReg; 357 }); 358 // Liveins are sorted by physreg now we can merge their lanemasks. 359 LiveInVector::const_iterator I = LiveIns.begin(); 360 LiveInVector::const_iterator J; 361 LiveInVector::iterator Out = LiveIns.begin(); 362 for (; I != LiveIns.end(); ++Out, I = J) { 363 unsigned PhysReg = I->PhysReg; 364 LaneBitmask LaneMask = I->LaneMask; 365 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 366 LaneMask |= J->LaneMask; 367 Out->PhysReg = PhysReg; 368 Out->LaneMask = LaneMask; 369 } 370 LiveIns.erase(Out, LiveIns.end()); 371 } 372 373 unsigned 374 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 375 assert(getParent() && "MBB must be inserted in function"); 376 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 377 assert(RC && "Register class is required"); 378 assert((isEHPad() || this == &getParent()->front()) && 379 "Only the entry block and landing pads can have physreg live ins"); 380 381 bool LiveIn = isLiveIn(PhysReg); 382 iterator I = SkipPHIsAndLabels(begin()), E = end(); 383 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 384 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 385 386 // Look for an existing copy. 387 if (LiveIn) 388 for (;I != E && I->isCopy(); ++I) 389 if (I->getOperand(1).getReg() == PhysReg) { 390 unsigned VirtReg = I->getOperand(0).getReg(); 391 if (!MRI.constrainRegClass(VirtReg, RC)) 392 llvm_unreachable("Incompatible live-in register class."); 393 return VirtReg; 394 } 395 396 // No luck, create a virtual register. 397 unsigned VirtReg = MRI.createVirtualRegister(RC); 398 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 399 .addReg(PhysReg, RegState::Kill); 400 if (!LiveIn) 401 addLiveIn(PhysReg); 402 return VirtReg; 403 } 404 405 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 406 getParent()->splice(NewAfter->getIterator(), getIterator()); 407 } 408 409 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 410 getParent()->splice(++NewBefore->getIterator(), getIterator()); 411 } 412 413 void MachineBasicBlock::updateTerminator() { 414 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 415 // A block with no successors has no concerns with fall-through edges. 416 if (this->succ_empty()) return; 417 418 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 419 SmallVector<MachineOperand, 4> Cond; 420 DebugLoc DL; // FIXME: this is nowhere 421 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 422 (void) B; 423 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 424 if (Cond.empty()) { 425 if (TBB) { 426 // The block has an unconditional branch. If its successor is now 427 // its layout successor, delete the branch. 428 if (isLayoutSuccessor(TBB)) 429 TII->RemoveBranch(*this); 430 } else { 431 // The block has an unconditional fallthrough. If its successor is not 432 // its layout successor, insert a branch. First we have to locate the 433 // only non-landing-pad successor, as that is the fallthrough block. 434 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 435 if ((*SI)->isEHPad()) 436 continue; 437 assert(!TBB && "Found more than one non-landing-pad successor!"); 438 TBB = *SI; 439 } 440 441 // If there is no non-landing-pad successor, the block has no 442 // fall-through edges to be concerned with. 443 if (!TBB) 444 return; 445 446 // Finally update the unconditional successor to be reached via a branch 447 // if it would not be reached by fallthrough. 448 if (!isLayoutSuccessor(TBB)) 449 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 450 } 451 } else { 452 if (FBB) { 453 // The block has a non-fallthrough conditional branch. If one of its 454 // successors is its layout successor, rewrite it to a fallthrough 455 // conditional branch. 456 if (isLayoutSuccessor(TBB)) { 457 if (TII->ReverseBranchCondition(Cond)) 458 return; 459 TII->RemoveBranch(*this); 460 TII->InsertBranch(*this, FBB, nullptr, Cond, DL); 461 } else if (isLayoutSuccessor(FBB)) { 462 TII->RemoveBranch(*this); 463 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 464 } 465 } else { 466 // Walk through the successors and find the successor which is not 467 // a landing pad and is not the conditional branch destination (in TBB) 468 // as the fallthrough successor. 469 MachineBasicBlock *FallthroughBB = nullptr; 470 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 471 if ((*SI)->isEHPad() || *SI == TBB) 472 continue; 473 assert(!FallthroughBB && "Found more than one fallthrough successor."); 474 FallthroughBB = *SI; 475 } 476 if (!FallthroughBB && canFallThrough()) { 477 // We fallthrough to the same basic block as the conditional jump 478 // targets. Remove the conditional jump, leaving unconditional 479 // fallthrough. 