xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision f70e39ec173192058976805a2c51ac438bb2ff2f)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/StringExtras.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LivePhysRegs.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SlotIndexes.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/ModuleSlotTracker.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCContext.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <algorithm>
40 #include <cmath>
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "codegen"
44 
45 static cl::opt<bool> PrintSlotIndexes(
46     "print-slotindexes",
47     cl::desc("When printing machine IR, annotate instructions and blocks with "
48              "SlotIndexes when available"),
49     cl::init(true), cl::Hidden);
50 
51 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
52     : BB(B), Number(-1), xParent(&MF) {
53   Insts.Parent = this;
54   if (B)
55     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
56 }
57 
58 MachineBasicBlock::~MachineBasicBlock() = default;
59 
60 /// Return the MCSymbol for this basic block.
61 MCSymbol *MachineBasicBlock::getSymbol() const {
62   if (!CachedMCSymbol) {
63     const MachineFunction *MF = getParent();
64     MCContext &Ctx = MF->getContext();
65 
66     // We emit a non-temporary symbol -- with a descriptive name -- if it begins
67     // a section (with basic block sections). Otherwise we fall back to use temp
68     // label.
69     if (MF->hasBBSections() && isBeginSection()) {
70       SmallString<5> Suffix;
71       if (SectionID == MBBSectionID::ColdSectionID) {
72         Suffix += ".cold";
73       } else if (SectionID == MBBSectionID::ExceptionSectionID) {
74         Suffix += ".eh";
75       } else {
76         // For symbols that represent basic block sections, we add ".__part." to
77         // allow tools like symbolizers to know that this represents a part of
78         // the original function.
79         Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
80       }
81       CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
82     } else {
83       const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
84       CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
85                                              Twine(MF->getFunctionNumber()) +
86                                              "_" + Twine(getNumber()));
87     }
88   }
89   return CachedMCSymbol;
90 }
91 
92 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
93   if (!CachedEHCatchretMCSymbol) {
94     const MachineFunction *MF = getParent();
95     SmallString<128> SymbolName;
96     raw_svector_ostream(SymbolName)
97         << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
98     CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
99   }
100   return CachedEHCatchretMCSymbol;
101 }
102 
103 MCSymbol *MachineBasicBlock::getEndSymbol() const {
104   if (!CachedEndMCSymbol) {
105     const MachineFunction *MF = getParent();
106     MCContext &Ctx = MF->getContext();
107     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
108     CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
109                                               Twine(MF->getFunctionNumber()) +
110                                               "_" + Twine(getNumber()));
111   }
112   return CachedEndMCSymbol;
113 }
114 
115 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
116   MBB.print(OS);
117   return OS;
118 }
119 
120 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
121   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
122 }
123 
124 /// When an MBB is added to an MF, we need to update the parent pointer of the
125 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
126 /// operand list for registers.
127 ///
128 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
129 /// gets the next available unique MBB number. If it is removed from a
130 /// MachineFunction, it goes back to being #-1.
131 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
132     MachineBasicBlock *N) {
133   MachineFunction &MF = *N->getParent();
134   N->Number = MF.addToMBBNumbering(N);
135 
136   // Make sure the instructions have their operands in the reginfo lists.
137   MachineRegisterInfo &RegInfo = MF.getRegInfo();
138   for (MachineInstr &MI : N->instrs())
139     MI.addRegOperandsToUseLists(RegInfo);
140 }
141 
142 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
143     MachineBasicBlock *N) {
144   N->getParent()->removeFromMBBNumbering(N->Number);
145   N->Number = -1;
146 }
147 
148 /// When we add an instruction to a basic block list, we update its parent
149 /// pointer and add its operands from reg use/def lists if appropriate.
150 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
151   assert(!N->getParent() && "machine instruction already in a basic block");
152   N->setParent(Parent);
153 
154   // Add the instruction's register operands to their corresponding
155   // use/def lists.
156   MachineFunction *MF = Parent->getParent();
157   N->addRegOperandsToUseLists(MF->getRegInfo());
158   MF->handleInsertion(*N);
159 }
160 
161 /// When we remove an instruction from a basic block list, we update its parent
162 /// pointer and remove its operands from reg use/def lists if appropriate.
163 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
164   assert(N->getParent() && "machine instruction not in a basic block");
165 
166   // Remove from the use/def lists.
167   if (MachineFunction *MF = N->getMF()) {
168     MF->handleRemoval(*N);
169     N->removeRegOperandsFromUseLists(MF->getRegInfo());
170   }
171 
172   N->setParent(nullptr);
173 }
174 
175 /// When moving a range of instructions from one MBB list to another, we need to
176 /// update the parent pointers and the use/def lists.
177 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
178                                                        instr_iterator First,
179                                                        instr_iterator Last) {
180   assert(Parent->getParent() == FromList.Parent->getParent() &&
181          "cannot transfer MachineInstrs between MachineFunctions");
182 
183   // If it's within the same BB, there's nothing to do.
184   if (this == &FromList)
185     return;
186 
187   assert(Parent != FromList.Parent && "Two lists have the same parent?");
188 
189   // If splicing between two blocks within the same function, just update the
190   // parent pointers.
191   for (; First != Last; ++First)
192     First->setParent(Parent);
193 }
194 
195 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
196   assert(!MI->getParent() && "MI is still in a block!");
197   Parent->getParent()->deleteMachineInstr(MI);
198 }
199 
200 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
201   instr_iterator I = instr_begin(), E = instr_end();
202   while (I != E && I->isPHI())
203     ++I;
204   assert((I == E || !I->isInsideBundle()) &&
205          "First non-phi MI cannot be inside a bundle!");
206   return I;
207 }
208 
209 MachineBasicBlock::iterator
210 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
211   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
212 
213   iterator E = end();
214   while (I != E && (I->isPHI() || I->isPosition() ||
215                     TII->isBasicBlockPrologue(*I)))
216     ++I;
217   // FIXME: This needs to change if we wish to bundle labels
218   // inside the bundle.
219   assert((I == E || !I->isInsideBundle()) &&
220          "First non-phi / non-label instruction is inside a bundle!");
221   return I;
222 }
223 
224 MachineBasicBlock::iterator
225 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
226                                           bool SkipPseudoOp) {
227   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
228 
229   iterator E = end();
230   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
231                     (SkipPseudoOp && I->isPseudoProbe()) ||
232                     TII->isBasicBlockPrologue(*I)))
233     ++I;
234   // FIXME: This needs to change if we wish to bundle labels / dbg_values
235   // inside the bundle.
