xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision f6ed795d0c06a66f0a29ea4f3f37e60dba79de57)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
43     : BB(B), Number(-1), xParent(&MF) {
44   Insts.Parent = this;
45   if (B)
46     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
47 }
48 
49 MachineBasicBlock::~MachineBasicBlock() {
50 }
51 
52 /// Return the MCSymbol for this basic block.
53 MCSymbol *MachineBasicBlock::getSymbol() const {
54   if (!CachedMCSymbol) {
55     const MachineFunction *MF = getParent();
56     MCContext &Ctx = MF->getContext();
57     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
58     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
59     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
60                                            Twine(MF->getFunctionNumber()) +
61                                            "_" + Twine(getNumber()));
62   }
63 
64   return CachedMCSymbol;
65 }
66 
67 
68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
69   MBB.print(OS);
70   return OS;
71 }
72 
73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
74   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
75 }
76 
77 /// When an MBB is added to an MF, we need to update the parent pointer of the
78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
79 /// operand list for registers.
80 ///
81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
82 /// gets the next available unique MBB number. If it is removed from a
83 /// MachineFunction, it goes back to being #-1.
84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
85     MachineBasicBlock *N) {
86   MachineFunction &MF = *N->getParent();
87   N->Number = MF.addToMBBNumbering(N);
88 
89   // Make sure the instructions have their operands in the reginfo lists.
90   MachineRegisterInfo &RegInfo = MF.getRegInfo();
91   for (MachineBasicBlock::instr_iterator
92          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
93     I->AddRegOperandsToUseLists(RegInfo);
94 }
95 
96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
97     MachineBasicBlock *N) {
98   N->getParent()->removeFromMBBNumbering(N->Number);
99   N->Number = -1;
100 }
101 
102 /// When we add an instruction to a basic block list, we update its parent
103 /// pointer and add its operands from reg use/def lists if appropriate.
104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
105   assert(!N->getParent() && "machine instruction already in a basic block");
106   N->setParent(Parent);
107 
108   // Add the instruction's register operands to their corresponding
109   // use/def lists.
110   MachineFunction *MF = Parent->getParent();
111   N->AddRegOperandsToUseLists(MF->getRegInfo());
112 }
113 
114 /// When we remove an instruction from a basic block list, we update its parent
115 /// pointer and remove its operands from reg use/def lists if appropriate.
116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
117   assert(N->getParent() && "machine instruction not in a basic block");
118 
119   // Remove from the use/def lists.
120   if (MachineFunction *MF = N->getMF())
121     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
122 
123   N->setParent(nullptr);
124 }
125 
126 /// When moving a range of instructions from one MBB list to another, we need to
127 /// update the parent pointers and the use/def lists.
128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
129                                                        instr_iterator First,
130                                                        instr_iterator Last) {
131   assert(Parent->getParent() == FromList.Parent->getParent() &&
132         "MachineInstr parent mismatch!");
133   assert(this != &FromList && "Called without a real transfer...");
134   assert(Parent != FromList.Parent && "Two lists have the same parent?");
135 
136   // If splicing between two blocks within the same function, just update the
137   // parent pointers.
138   for (; First != Last; ++First)
139     First->setParent(Parent);
140 }
141 
142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
143   assert(!MI->getParent() && "MI is still in a block!");
144   Parent->getParent()->DeleteMachineInstr(MI);
145 }
146 
147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
148   instr_iterator I = instr_begin(), E = instr_end();
149   while (I != E && I->isPHI())
150     ++I;
151   assert((I == E || !I->isInsideBundle()) &&
152          "First non-phi MI cannot be inside a bundle!");
153   return I;
154 }
155 
156 MachineBasicBlock::iterator
157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
158   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
159 
160   iterator E = end();
161   while (I != E && (I->isPHI() || I->isPosition() ||
162                     TII->isBasicBlockPrologue(*I)))
163     ++I;
164   // FIXME: This needs to change if we wish to bundle labels
165   // inside the bundle.
166   assert((I == E || !I->isInsideBundle()) &&
167          "First non-phi / non-label instruction is inside a bundle!");
168   return I;
169 }
170 
171 MachineBasicBlock::iterator
172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
173   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
174 
175   iterator E = end();
176   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() ||
177                     TII->isBasicBlockPrologue(*I)))
178     ++I;
179   // FIXME: This needs to change if we wish to bundle labels / dbg_values
180   // inside the bundle.