480 // FIXME: This does not seem like a reasonable pattern to support, but 481 // it has been seen in the wild coming out of degenerate ARM test cases. 482 TII->RemoveBranch(*this); 483 484 // Finally update the unconditional successor to be reached via a branch 485 // if it would not be reached by fallthrough. 486 if (!isLayoutSuccessor(TBB)) 487 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 488 return; 489 } 490 491 // The block has a fallthrough conditional branch. 492 if (isLayoutSuccessor(TBB)) { 493 if (TII->ReverseBranchCondition(Cond)) { 494 // We can't reverse the condition, add an unconditional branch. 495 Cond.clear(); 496 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 497 return; 498 } 499 TII->RemoveBranch(*this); 500 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 501 } else if (!isLayoutSuccessor(FallthroughBB)) { 502 TII->RemoveBranch(*this); 503 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL); 504 } 505 } 506 } 507 } 508 509 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 510 BranchProbability Prob) { 511 // Probability list is either empty (if successor list isn't empty, this means 512 // disabled optimization) or has the same size as successor list. 513 if (!(Probs.empty() && !Successors.empty())) { 514 assert((Probs.empty() || (Prob.isUnknown() && Probs.back().isUnknown()) || 515 (!Prob.isUnknown() && !Probs.back().isUnknown())) && 516 "Successors with both known and unknwon probabilities are not " 517 "allowed."); 518 Probs.push_back(Prob); 519 } 520 Successors.push_back(Succ); 521 Succ->addPredecessor(this); 522 } 523 524 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 525 // We need to make sure probability list is either empty or has the same size 526 // of successor list. When this function is called, we can safely delete all 527 // probability in the list. 528 Probs.clear(); 529 Successors.push_back(Succ); 530 Succ->addPredecessor(this); 531 } 532 533 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ) { 534 succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ); 535 removeSuccessor(I); 536 } 537 538 MachineBasicBlock::succ_iterator 539 MachineBasicBlock::removeSuccessor(succ_iterator I) { 540 assert(I != Successors.end() && "Not a current successor!"); 541 542 // If probability list is empty it means we don't use it (disabled 543 // optimization). 544 if (!Probs.empty()) { 545 probability_iterator WI = getProbabilityIterator(I); 546 Probs.erase(WI); 547 } 548 549 (*I)->removePredecessor(this); 550 return Successors.erase(I); 551 } 552 553 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 554 MachineBasicBlock *New) { 555 if (Old == New) 556 return; 557 558 succ_iterator E = succ_end(); 559 succ_iterator NewI = E; 560 succ_iterator OldI = E; 561 for (succ_iterator I = succ_begin(); I != E; ++I) { 562 if (*I == Old) { 563 OldI = I; 564 if (NewI != E) 565 break; 566 } 567 if (*I == New) { 568 NewI = I; 569 if (OldI != E) 570 break; 571 } 572 } 573 assert(OldI != E && "Old is not a successor of this block"); 574 575 // If New isn't already a successor, let it take Old's place. 576 if (NewI == E) { 577 Old->removePredecessor(this); 578 New->addPredecessor(this); 579 *OldI = New; 580 return; 581 } 582 583 // New is already a successor. 584 // Update its probability instead of adding a duplicate edge. 585 if (!Probs.empty()) { 586 auto ProbIter = getProbabilityIterator(NewI); 587 if (!ProbIter->isUnknown()) 588 *ProbIter += *getProbabilityIterator(OldI); 589 } 590 removeSuccessor(OldI); 591 } 592 593 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 594 Predecessors.push_back(Pred); 595 } 596 597 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 598 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred); 599 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 600 Predecessors.erase(I); 601 } 602 603 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 604 if (this == FromMBB) 605 return; 606 607 while (!FromMBB->succ_empty()) { 608 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 609 610 // If probability list is empty it means we don't use it (disabled optimization). 