236   assert((I == E || !I->isInsideBundle()) &&
237          "First non-phi / non-label / non-debug "
238          "instruction is inside a bundle!");
239   return I;
240 }
241 
242 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
243   iterator B = begin(), E = end(), I = E;
244   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
245     ; /*noop */
246   while (I != E && !I->isTerminator())
247     ++I;
248   return I;
249 }
250 
251 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
252   instr_iterator B = instr_begin(), E = instr_end(), I = E;
253   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
254     ; /*noop */
255   while (I != E && !I->isTerminator())
256     ++I;
257   return I;
258 }
259 
260 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() {
261   return find_if(instrs(), [](auto &II) { return II.isTerminator(); });
262 }
263 
264 MachineBasicBlock::iterator
265 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
266   // Skip over begin-of-block dbg_value instructions.
267   return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
268 }
269 
270 MachineBasicBlock::iterator
271 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
272   // Skip over end-of-block dbg_value instructions.
273   instr_iterator B = instr_begin(), I = instr_end();
274   while (I != B) {
275     --I;
276     // Return instruction that starts a bundle.
277     if (I->isDebugInstr() || I->isInsideBundle())
278       continue;
279     if (SkipPseudoOp && I->isPseudoProbe())
280       continue;
281     return I;
282   }
283   // The block is all debug values.
284   return end();
285 }
286 
287 bool MachineBasicBlock::hasEHPadSuccessor() const {
288   for (const MachineBasicBlock *Succ : successors())
289     if (Succ->isEHPad())
290       return true;
291   return false;
292 }
293 
294 bool MachineBasicBlock::isEntryBlock() const {
295   return getParent()->begin() == getIterator();
296 }
297 
298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
299 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
300   print(dbgs());
301 }
302 #endif
303 
304 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
305   for (const MachineBasicBlock *Succ : successors()) {
306     if (Succ->isInlineAsmBrIndirectTarget())
307       return true;
308   }
309   return false;
310 }
311 
312 bool MachineBasicBlock::isLegalToHoistInto() const {
313   if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
314     return false;
315   return true;
316 }
317 
318 StringRef MachineBasicBlock::getName() const {
319   if (const BasicBlock *LBB = getBasicBlock())
320     return LBB->getName();
321   else
322     return StringRef("", 0);
323 }
324 
325 /// Return a hopefully unique identifier for this block.
326 std::string MachineBasicBlock::getFullName() const {
327   std::string Name;
328   if (getParent())
329     Name = (getParent()->getName() + ":").str();
330   if (getBasicBlock())
331     Name += getBasicBlock()->getName();
332   else
333     Name += ("BB" + Twine(getNumber())).str();
334   return Name;
335 }
336 
337 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
338                               bool IsStandalone) const {
339   const MachineFunction *MF = getParent();
340   if (!MF) {
341     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
342        << " is null\n";
343     return;
344   }
345   const Function &F = MF->getFunction();
346   const Module *M = F.getParent();
347   ModuleSlotTracker MST(M);
348   MST.incorporateFunction(F);
349   print(OS, MST, Indexes, IsStandalone);
350 }
351 
352 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
353                               const SlotIndexes *Indexes,
354                               bool IsStandalone) const {
355   const MachineFunction *MF = getParent();
356   if (!MF) {
357     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
358        << " is null\n";
359     return;
360   }
361 
362   if (Indexes && PrintSlotIndexes)
363     OS << Indexes->getMBBStartIdx(this) << '\t';
364 
365   printName(OS, PrintNameIr | PrintNameAttributes, &MST);
366   OS << ":\n";
367 
368   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
369   const MachineRegisterInfo &MRI = MF->getRegInfo();
370   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
371   bool HasLineAttributes = false;
372 
373   // Print the preds of this block according to the CFG.
374   if (!pred_empty() && IsStandalone) {
375     if (Indexes) OS << '\t';
376     // Don't indent(2), align with previous line attributes.
377     OS << "; predecessors: ";
378     ListSeparator LS;
379     for (auto *Pred : predecessors())
380       OS << LS << printMBBReference(*Pred);
381     OS << '\n';
382     HasLineAttributes = true;
383   }
384 
385   if (!succ_empty()) {
386     if (Indexes) OS << '\t';
387     // Print the successors
388     OS.indent(2) << "successors: ";
389     ListSeparator LS;
390     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
391       OS << LS << printMBBReference(**I);
392       if (!Probs.empty())
393         OS << '('
394            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
395            << ')';
396     }
397     if (!Probs.empty() && IsStandalone) {
398       // Print human readable probabilities as comments.
399       OS << "; ";
400       ListSeparator LS;
401       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
402         const BranchProbability &BP = getSuccProbability(I);
403         OS << LS << printMBBReference(**I) << '('
404            << format("%.2f%%",
405                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
406                           100.0 * 100.0) /
407                          100.0)
408            << ')';
409       }
410     }
411 
412     OS << '\n';
413     HasLineAttributes = true;
414   }
415 
416   if (!livein_empty() && MRI.tracksLiveness()) {
417     if (Indexes) OS << '\t';
418     OS.indent(2) << "liveins: ";
419 
420     ListSeparator LS;
421     for (const auto &LI : liveins()) {
422       OS << LS << printReg(LI.PhysReg, TRI);
423       if (!LI.LaneMask.all())
424         OS << ":0x" << PrintLaneMask(LI.LaneMask);
425     }
426     HasLineAttributes = true;
427   }
428 
429   if (HasLineAttributes)
430     OS << '\n';
431 
432   bool IsInBundle = false;
433   for (const MachineInstr &MI : instrs()) {
434     if (Indexes && PrintSlotIndexes) {
435       if (Indexes->hasIndex(MI))
436         OS << Indexes->getInstructionIndex(MI);
437       OS << '\t';
438     }
439 
440     if (IsInBundle && !MI.isInsideBundle()) {
441       OS.indent(2) << "}\n";
442       IsInBundle = false;
443     }
444 
445     OS.indent(IsInBundle ? 4 : 2);
446     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
447              /*AddNewLine=*/false, &TII);
448 
449     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
450       OS << " {";
451       IsInBundle = true;
452     }
453     OS << '\n';
454   }
455 
456   if (IsInBundle)
457     OS.indent(2) << "}\n";
458 
459   if (IrrLoopHeaderWeight && IsStandalone) {
460     if (Indexes) OS << '\t';
461     OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight
462                  << '\n';
463   }
464 }
465 
466 /// Print the basic block's name as:
467 ///
468 ///    bb.{number}[.{ir-name}] [(attributes...)]
469 ///
470 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
471 /// (which is the default). If the IR block has no name, it is identified
472 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
473 ///
474 /// When the \ref PrintNameAttributes flag is passed, additional attributes
475 /// of the block are printed when set.
476 ///
477 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
478 ///                       the parts to print.
479 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
480 ///                          incorporate its own tracker when necessary to
481 ///                          determine the block's IR name.