611 if (!FromMBB->Probs.empty()) { 612 auto Prob = *FromMBB->Probs.begin(); 613 addSuccessor(Succ, Prob); 614 } else 615 addSuccessorWithoutProb(Succ); 616 617 FromMBB->removeSuccessor(Succ); 618 } 619 } 620 621 void 622 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 623 if (this == FromMBB) 624 return; 625 626 while (!FromMBB->succ_empty()) { 627 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 628 if (!FromMBB->Probs.empty()) { 629 auto Prob = *FromMBB->Probs.begin(); 630 addSuccessor(Succ, Prob); 631 } else 632 addSuccessorWithoutProb(Succ); 633 FromMBB->removeSuccessor(Succ); 634 635 // Fix up any PHI nodes in the successor. 636 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 637 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 638 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 639 MachineOperand &MO = MI->getOperand(i); 640 if (MO.getMBB() == FromMBB) 641 MO.setMBB(this); 642 } 643 } 644 } 645 646 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 647 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 648 } 649 650 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 651 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 652 } 653 654 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 655 MachineFunction::const_iterator I(this); 656 return std::next(I) == MachineFunction::const_iterator(MBB); 657 } 658 659 bool MachineBasicBlock::canFallThrough() { 660 MachineFunction::iterator Fallthrough = getIterator(); 661 ++Fallthrough; 662 // If FallthroughBlock is off the end of the function, it can't fall through. 663 if (Fallthrough == getParent()->end()) 664 return false; 665 666 // If FallthroughBlock isn't a successor, no fallthrough is possible. 667 if (!isSuccessor(&*Fallthrough)) 668 return false; 669 670 // Analyze the branches, if any, at the end of the block. 671 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 672 SmallVector<MachineOperand, 4> Cond; 673 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 674 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 675 // If we couldn't analyze the branch, examine the last instruction. 676 // If the block doesn't end in a known control barrier, assume fallthrough 677 // is possible. The isPredicated check is needed because this code can be 678 // called during IfConversion, where an instruction which is normally a 679 // Barrier is predicated and thus no longer an actual control barrier. 680 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 681 } 682 683 // If there is no branch, control always falls through. 684 if (!TBB) return true; 685 686 // If there is some explicit branch to the fallthrough block, it can obviously 687 // reach, even though the branch should get folded to fall through implicitly. 688 if (MachineFunction::iterator(TBB) == Fallthrough || 689 MachineFunction::iterator(FBB) == Fallthrough) 690 return true; 691 692 // If it's an unconditional branch to some block not the fall through, it 693 // doesn't fall through. 694 if (Cond.empty()) return false; 695 696 // Otherwise, if it is conditional and has no explicit false block, it falls 697 // through. 698 return FBB == nullptr; 699 } 700 701 MachineBasicBlock * 702 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 703 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 704 // it in this generic function. 705 if (Succ->isEHPad()) 706 return nullptr; 707 708 MachineFunction *MF = getParent(); 709 DebugLoc DL; // FIXME: this is nowhere 710 711 // Performance might be harmed on HW that implements branching using exec mask 712 // where both sides of the branches are always executed. 713 if (MF->getTarget().requiresStructuredCFG()) 714 return nullptr; 715 716 // We may need to update this's terminator, but we can't do that if 717 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 718 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 719 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 720 SmallVector<MachineOperand, 4> Cond; 721 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 722 return nullptr; 723 724 // Avoid bugpoint weirdness: A block may end with a conditional branch but 725 // jumps to the same MBB is either case. We have duplicate CFG edges in that 726 // case that we can't handle. Since this never happens in properly optimized 727 // code, just skip those edges. 728 if (TBB && TBB == FBB) { 729 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 730 << getNumber() << '\n'); 731 return nullptr; 732 } 733 734 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 735 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 736 DEBUG(dbgs() << "Splitting critical edge:" 737 " BB#" << getNumber() 738 << " -- BB#" << NMBB->getNumber() 739 << " -- BB#" << Succ->getNumber() << '\n'); 740 741 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 742 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 743 if (LIS) 744 LIS->insertMBBInMaps(NMBB); 745 else if (Indexes) 746 Indexes->insertMBBInMaps(NMBB); 747 748 // On some targets like Mips, branches may kill virtual registers. Make sure 749 // that LiveVariables is properly updated after updateTerminator replaces the 750 // terminators. 751 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 752 753 // Collect a list of virtual registers killed by the terminators. 754 SmallVector<unsigned, 4> KilledRegs; 755 if (LV) 756 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 757 I != E; ++I) { 758 MachineInstr *MI = &*I; 759 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 760 OE = MI->operands_end(); OI != OE; ++OI) { 761 if (!OI->isReg() || OI->getReg() == 0 || 762 !OI->isUse() || !OI->isKill() || OI->isUndef()) 763 continue; 764 unsigned Reg = OI->getReg(); 765 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 766 LV->getVarInfo(Reg).removeKill(MI)) { 767 KilledRegs.push_back(Reg); 768 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 769 OI->setIsKill(false); 770 } 771 } 772 } 773 774 SmallVector<unsigned, 4> UsedRegs; 775 if (LIS) { 776 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 777 I != E; ++I) { 778 MachineInstr *MI = &*I; 779 780 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 781 OE = MI->operands_end(); OI != OE; ++OI) { 782 if (!OI->isReg() || OI->getReg() == 0) 783 continue; 784 785 unsigned Reg = OI->getReg(); 786 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 787 UsedRegs.push_back(Reg); 788 } 789 } 790 } 791 792 ReplaceUsesOfBlockWith(Succ, NMBB); 793 794 // If updateTerminator() removes instructions, we need to remove them from 795 // SlotIndexes. 796 SmallVector<MachineInstr*, 4> Terminators; 797 if (Indexes) { 798 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 799 I != E; ++I) 800 Terminators.push_back(&*I); 801 } 802 803 updateTerminator(); 804 805 if (Indexes) { 806 SmallVector<MachineInstr*, 4> NewTerminators; 807 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 808 I != E; ++I) 809 NewTerminators.push_back(&*I); 810 811 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 812 E = Terminators.end(); I != E; ++I) { 813 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 814 NewTerminators.end()) 815 Indexes->removeMachineInstrFromMaps(*I); 816 } 817 } 818 819 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 820 NMBB->addSuccessor(Succ); 821 if (!NMBB->isLayoutSuccessor(Succ)) { 822 Cond.clear(); 823 TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL); 824 825 if (Indexes) { 826 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 827 I != E; ++I) { 828 // Some instructions may have been moved to NMBB by updateTerminator(), 829 // so we first remove any instruction that already has an index. 830 if (Indexes->hasIndex(&*I)) 831 Indexes->removeMachineInstrFromMaps(&*I); 832 Indexes->insertMachineInstrInMaps(&*I); 833 } 834 } 835 } 836 837 // Fix PHI nodes in Succ so they refer to NMBB instead of this 838 for (MachineBasicBlock::instr_iterator 839 i = Succ->instr_begin(),e = Succ->instr_end(); 840 i != e && i->isPHI(); ++i) 841 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 842 if (i->getOperand(ni+1).getMBB() == this) 843 i->getOperand(ni+1).setMBB(NMBB); 844 845 // Inherit live-ins from the successor 846 for (const auto &LI : Succ->liveins()) 847 NMBB->addLiveIn(LI); 848 849 // Update LiveVariables. 850 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 851 if (LV) { 852 // Restore kills of virtual registers that were killed by the terminators. 853 while (!KilledRegs.empty()) { 854 unsigned Reg = KilledRegs.pop_back_val(); 855 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 856 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 857 continue; 858 if (TargetRegisterInfo::isVirtualRegister(Reg)) 859 LV->getVarInfo(Reg).Kills.push_back(&*I); 860 DEBUG(dbgs() << "Restored terminator kill: " << *I); 861 break; 862 } 863 } 864 // Update relevant live-through information. 865 LV->addNewBlock(NMBB, this, Succ); 866 } 867 868 if (LIS) { 869 // After splitting the edge and updating SlotIndexes, live intervals may be 870 // in one of two situations, depending on whether this block was the last in 871 // the function. If the original block was the last in the function, all 872 // live intervals will end prior to the beginning of the new split block. If 873 // the original block was not at the end of the function, all live intervals 874 // will extend to the end of the new split block. 