482 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
483                                   ModuleSlotTracker *moduleSlotTracker) const {
484   os << "bb." << getNumber();
485   bool hasAttributes = false;
486 
487   auto PrintBBRef = [&](const BasicBlock *bb) {
488     os << "%ir-block.";
489     if (bb->hasName()) {
490       os << bb->getName();
491     } else {
492       int slot = -1;
493 
494       if (moduleSlotTracker) {
495         slot = moduleSlotTracker->getLocalSlot(bb);
496       } else if (bb->getParent()) {
497         ModuleSlotTracker tmpTracker(bb->getModule(), false);
498         tmpTracker.incorporateFunction(*bb->getParent());
499         slot = tmpTracker.getLocalSlot(bb);
500       }
501 
502       if (slot == -1)
503         os << "<ir-block badref>";
504       else
505         os << slot;
506     }
507   };
508 
509   if (printNameFlags & PrintNameIr) {
510     if (const auto *bb = getBasicBlock()) {
511       if (bb->hasName()) {
512         os << '.' << bb->getName();
513       } else {
514         hasAttributes = true;
515         os << " (";
516         PrintBBRef(bb);
517       }
518     }
519   }
520 
521   if (printNameFlags & PrintNameAttributes) {
522     if (isMachineBlockAddressTaken()) {
523       os << (hasAttributes ? ", " : " (");
524       os << "machine-block-address-taken";
525       hasAttributes = true;
526     }
527     if (isIRBlockAddressTaken()) {
528       os << (hasAttributes ? ", " : " (");
529       os << "ir-block-address-taken ";
530       PrintBBRef(getAddressTakenIRBlock());
531       hasAttributes = true;
532     }
533     if (isEHPad()) {
534       os << (hasAttributes ? ", " : " (");
535       os << "landing-pad";
536       hasAttributes = true;
537     }
538     if (isInlineAsmBrIndirectTarget()) {
539       os << (hasAttributes ? ", " : " (");
540       os << "inlineasm-br-indirect-target";
541       hasAttributes = true;
542     }
543     if (isEHFuncletEntry()) {
544       os << (hasAttributes ? ", " : " (");
545       os << "ehfunclet-entry";
546       hasAttributes = true;
547     }
548     if (getAlignment() != Align(1)) {
549       os << (hasAttributes ? ", " : " (");
550       os << "align " << getAlignment().value();
551       hasAttributes = true;
552     }
553     if (getSectionID() != MBBSectionID(0)) {
554       os << (hasAttributes ? ", " : " (");
555       os << "bbsections ";
556       switch (getSectionID().Type) {
557       case MBBSectionID::SectionType::Exception:
558         os << "Exception";
559         break;
560       case MBBSectionID::SectionType::Cold:
561         os << "Cold";
562         break;
563       default:
564         os << getSectionID().Number;
565       }
566       hasAttributes = true;
567     }
568     if (getBBID().has_value()) {
569       os << (hasAttributes ? ", " : " (");
570       os << "bb_id " << getBBID()->BaseID;
571       if (getBBID()->CloneID != 0)
572         os << " " << getBBID()->CloneID;
573       hasAttributes = true;
574     }
575     if (CallFrameSize != 0) {
576       os << (hasAttributes ? ", " : " (");
577       os << "call-frame-size " << CallFrameSize;
578       hasAttributes = true;
579     }
580   }
581 
582   if (hasAttributes)
583     os << ')';
584 }
585 
586 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
587                                        bool /*PrintType*/) const {
588   OS << '%';
589   printName(OS, 0);
590 }
591 
592 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
593   LiveInVector::iterator I = find_if(
594       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
595   if (I == LiveIns.end())
596     return;
597 
598   I->LaneMask &= ~LaneMask;
599   if (I->LaneMask.none())
600     LiveIns.erase(I);
601 }
602 
603 MachineBasicBlock::livein_iterator
604 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
605   // Get non-const version of iterator.
606   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
607   return LiveIns.erase(LI);
608 }
609 
610 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
611   livein_iterator I = find_if(
612       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
613   return I != livein_end() && (I->LaneMask & LaneMask).any();
614 }
615 
616 void MachineBasicBlock::sortUniqueLiveIns() {
617   llvm::sort(LiveIns,
618              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
619                return LI0.PhysReg < LI1.PhysReg;
620              });
621   // Liveins are sorted by physreg now we can merge their lanemasks.
622   LiveInVector::const_iterator I = LiveIns.begin();
623   LiveInVector::const_iterator J;
624   LiveInVector::iterator Out = LiveIns.begin();
625   for (; I != LiveIns.end(); ++Out, I = J) {
626     MCRegister PhysReg = I->PhysReg;
627     LaneBitmask LaneMask = I->LaneMask;
628     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
629       LaneMask |= J->LaneMask;
630     Out->PhysReg = PhysReg;
631     Out->LaneMask = LaneMask;
632   }
633   LiveIns.erase(Out, LiveIns.end());
634 }
635 
636 Register
637 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
638   assert(getParent() && "MBB must be inserted in function");
639   assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
640   assert(RC && "Register class is required");
641   assert((isEHPad() || this == &getParent()->front()) &&
642          "Only the entry block and landing pads can have physreg live ins");
643 
644   bool LiveIn = isLiveIn(PhysReg);
645   iterator I = SkipPHIsAndLabels(begin()), E = end();
646   MachineRegisterInfo &MRI = getParent()->getRegInfo();
647   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
648 
649   // Look for an existing copy.
650   if (LiveIn)
651     for (;I != E && I->isCopy(); ++I)
652       if (I->getOperand(1).getReg() == PhysReg) {
653         Register VirtReg = I->getOperand(0).getReg();
654         if (!MRI.constrainRegClass(VirtReg, RC))
655           llvm_unreachable("Incompatible live-in register class.");
656         return VirtReg;
657       }
658 
659   // No luck, create a virtual register.
660   Register VirtReg = MRI.createVirtualRegister(RC);
661   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
662     .addReg(PhysReg, RegState::Kill);
663   if (!LiveIn)
664     addLiveIn(PhysReg);
665   return VirtReg;
666 }
667 
668 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
669   getParent()->splice(NewAfter->getIterator(), getIterator());
670 }
671 
672 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
673   getParent()->splice(++NewBefore->getIterator(), getIterator());
674 }
675 
676 static int findJumpTableIndex(const MachineBasicBlock &MBB) {
677   MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator();
678   if (TerminatorI == MBB.end())
679     return -1;
680   const MachineInstr &Terminator = *TerminatorI;
681   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
682   return TII->getJumpTableIndex(Terminator);
683 }
684 
685 void MachineBasicBlock::updateTerminator(
686     MachineBasicBlock *PreviousLayoutSuccessor) {
687   LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
688                     << "\n");
689 
690   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
691   // A block with no successors has no concerns with fall-through edges.
692   if (this->succ_empty())
693     return;
694 
695   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
696   SmallVector<MachineOperand, 4> Cond;
697   DebugLoc DL = findBranchDebugLoc();
698   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
699   (void) B;
700   assert(!B && "UpdateTerminators requires analyzable predecessors!");
701   if (Cond.empty()) {
702     if (TBB) {
703       // The block has an unconditional branch. If its successor is now its
704       // layout successor, delete the branch.