875 876 bool isLastMBB = 877 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 878 879 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 880 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 881 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 882 883 // Find the registers used from NMBB in PHIs in Succ. 884 SmallSet<unsigned, 8> PHISrcRegs; 885 for (MachineBasicBlock::instr_iterator 886 I = Succ->instr_begin(), E = Succ->instr_end(); 887 I != E && I->isPHI(); ++I) { 888 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 889 if (I->getOperand(ni+1).getMBB() == NMBB) { 890 MachineOperand &MO = I->getOperand(ni); 891 unsigned Reg = MO.getReg(); 892 PHISrcRegs.insert(Reg); 893 if (MO.isUndef()) 894 continue; 895 896 LiveInterval &LI = LIS->getInterval(Reg); 897 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 898 assert(VNI && 899 "PHI sources should be live out of their predecessors."); 900 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 901 } 902 } 903 } 904 905 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 906 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 907 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 908 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 909 continue; 910 911 LiveInterval &LI = LIS->getInterval(Reg); 912 if (!LI.liveAt(PrevIndex)) 913 continue; 914 915 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 916 if (isLiveOut && isLastMBB) { 917 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 918 assert(VNI && "LiveInterval should have VNInfo where it is live."); 919 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 920 } else if (!isLiveOut && !isLastMBB) { 921 LI.removeSegment(StartIndex, EndIndex); 922 } 923 } 924 925 // Update all intervals for registers whose uses may have been modified by 926 // updateTerminator(). 927 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 928 } 929 930 if (MachineDominatorTree *MDT = 931 P->getAnalysisIfAvailable<MachineDominatorTree>()) 932 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 933 934 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 935 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 936 // If one or the other blocks were not in a loop, the new block is not 937 // either, and thus LI doesn't need to be updated. 938 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 939 if (TIL == DestLoop) { 940 // Both in the same loop, the NMBB joins loop. 941 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 942 } else if (TIL->contains(DestLoop)) { 943 // Edge from an outer loop to an inner loop. Add to the outer loop. 944 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 945 } else if (DestLoop->contains(TIL)) { 946 // Edge from an inner loop to an outer loop. Add to the outer loop. 947 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 948 } else { 949 // Edge from two loops with no containment relation. Because these 950 // are natural loops, we know that the destination block must be the 951 // header of its loop (adding a branch into a loop elsewhere would 952 // create an irreducible loop). 953 assert(DestLoop->getHeader() == Succ && 954 "Should not create irreducible loops!"); 955 if (MachineLoop *P = DestLoop->getParentLoop()) 956 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 957 } 958 } 959 } 960 961 return NMBB; 962 } 963 964 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 965 /// neighboring instructions so the bundle won't be broken by removing MI. 966 static void unbundleSingleMI(MachineInstr *MI) { 967 // Removing the first instruction in a bundle. 968 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 969 MI->unbundleFromSucc(); 970 // Removing the last instruction in a bundle. 971 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 972 MI->unbundleFromPred(); 973 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 974 // are already fine. 975 } 976 977 MachineBasicBlock::instr_iterator 978 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 979 unbundleSingleMI(&*I); 980 return Insts.erase(I); 981 } 982 983 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 984 unbundleSingleMI(MI); 985 MI->clearFlag(MachineInstr::BundledPred); 986 MI->clearFlag(MachineInstr::BundledSucc); 987 return Insts.remove(MI); 988 } 989 990 MachineBasicBlock::instr_iterator 991 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 992 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 993 "Cannot insert instruction with bundle flags"); 994 // Set the bundle flags when inserting inside a bundle. 