705       if (isLayoutSuccessor(TBB))
706         TII->removeBranch(*this);
707     } else {
708       // The block has an unconditional fallthrough, or the end of the block is
709       // unreachable.
710 
711       // Unfortunately, whether the end of the block is unreachable is not
712       // immediately obvious; we must fall back to checking the successor list,
713       // and assuming that if the passed in block is in the succesor list and
714       // not an EHPad, it must be the intended target.
715       if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
716           PreviousLayoutSuccessor->isEHPad())
717         return;
718 
719       // If the unconditional successor block is not the current layout
720       // successor, insert a branch to jump to it.
721       if (!isLayoutSuccessor(PreviousLayoutSuccessor))
722         TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
723     }
724     return;
725   }
726 
727   if (FBB) {
728     // The block has a non-fallthrough conditional branch. If one of its
729     // successors is its layout successor, rewrite it to a fallthrough
730     // conditional branch.
731     if (isLayoutSuccessor(TBB)) {
732       if (TII->reverseBranchCondition(Cond))
733         return;
734       TII->removeBranch(*this);
735       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
736     } else if (isLayoutSuccessor(FBB)) {
737       TII->removeBranch(*this);
738       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
739     }
740     return;
741   }
742 
743   // We now know we're going to fallthrough to PreviousLayoutSuccessor.
744   assert(PreviousLayoutSuccessor);
745   assert(!PreviousLayoutSuccessor->isEHPad());
746   assert(isSuccessor(PreviousLayoutSuccessor));
747 
748   if (PreviousLayoutSuccessor == TBB) {
749     // We had a fallthrough to the same basic block as the conditional jump
750     // targets.  Remove the conditional jump, leaving an unconditional
751     // fallthrough or an unconditional jump.
752     TII->removeBranch(*this);
753     if (!isLayoutSuccessor(TBB)) {
754       Cond.clear();
755       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
756     }
757     return;
758   }
759 
760   // The block has a fallthrough conditional branch.
761   if (isLayoutSuccessor(TBB)) {
762     if (TII->reverseBranchCondition(Cond)) {
763       // We can't reverse the condition, add an unconditional branch.
764       Cond.clear();
765       TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
766       return;
767     }
768     TII->removeBranch(*this);
769     TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
770   } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
771     TII->removeBranch(*this);
772     TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
773   }
774 }
775 
776 void MachineBasicBlock::validateSuccProbs() const {
777 #ifndef NDEBUG
778   int64_t Sum = 0;
779   for (auto Prob : Probs)
780     Sum += Prob.getNumerator();
781   // Due to precision issue, we assume that the sum of probabilities is one if
782   // the difference between the sum of their numerators and the denominator is
783   // no greater than the number of successors.
784   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
785              Probs.size() &&
786          "The sum of successors's probabilities exceeds one.");
787 #endif // NDEBUG
788 }
789 
790 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
791                                      BranchProbability Prob) {
792   // Probability list is either empty (if successor list isn't empty, this means
793   // disabled optimization) or has the same size as successor list.
794   if (!(Probs.empty() && !Successors.empty()))
795     Probs.push_back(Prob);
796   Successors.push_back(Succ);
797   Succ->addPredecessor(this);
798 }
799 
800 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
801   // We need to make sure probability list is either empty or has the same size
802   // of successor list. When this function is called, we can safely delete all
803   // probability in the list.
804   Probs.clear();
805   Successors.push_back(Succ);
806   Succ->addPredecessor(this);
807 }
808 
809 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
810                                        MachineBasicBlock *New,
811                                        bool NormalizeSuccProbs) {
812   succ_iterator OldI = llvm::find(successors(), Old);
813   assert(OldI != succ_end() && "Old is not a successor of this block!");
814   assert(!llvm::is_contained(successors(), New) &&
815          "New is already a successor of this block!");
816 
817   // Add a new successor with equal probability as the original one. Note
818   // that we directly copy the probability using the iterator rather than
819   // getting a potentially synthetic probability computed when unknown. This
820   // preserves the probabilities as-is and then we can renormalize them and
821   // query them effectively afterward.
822   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
823                                   : *getProbabilityIterator(OldI));
824   if (NormalizeSuccProbs)
825     normalizeSuccProbs();
826 }
827 
828 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
829                                         bool NormalizeSuccProbs) {
830   succ_iterator I = find(Successors, Succ);
831   removeSuccessor(I, NormalizeSuccProbs);
832 }
833 
834 MachineBasicBlock::succ_iterator
835 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
836   assert(I != Successors.end() && "Not a current successor!");
837 
838   // If probability list is empty it means we don't use it (disabled
839   // optimization).
840   if (!Probs.empty()) {
841     probability_iterator WI = getProbabilityIterator(I);
842     Probs.erase(WI);
843     if (NormalizeSuccProbs)
844       normalizeSuccProbs();
845   }
846 
847   (*I)->removePredecessor(this);
848   return Successors.erase(I);
849 }
850 
851 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
852                                          MachineBasicBlock *New) {
853   if (Old == New)
854     return;
855 
856   succ_iterator E = succ_end();
857   succ_iterator NewI = E;
858   succ_iterator OldI = E;
859   for (succ_iterator I = succ_begin(); I != E; ++I) {
860     if (*I == Old) {
861       OldI = I;
862       if (NewI != E)
863         break;
864     }
865     if (*I == New) {
866       NewI = I;
867       if (OldI != E)
868         break;
869     }
870   }
871   assert(OldI != E && "Old is not a successor of this block");
872 
873   // If New isn't already a successor, let it take Old's place.
874   if (NewI == E) {
875     Old->removePredecessor(this);
876     New->addPredecessor(this);
877     *OldI = New;
878     return;
879   }
880 
881   // New is already a successor.
882   // Update its probability instead of adding a duplicate edge.
883   if (!Probs.empty()) {
884     auto ProbIter = getProbabilityIterator(NewI);
885     if (!ProbIter->isUnknown())
886       *ProbIter += *getProbabilityIterator(OldI);
887   }
888   removeSuccessor(OldI);
889 }
890 
891 void MachineBasicBlock::copySuccessor(const MachineBasicBlock *Orig,
892                                       succ_iterator I) {
893   if (!Orig->Probs.empty())
894     addSuccessor(*I, Orig->getSuccProbability(I));
895   else
896     addSuccessorWithoutProb(*I);
897 }
898 
899 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
900   Predecessors.push_back(Pred);
901 }
902 
903 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
904   pred_iterator I = find(Predecessors, Pred);
905   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
906   Predecessors.erase(I);
907 }
908 
909 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
910   if (this == FromMBB)
911     return;
912 
913   while (!FromMBB->succ_empty()) {
914     MachineBasicBlock *Succ = *FromMBB->succ_begin();
915 
916     // If probability list is empty it means we don't use it (disabled
917     // optimization).