995 if (I != instr_end() && I->isBundledWithPred()) { 996 MI->setFlag(MachineInstr::BundledPred); 997 MI->setFlag(MachineInstr::BundledSucc); 998 } 999 return Insts.insert(I, MI); 1000 } 1001 1002 /// This method unlinks 'this' from the containing function, and returns it, but 1003 /// does not delete it. 1004 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1005 assert(getParent() && "Not embedded in a function!"); 1006 getParent()->remove(this); 1007 return this; 1008 } 1009 1010 /// This method unlinks 'this' from the containing function, and deletes it. 1011 void MachineBasicBlock::eraseFromParent() { 1012 assert(getParent() && "Not embedded in a function!"); 1013 getParent()->erase(this); 1014 } 1015 1016 /// Given a machine basic block that branched to 'Old', change the code and CFG 1017 /// so that it branches to 'New' instead. 1018 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1019 MachineBasicBlock *New) { 1020 assert(Old != New && "Cannot replace self with self!"); 1021 1022 MachineBasicBlock::instr_iterator I = instr_end(); 1023 while (I != instr_begin()) { 1024 --I; 1025 if (!I->isTerminator()) break; 1026 1027 // Scan the operands of this machine instruction, replacing any uses of Old 1028 // with New. 1029 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1030 if (I->getOperand(i).isMBB() && 1031 I->getOperand(i).getMBB() == Old) 1032 I->getOperand(i).setMBB(New); 1033 } 1034 1035 // Update the successor information. 1036 replaceSuccessor(Old, New); 1037 } 1038 1039 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1040 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1041 /// MBB successors from the CFG. DestA and DestB can be null. 1042 /// 1043 /// Besides DestA and DestB, retain other edges leading to LandingPads 1044 /// (currently there can be only one; we don't check or require that here). 1045 /// Note it is possible that DestA and/or DestB are LandingPads. 1046 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1047 MachineBasicBlock *DestB, 1048 bool IsCond) { 1049 // The values of DestA and DestB frequently come from a call to the 1050 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1051 // values from there. 1052 // 1053 // 1. If both DestA and DestB are null, then the block ends with no branches 1054 // (it falls through to its successor). 1055 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1056 // with only an unconditional branch. 1057 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1058 // with a conditional branch that falls through to a successor (DestB). 1059 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1060 // conditional branch followed by an unconditional branch. DestA is the 1061 // 'true' destination and DestB is the 'false' destination. 1062 1063 bool Changed = false; 1064 1065 MachineFunction::iterator FallThru = std::next(getIterator()); 1066 1067 if (!DestA && !DestB) { 1068 // Block falls through to successor. 1069 DestA = &*FallThru; 1070 DestB = &*FallThru; 1071 } else if (DestA && !DestB) { 1072 if (IsCond) 1073 // Block ends in conditional jump that falls through to successor. 1074 DestB = &*FallThru; 1075 } else { 1076 assert(DestA && DestB && IsCond && 1077 "CFG in a bad state. Cannot correct CFG edges"); 1078 } 1079 1080 // Remove superfluous edges. I.e., those which aren't destinations of this 1081 // basic block, duplicate edges, or landing pads. 1082 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1083 MachineBasicBlock::succ_iterator SI = succ_begin(); 1084 while (SI != succ_end()) { 1085 const MachineBasicBlock *MBB = *SI; 1086 if (!SeenMBBs.insert(MBB).second || 1087 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1088 // This is a superfluous edge, remove it. 1089 SI = removeSuccessor(SI); 1090 Changed = true; 1091 } else { 1092 ++SI; 1093 } 1094 } 1095 1096 return Changed; 1097 } 1098 1099 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1100 /// instructions. Return UnknownLoc if there is none. 1101 DebugLoc 1102 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1103 DebugLoc DL; 1104 instr_iterator E = instr_end(); 1105 if (MBBI == E) 1106 return DL; 1107 1108 // Skip debug declarations, we don't want a DebugLoc from them. 1109 while (MBBI != E && MBBI->isDebugValue()) 1110 MBBI++; 1111 if (MBBI != E) 1112 DL = MBBI->getDebugLoc(); 1113 return DL; 1114 } 1115 1116 /// Return probability of the edge from this block to MBB. 1117 BranchProbability 1118 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1119 if (Probs.empty() || Probs.back().isUnknown()) 1120 return BranchProbability(1, succ_size()); 1121 1122 return *getProbabilityIterator(Succ); 1123 } 1124 1125 /// Set successor probability of a given iterator. 