918     if (!FromMBB->Probs.empty()) {
919       auto Prob = *FromMBB->Probs.begin();
920       addSuccessor(Succ, Prob);
921     } else
922       addSuccessorWithoutProb(Succ);
923 
924     FromMBB->removeSuccessor(Succ);
925   }
926 }
927 
928 void
929 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
930   if (this == FromMBB)
931     return;
932 
933   while (!FromMBB->succ_empty()) {
934     MachineBasicBlock *Succ = *FromMBB->succ_begin();
935     if (!FromMBB->Probs.empty()) {
936       auto Prob = *FromMBB->Probs.begin();
937       addSuccessor(Succ, Prob);
938     } else
939       addSuccessorWithoutProb(Succ);
940     FromMBB->removeSuccessor(Succ);
941 
942     // Fix up any PHI nodes in the successor.
943     Succ->replacePhiUsesWith(FromMBB, this);
944   }
945   normalizeSuccProbs();
946 }
947 
948 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
949   return is_contained(predecessors(), MBB);
950 }
951 
952 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
953   return is_contained(successors(), MBB);
954 }
955 
956 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
957   MachineFunction::const_iterator I(this);
958   return std::next(I) == MachineFunction::const_iterator(MBB);
959 }
960 
961 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const {
962   return Successors.size() == 1 ? Successors[0] : nullptr;
963 }
964 
965 const MachineBasicBlock *MachineBasicBlock::getSinglePredecessor() const {
966   return Predecessors.size() == 1 ? Predecessors[0] : nullptr;
967 }
968 
969 MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) {
970   MachineFunction::iterator Fallthrough = getIterator();
971   ++Fallthrough;
972   // If FallthroughBlock is off the end of the function, it can't fall through.
973   if (Fallthrough == getParent()->end())
974     return nullptr;
975 
976   // If FallthroughBlock isn't a successor, no fallthrough is possible.
977   if (!isSuccessor(&*Fallthrough))
978     return nullptr;
979 
980   // Analyze the branches, if any, at the end of the block.
981   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
982   SmallVector<MachineOperand, 4> Cond;
983   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
984   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
985     // If we couldn't analyze the branch, examine the last instruction.
986     // If the block doesn't end in a known control barrier, assume fallthrough
987     // is possible. The isPredicated check is needed because this code can be
988     // called during IfConversion, where an instruction which is normally a
989     // Barrier is predicated and thus no longer an actual control barrier.
990     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
991                ? &*Fallthrough
992                : nullptr;
993   }
994 
995   // If there is no branch, control always falls through.
996   if (!TBB) return &*Fallthrough;
997 
998   // If there is some explicit branch to the fallthrough block, it can obviously
999   // reach, even though the branch should get folded to fall through implicitly.
1000   if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough ||
1001                             MachineFunction::iterator(FBB) == Fallthrough))
1002     return &*Fallthrough;
1003 
1004   // If it's an unconditional branch to some block not the fall through, it
1005   // doesn't fall through.
1006   if (Cond.empty()) return nullptr;
1007 
1008   // Otherwise, if it is conditional and has no explicit false block, it falls
1009   // through.
1010   return (FBB == nullptr) ? &*Fallthrough : nullptr;
1011 }
1012 
1013 bool MachineBasicBlock::canFallThrough() {
1014   return getFallThrough() != nullptr;
1015 }
1016 
1017 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
1018                                               bool UpdateLiveIns,
1019                                               LiveIntervals *LIS) {
1020   MachineBasicBlock::iterator SplitPoint(&MI);
1021   ++SplitPoint;
1022 
1023   if (SplitPoint == end()) {
1024     // Don't bother with a new block.
1025     return this;
1026   }
1027 
1028   MachineFunction *MF = getParent();
1029 
1030   LivePhysRegs LiveRegs;
1031   if (UpdateLiveIns) {
1032     // Make sure we add any physregs we define in the block as liveins to the
1033     // new block.
1034     MachineBasicBlock::iterator Prev(&MI);
1035     LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
1036     LiveRegs.addLiveOuts(*this);
1037     for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
1038       LiveRegs.stepBackward(*I);
1039   }
1040 
1041   MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
1042 
1043   MF->insert(++MachineFunction::iterator(this), SplitBB);
1044   SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
1045 
1046   SplitBB->transferSuccessorsAndUpdatePHIs(this);
1047   addSuccessor(SplitBB);
1048 
1049   if (UpdateLiveIns)
1050     addLiveIns(*SplitBB, LiveRegs);
1051 
1052   if (LIS)
1053     LIS->insertMBBInMaps(SplitBB);
1054 
1055   return SplitBB;
1056 }
1057 
1058 // Returns `true` if there are possibly other users of the jump table at
1059 // `JumpTableIndex` except for the ones in `IgnoreMBB`.
1060 static bool jumpTableHasOtherUses(const MachineFunction &MF,
1061                                   const MachineBasicBlock &IgnoreMBB,
1062                                   int JumpTableIndex) {
1063   assert(JumpTableIndex >= 0 && "need valid index");
1064   const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo();
1065   const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex];
1066   // Take any basic block from the table; every user of the jump table must
1067   // show up in the predecessor list.
1068   const MachineBasicBlock *MBB = nullptr;
1069   for (MachineBasicBlock *B : MJTE.MBBs) {
1070     if (B != nullptr) {
1071       MBB = B;
1072       break;
1073     }
1074   }
1075   if (MBB == nullptr)
1076     return true; // can't rule out other users if there isn't any block.
1077   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1078   SmallVector<MachineOperand, 4> Cond;
1079   for (MachineBasicBlock *Pred : MBB->predecessors()) {
1080     if (Pred == &IgnoreMBB)
1081       continue;
1082     MachineBasicBlock *DummyT = nullptr;
1083     MachineBasicBlock *DummyF = nullptr;
1084     Cond.clear();
1085     if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond,
1086                            /*AllowModify=*/false)) {
1087       // analyzable direct jump
1088       continue;
1089     }
1090     int PredJTI = findJumpTableIndex(*Pred);
1091     if (PredJTI >= 0) {
1092       if (PredJTI == JumpTableIndex)
1093         return true;
1094       continue;
1095     }
1096     // Be conservative for unanalyzable jumps.
1097     return true;
1098   }
1099   return false;
1100 }
1101 
1102 class SlotIndexUpdateDelegate : public MachineFunction::Delegate {
1103 private:
1104   MachineFunction &MF;
1105   SlotIndexes *Indexes;
1106   SmallSetVector<MachineInstr *, 2> Insertions;
1107 
1108 public:
1109   SlotIndexUpdateDelegate(MachineFunction &MF, SlotIndexes *Indexes)
1110       : MF(MF), Indexes(Indexes) {
1111     MF.setDelegate(this);
1112   }
1113 
1114   ~SlotIndexUpdateDelegate() {
1115     MF.resetDelegate(this);
1116     for (auto MI : Insertions)
1117       Indexes->insertMachineInstrInMaps(*MI);
1118   }
1119 
1120   void MF_HandleInsertion(MachineInstr &MI) override {
1121     // This is called before MI is inserted into block so defer index update.
1122     if (Indexes)
1123       Insertions.insert(&MI);
1124   }
1125 
1126   void MF_HandleRemoval(MachineInstr &MI) override {
1127     if (Indexes && !Insertions.remove(&MI))
1128       Indexes->removeMachineInstrFromMaps(MI);
1129   }
1130 };
1131 
1132 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1133     MachineBasicBlock *Succ, Pass &P,
1134     std::vector<SparseBitVector<>> *LiveInSets) {
1135   if (!canSplitCriticalEdge(Succ))
1136     return nullptr;
1137 
1138   MachineFunction *MF = getParent();
1139   MachineBasicBlock *PrevFallthrough = getNextNode();
1140   DebugLoc DL;  // FIXME: this is nowhere
1141 
1142   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1143   NMBB->setCallFrameSize(Succ->getCallFrameSize());
1144 
1145   // Is there an indirect jump with jump table?
1146   bool ChangedIndirectJump = false;
1147   int JTI = findJumpTableIndex(*this);
1148   if (JTI >= 0) {
1149     MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo();
1150     MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB);
1151     ChangedIndirectJump = true;
1152   }
1153 
1154   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1155   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1156                     << " -- " << printMBBReference(*NMBB) << " -- "
1157                     << printMBBReference(*Succ) << '\n');
1158 
1159   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1160   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1161   if (LIS)
1162     LIS->insertMBBInMaps(NMBB);
1163   else if (Indexes)
1164     Indexes->insertMBBInMaps(NMBB);
1165 
1166   // On some targets like Mips, branches may kill virtual registers. Make sure
1167   // that LiveVariables is properly updated after updateTerminator replaces the
1168   // terminators.
1169   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1170 
1171   // Collect a list of virtual registers killed by the terminators.
1172   SmallVector<Register, 4> KilledRegs;
1173   if (LV)
1174     for (MachineInstr &MI :
1175          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1176       for (MachineOperand &MO : MI.all_uses()) {
1177         if (MO.getReg() == 0 || !MO.isKill() || MO.isUndef())
1178           continue;
1179         Register Reg = MO.getReg();
1180         if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) {
1181           KilledRegs.push_back(Reg);
1182           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1183           MO.setIsKill(false);
1184         }
1185       }
1186     }
1187 
1188   SmallVector<Register, 4> UsedRegs;
1189   if (LIS) {
1190     for (MachineInstr &MI :
1191          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1192       for (const MachineOperand &MO : MI.operands()) {
1193         if (!MO.isReg() || MO.getReg() == 0)
1194           continue;
1195 
1196         Register Reg = MO.getReg();
1197         if (!is_contained(UsedRegs, Reg))
1198           UsedRegs.push_back(Reg);
1199       }
1200     }
1201   }
1202 
1203   ReplaceUsesOfBlockWith(Succ, NMBB);
1204 
1205   // Since we replaced all uses of Succ with NMBB, that should also be treated
1206   // as the fallthrough successor
1207   if (Succ == PrevFallthrough)
1208     PrevFallthrough = NMBB;
1209 
1210   if (!ChangedIndirectJump) {
1211     SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes);
1212     updateTerminator(PrevFallthrough);
1213   }
1214 
1215   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1216   NMBB->addSuccessor(Succ);
1217   if (!NMBB->isLayoutSuccessor(Succ)) {
1218     SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes);
1219     SmallVector<MachineOperand, 4> Cond;
1220     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1221     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1222   }
1223 
1224   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1225   Succ->replacePhiUsesWith(this, NMBB);
1226 
1227   // Inherit live-ins from the successor
1228   for (const auto &LI : Succ->liveins())
1229     NMBB->addLiveIn(LI);
1230 
1231   // Update LiveVariables.
1232   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1233   if (LV) {
1234     // Restore kills of virtual registers that were killed by the terminators.
1235     while (!KilledRegs.empty()) {
1236       Register Reg = KilledRegs.pop_back_val();
1237       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1238         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1239           continue;
1240         if (Reg.isVirtual())
1241           LV->getVarInfo(Reg).Kills.push_back(&*I);
1242         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1243         break;
1244       }
1245     }
1246     // Update relevant live-through information.
1247     if (LiveInSets != nullptr)
1248       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1249     else
1250       LV->addNewBlock(NMBB, this, Succ);
1251   }
1252 
1253   if (LIS) {
1254     // After splitting the edge and updating SlotIndexes, live intervals may be
1255     // in one of two situations, depending on whether this block was the last in
1256     // the function. If the original block was the last in the function, all
1257     // live intervals will end prior to the beginning of the new split block. If
1258     // the original block was not at the end of the function, all live intervals
1259     // will extend to the end of the new split block.
1260 
1261     bool isLastMBB =
1262       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1263 
1264     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1265     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1266     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1267 
1268     // Find the registers used from NMBB in PHIs in Succ.
1269     SmallSet<Register, 8> PHISrcRegs;
1270     for (MachineBasicBlock::instr_iterator
1271          I = Succ->instr_begin(), E = Succ->instr_end();
1272          I != E && I->isPHI(); ++I) {
1273       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1274         if (I->getOperand(ni+1).getMBB() == NMBB) {
1275           MachineOperand &MO = I->getOperand(ni);
1276           Register Reg = MO.getReg();
1277           PHISrcRegs.insert(Reg);
1278           if (MO.isUndef())
1279             continue;
1280 
1281           LiveInterval &LI = LIS->getInterval(Reg);
1282           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1283           assert(VNI &&
1284                  "PHI sources should be live out of their predecessors.");
1285           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1286         }
1287       }
1288     }
1289 
1290     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1291     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1292       Register Reg = Register::index2VirtReg(i);
1293       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1294         continue;
1295 
1296       LiveInterval &LI = LIS->getInterval(Reg);
1297       if (!LI.liveAt(PrevIndex))
1298         continue;
1299 
1300       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1301       if (isLiveOut && isLastMBB) {
1302         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1303         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1304         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1305       } else if (!isLiveOut && !isLastMBB) {
1306         LI.removeSegment(StartIndex, EndIndex);
1307       }
1308     }
1309 
1310     // Update all intervals for registers whose uses may have been modified by
1311     // updateTerminator().
1312     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1313   }
1314 
1315   if (MachineDominatorTree *MDT =
1316           P.getAnalysisIfAvailable<MachineDominatorTree>())
1317     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1318 
1319   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1320     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1321       // If one or the other blocks were not in a loop, the new block is not
1322       // either, and thus LI doesn't need to be updated.
1323       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1324         if (TIL == DestLoop) {
1325           // Both in the same loop, the NMBB joins loop.