1126 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1127 BranchProbability Prob) { 1128 assert(!Prob.isUnknown()); 1129 if (Probs.empty()) 1130 return; 1131 *getProbabilityIterator(I) = Prob; 1132 } 1133 1134 /// Return probability iterator corresonding to the I successor iterator 1135 MachineBasicBlock::const_probability_iterator 1136 MachineBasicBlock::getProbabilityIterator( 1137 MachineBasicBlock::const_succ_iterator I) const { 1138 assert(Probs.size() == Successors.size() && "Async probability list!"); 1139 const size_t index = std::distance(Successors.begin(), I); 1140 assert(index < Probs.size() && "Not a current successor!"); 1141 return Probs.begin() + index; 1142 } 1143 1144 /// Return probability iterator corresonding to the I successor iterator. 1145 MachineBasicBlock::probability_iterator 1146 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1147 assert(Probs.size() == Successors.size() && "Async probability list!"); 1148 const size_t index = std::distance(Successors.begin(), I); 1149 assert(index < Probs.size() && "Not a current successor!"); 1150 return Probs.begin() + index; 1151 } 1152 1153 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1154 /// as of just before "MI". 1155 /// 1156 /// Search is localised to a neighborhood of 1157 /// Neighborhood instructions before (searching for defs or kills) and N 1158 /// instructions after (searching just for defs) MI. 1159 MachineBasicBlock::LivenessQueryResult 1160 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1161 unsigned Reg, const_iterator Before, 1162 unsigned Neighborhood) const { 1163 unsigned N = Neighborhood; 1164 1165 // Start by searching backwards from Before, looking for kills, reads or defs. 1166 const_iterator I(Before); 1167 // If this is the first insn in the block, don't search backwards. 1168 if (I != begin()) { 1169 do { 1170 --I; 1171 1172 MachineOperandIteratorBase::PhysRegInfo Analysis = 1173 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1174 1175 if (Analysis.Defines) 1176 // Outputs happen after inputs so they take precedence if both are 1177 // present. 1178 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 1179 1180 if (Analysis.Kills || Analysis.Clobbers) 1181 // Register killed, so isn't live. 1182 return LQR_Dead; 1183 1184 else if (Analysis.ReadsOverlap) 1185 // Defined or read without a previous kill - live. 1186 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 1187 1188 } while (I != begin() && --N > 0); 1189 } 1190 1191 // Did we get to the start of the block? 1192 if (I == begin()) { 1193 // If so, the register's state is definitely defined by the live-in state. 1194 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 1195 RAI.isValid(); ++RAI) { 1196 if (isLiveIn(*RAI)) 1197 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 1198 } 1199 1200 return LQR_Dead; 1201 } 1202 1203 N = Neighborhood; 1204 1205 // Try searching forwards from Before, looking for reads or defs. 1206 I = const_iterator(Before); 1207 // If this is the last insn in the block, don't search forwards. 1208 if (I != end()) { 1209 for (++I; I != end() && N > 0; ++I, --N) { 1210 MachineOperandIteratorBase::PhysRegInfo Analysis = 1211 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1212 1213 if (Analysis.ReadsOverlap) 1214 // Used, therefore must have been live. 1215 return (Analysis.Reads) ? 1216 LQR_Live : LQR_OverlappingLive; 1217 1218 else if (Analysis.Clobbers || Analysis.Defines) 1219 // Defined (but not read) therefore cannot have been live. 1220 return LQR_Dead; 1221 } 1222 } 1223 1224 // At this point we have no idea of the liveness of the register. 1225 return LQR_Unknown; 1226 } 1227 1228 const uint32_t * 1229 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1230 // EH funclet entry does not preserve any registers. 1231 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1232 } 1233 1234 const uint32_t * 1235 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1236 // If we see a return block with successors, this must be a funclet return, 1237 // which does not preserve any registers. If there are no successors, we don't 1238 // care what kind of return it is, putting a mask after it is a no-op. 1239 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1240 } 1241