1326           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1327         } else if (TIL->contains(DestLoop)) {
1328           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1329           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1330         } else if (DestLoop->contains(TIL)) {
1331           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1332           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1333         } else {
1334           // Edge from two loops with no containment relation.  Because these
1335           // are natural loops, we know that the destination block must be the
1336           // header of its loop (adding a branch into a loop elsewhere would
1337           // create an irreducible loop).
1338           assert(DestLoop->getHeader() == Succ &&
1339                  "Should not create irreducible loops!");
1340           if (MachineLoop *P = DestLoop->getParentLoop())
1341             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1342         }
1343       }
1344     }
1345 
1346   return NMBB;
1347 }
1348 
1349 bool MachineBasicBlock::canSplitCriticalEdge(
1350     const MachineBasicBlock *Succ) const {
1351   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1352   // it in this generic function.
1353   if (Succ->isEHPad())
1354     return false;
1355 
1356   // Splitting the critical edge to a callbr's indirect block isn't advised.
1357   // Don't do it in this generic function.
1358   if (Succ->isInlineAsmBrIndirectTarget())
1359     return false;
1360 
1361   const MachineFunction *MF = getParent();
1362   // Performance might be harmed on HW that implements branching using exec mask
1363   // where both sides of the branches are always executed.
1364   if (MF->getTarget().requiresStructuredCFG())
1365     return false;
1366 
1367   // Do we have an Indirect jump with a jumptable that we can rewrite?
1368   int JTI = findJumpTableIndex(*this);
1369   if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI))
1370     return true;
1371 
1372   // We may need to update this's terminator, but we can't do that if
1373   // analyzeBranch fails.
1374   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1375   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1376   SmallVector<MachineOperand, 4> Cond;
1377   // AnalyzeBanch should modify this, since we did not allow modification.
1378   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1379                          /*AllowModify*/ false))
1380     return false;
1381 
1382   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1383   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1384   // case that we can't handle. Since this never happens in properly optimized
1385   // code, just skip those edges.
1386   if (TBB && TBB == FBB) {
1387     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1388                       << printMBBReference(*this) << '\n');
1389     return false;
1390   }
1391   return true;
1392 }
1393 
1394 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1395 /// neighboring instructions so the bundle won't be broken by removing MI.
1396 static void unbundleSingleMI(MachineInstr *MI) {
1397   // Removing the first instruction in a bundle.
1398   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1399     MI->unbundleFromSucc();
1400   // Removing the last instruction in a bundle.
1401   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1402     MI->unbundleFromPred();
1403   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1404   // are already fine.
1405 }
1406 
1407 MachineBasicBlock::instr_iterator
1408 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1409   unbundleSingleMI(&*I);
1410   return Insts.erase(I);
1411 }
1412 
1413 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1414   unbundleSingleMI(MI);
1415   MI->clearFlag(MachineInstr::BundledPred);
1416   MI->clearFlag(MachineInstr::BundledSucc);
1417   return Insts.remove(MI);
1418 }
1419 
1420 MachineBasicBlock::instr_iterator
1421 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1422   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1423          "Cannot insert instruction with bundle flags");
1424   // Set the bundle flags when inserting inside a bundle.
1425   if (I != instr_end() && I->isBundledWithPred()) {
1426     MI->setFlag(MachineInstr::BundledPred);
1427     MI->setFlag(MachineInstr::BundledSucc);
1428   }
1429   return Insts.insert(I, MI);
1430 }
1431 
1432 /// This method unlinks 'this' from the containing function, and returns it, but
1433 /// does not delete it.
1434 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1435   assert(getParent() && "Not embedded in a function!");
1436   getParent()->remove(this);
1437   return this;
1438 }
1439 
1440 /// This method unlinks 'this' from the containing function, and deletes it.
1441 void MachineBasicBlock::eraseFromParent() {
1442   assert(getParent() && "Not embedded in a function!");
1443   getParent()->erase(this);
1444 }
1445 
1446 /// Given a machine basic block that branched to 'Old', change the code and CFG
1447 /// so that it branches to 'New' instead.
1448 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1449                                                MachineBasicBlock *New) {
1450   assert(Old != New && "Cannot replace self with self!");
1451 
1452   MachineBasicBlock::instr_iterator I = instr_end();
1453   while (I != instr_begin()) {
1454     --I;
1455     if (!I->isTerminator()) break;
1456 
1457     // Scan the operands of this machine instruction, replacing any uses of Old
1458     // with New.
1459     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1460       if (I->getOperand(i).isMBB() &&
1461           I->getOperand(i).getMBB() == Old)
1462         I->getOperand(i).setMBB(New);
1463   }
1464 
1465   // Update the successor information.
1466   replaceSuccessor(Old, New);
1467 }
1468 
1469 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1470                                            MachineBasicBlock *New) {
1471   for (MachineInstr &MI : phis())
1472     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1473       MachineOperand &MO = MI.getOperand(i);
1474       if (MO.getMBB() == Old)
1475         MO.setMBB(New);
1476     }
1477 }
1478 
1479 /// Find the next valid DebugLoc starting at MBBI, skipping any debug
1480 /// instructions.  Return UnknownLoc if there is none.
1481 DebugLoc
1482 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1483   // Skip debug declarations, we don't want a DebugLoc from them.
1484   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1485   if (MBBI != instr_end())
1486     return MBBI->getDebugLoc();
1487   return {};
1488 }
1489 
1490 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1491   if (MBBI == instr_rend())
1492     return findDebugLoc(instr_begin());
1493   // Skip debug declarations, we don't want a DebugLoc from them.
1494   MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1495   if (!MBBI->isDebugInstr())
1496     return MBBI->getDebugLoc();
1497   return {};
1498 }
1499 
1500 /// Find the previous valid DebugLoc preceding MBBI, skipping any debug
1501 /// instructions.  Return UnknownLoc if there is none.
1502 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1503   if (MBBI == instr_begin())
1504     return {};
1505   // Skip debug instructions, we don't want a DebugLoc from them.
1506   MBBI = prev_nodbg(MBBI, instr_begin());
1507   if (!MBBI->isDebugInstr())
1508     return MBBI->getDebugLoc();
1509   return {};
1510 }
1511 
1512 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1513   if (MBBI == instr_rend())
1514     return {};
1515   // Skip debug declarations, we don't want a DebugLoc from them.
1516   MBBI = next_nodbg(MBBI, instr_rend());
1517   if (MBBI != instr_rend())
1518     return MBBI->getDebugLoc();
1519   return {};
1520 }
1521 
1522 /// Find and return the merged DebugLoc of the branch instructions of the block.
1523 /// Return UnknownLoc if there is none.
1524 DebugLoc
1525 MachineBasicBlock::findBranchDebugLoc() {
1526   DebugLoc DL;
1527   auto TI = getFirstTerminator();
1528   while (TI != end() && !TI->isBranch())
1529     ++TI;
1530 
1531   if (TI != end()) {
1532     DL = TI->getDebugLoc();
1533     for (++TI ; TI != end() ; ++TI)
1534       if (TI->isBranch())
1535         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1536   }
1537   return DL;
1538 }
1539 
1540 /// Return probability of the edge from this block to MBB.
1541 BranchProbability
1542 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1543   if (Probs.empty())
1544     return BranchProbability(1, succ_size());
1545 
1546   const auto &Prob = *getProbabilityIterator(Succ);
1547   if (Prob.isUnknown()) {
1548     // For unknown probabilities, collect the sum of all known ones, and evenly
1549     // ditribute the complemental of the sum to each unknown probability.
1550     unsigned KnownProbNum = 0;
1551     auto Sum = BranchProbability::getZero();
1552     for (const auto &P : Probs) {
1553       if (!P.isUnknown()) {
1554         Sum += P;
1555         KnownProbNum++;
1556       }
1557     }
1558     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1559   } else
1560     return Prob;
1561 }
1562 
1563 /// Set successor probability of a given iterator.
1564 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1565                                            BranchProbability Prob) {
1566   assert(!Prob.isUnknown());
1567   if (Probs.empty())
1568     return;
1569   *getProbabilityIterator(I) = Prob;
1570 }
1571 
1572 /// Return probability iterator corresonding to the I successor iterator
1573 MachineBasicBlock::const_probability_iterator
1574 MachineBasicBlock::getProbabilityIterator(
1575     MachineBasicBlock::const_succ_iterator I) const {
1576   assert(Probs.size() == Successors.size() && "Async probability list!");
1577   const size_t index = std::distance(Successors.begin(), I);
1578   assert(index < Probs.size() && "Not a current successor!");
1579   return Probs.begin() + index;
1580 }
1581 
1582 /// Return probability iterator corresonding to the I successor iterator.
1583 MachineBasicBlock::probability_iterator
1584 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1585   assert(Probs.size() == Successors.size() && "Async probability list!");
1586   const size_t index = std::distance(Successors.begin(), I);
1587   assert(index < Probs.size() && "Not a current successor!");
1588   return Probs.begin() + index;
1589 }
1590 
1591 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1592 /// as of just before "MI".
1593 ///
1594 /// Search is localised to a neighborhood of
1595 /// Neighborhood instructions before (searching for defs or kills) and N
1596 /// instructions after (searching just for defs) MI.
1597 MachineBasicBlock::LivenessQueryResult
1598 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1599                                            MCRegister Reg, const_iterator Before,
1600                                            unsigned Neighborhood) const {
1601   unsigned N = Neighborhood;
1602 
1603   // Try searching forwards from Before, looking for reads or defs.
1604   const_iterator I(Before);
1605   for (; I != end() && N > 0; ++I) {
1606     if (I->isDebugOrPseudoInstr())
1607       continue;
1608 
1609     --N;
1610 
1611     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1612 
1613     // Register is live when we read it here.
1614     if (Info.Read)
1615       return LQR_Live;
1616     // Register is dead if we can fully overwrite or clobber it here.
1617     if (Info.FullyDefined || Info.Clobbered)
1618       return LQR_Dead;
1619   }
1620 
1621   // If we reached the end, it is safe to clobber Reg at the end of a block of
1622   // no successor has it live in.
1623   if (I == end()) {
1624     for (MachineBasicBlock *S : successors()) {
1625       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1626         if (TRI->regsOverlap(LI.PhysReg, Reg))
1627           return LQR_Live;
1628       }
1629     }
1630 
1631     return LQR_Dead;
1632   }
1633 
1634 
1635   N = Neighborhood;
1636 
1637   // Start by searching backwards from Before, looking for kills, reads or defs.
1638   I = const_iterator(Before);
1639   // If this is the first insn in the block, don't search backwards.
1640   if (I != begin()) {
1641     do {
1642       --I;
1643 
1644       if (I->isDebugOrPseudoInstr())
1645         continue;
1646 
1647       --N;
1648 
1649       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1650 
1651       // Defs happen after uses so they take precedence if both are present.
1652 
1653       // Register is dead after a dead def of the full register.
1654       if (Info.DeadDef)
1655         return LQR_Dead;
1656       // Register is (at least partially) live after a def.
1657       if (Info.Defined) {
1658         if (!Info.PartialDeadDef)
1659           return LQR_Live;
1660         // As soon as we saw a partial definition (dead or not),
1661         // we cannot tell if the value is partial live without
1662         // tracking the lanemasks. We are not going to do this,
1663         // so fall back on the remaining of the analysis.
1664         break;
1665       }
1666       // Register is dead after a full kill or clobber and no def.
1667       if (Info.Killed || Info.Clobbered)
1668         return LQR_Dead;
1669       // Register must be live if we read it.
1670       if (Info.Read)
1671         return LQR_Live;
1672 
1673     } while (I != begin() && N > 0);
1674   }
1675 
1676   // If all the instructions before this in the block are debug instructions,
1677   // skip over them.
1678   while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1679     --I;
1680 
1681   // Did we get to the start of the block?
1682   if (I == begin()) {
1683     // If so, the register's state is definitely defined by the live-in state.
1684     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1685       if (TRI->regsOverlap(LI.PhysReg, Reg))
1686         return LQR_Live;
1687 
1688     return LQR_Dead;
1689   }
1690 
1691   // At this point we have no idea of the liveness of the register.
1692   return LQR_Unknown;
1693 }
1694 
1695 const uint32_t *
1696 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1697   // EH funclet entry does not preserve any registers.
1698   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1699 }
1700 
1701 const uint32_t *
1702 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1703   // If we see a return block with successors, this must be a funclet return,
1704   // which does not preserve any registers. If there are no successors, we don't
1705   // care what kind of return it is, putting a mask after it is a no-op.
1706   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1707 }
1708 
1709 void MachineBasicBlock::clearLiveIns() {
1710   LiveIns.clear();
1711 }
1712 
1713 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1714   assert(getParent()->getProperties().hasProperty(
1715       MachineFunctionProperties::Property::TracksLiveness) &&
1716       "Liveness information is accurate");
1717   return LiveIns.begin();
1718 }
1719 
1720 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1721   const MachineFunction &MF = *getParent();
1722   assert(MF.getProperties().hasProperty(
1723       MachineFunctionProperties::Property::TracksLiveness) &&
1724       "Liveness information is accurate");
1725 
1726   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1727   MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1728   if (MF.getFunction().hasPersonalityFn()) {
1729     auto PersonalityFn = MF.getFunction().getPersonalityFn();
1730     ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1731     ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1732   }
1733 
1734   return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1735 }
1736 
1737 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const {
1738   unsigned Cntr = 0;
1739   auto R = instructionsWithoutDebug(begin(), end());
1740   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1741     if (++Cntr > Limit)
1742       return true;
1743   }
1744   return false;
1745 }
1746 
1747 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1748 const MBBSectionID
1749     MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1750