181   assert((I == E || !I->isInsideBundle()) &&
182          "First non-phi / non-label / non-debug "
183          "instruction is inside a bundle!");
184   return I;
185 }
186 
187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
188   iterator B = begin(), E = end(), I = E;
189   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
190     ; /*noop */
191   while (I != E && !I->isTerminator())
192     ++I;
193   return I;
194 }
195 
196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
197   instr_iterator B = instr_begin(), E = instr_end(), I = E;
198   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
199     ; /*noop */
200   while (I != E && !I->isTerminator())
201     ++I;
202   return I;
203 }
204 
205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
206   // Skip over begin-of-block dbg_value instructions.
207   return skipDebugInstructionsForward(begin(), end());
208 }
209 
210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
211   // Skip over end-of-block dbg_value instructions.
212   instr_iterator B = instr_begin(), I = instr_end();
213   while (I != B) {
214     --I;
215     // Return instruction that starts a bundle.
216     if (I->isDebugValue() || I->isInsideBundle())
217       continue;
218     return I;
219   }
220   // The block is all debug values.
221   return end();
222 }
223 
224 bool MachineBasicBlock::hasEHPadSuccessor() const {
225   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
226     if ((*I)->isEHPad())
227       return true;
228   return false;
229 }
230 
231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
233   print(dbgs());
234 }
235 #endif
236 
237 bool MachineBasicBlock::isLegalToHoistInto() const {
238   if (isReturnBlock() || hasEHPadSuccessor())
239     return false;
240   return true;
241 }
242 
243 StringRef MachineBasicBlock::getName() const {
244   if (const BasicBlock *LBB = getBasicBlock())
245     return LBB->getName();
246   else
247     return StringRef("", 0);
248 }
249 
250 /// Return a hopefully unique identifier for this block.
251 std::string MachineBasicBlock::getFullName() const {
252   std::string Name;
253   if (getParent())
254     Name = (getParent()->getName() + ":").str();
255   if (getBasicBlock())
256     Name += getBasicBlock()->getName();
257   else
258     Name += ("BB" + Twine(getNumber())).str();
259   return Name;
260 }
261 
262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
263                               bool IsStandalone) const {
264   const MachineFunction *MF = getParent();
265   if (!MF) {
266     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
267        << " is null\n";
268     return;
269   }
270   const Function &F = MF->getFunction();
271   const Module *M = F.getParent();
272   ModuleSlotTracker MST(M);
273   MST.incorporateFunction(F);
274   print(OS, MST, Indexes, IsStandalone);
275 }
276 
277 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
278                               const SlotIndexes *Indexes,
279                               bool IsStandalone) const {
280   const MachineFunction *MF = getParent();
281   if (!MF) {
282     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
283        << " is null\n";
284     return;
285   }
286 
287   if (Indexes)
288     OS << Indexes->getMBBStartIdx(this) << '\t';
289 
290   OS << "bb." << getNumber();
291   bool HasAttributes = false;
292   if (const auto *BB = getBasicBlock()) {
293     if (BB->hasName()) {
294       OS << "." << BB->getName();
295     } else {
296       HasAttributes = true;
297       OS << " (";
298       int Slot = MST.getLocalSlot(BB);
299       if (Slot == -1)
300         OS << "<ir-block badref>";
301       else
302         OS << (Twine("%ir-block.") + Twine(Slot)).str();
303     }
304   }
305 
306   if (hasAddressTaken()) {
307     OS << (HasAttributes ? ", " : " (");
308     OS << "address-taken";
309     HasAttributes = true;
310   }
311   if (isEHPad()) {
312     OS << (HasAttributes ? ", " : " (");
313     OS << "landing-pad";
314     HasAttributes = true;
315   }
316   if (getAlignment()) {
317     OS << (HasAttributes ? ", " : " (");
318     OS << "align " << getAlignment();
319     HasAttributes = true;
320   }
321   if (HasAttributes)
322     OS << ")";
323   OS << ":\n";
324 
325   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
326   const MachineRegisterInfo &MRI = MF->getRegInfo();
327   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
328   if (!livein_empty() && MRI.tracksLiveness()) {
329     if (Indexes) OS << '\t';
330     OS.indent(2) << "liveins: ";
331 
332     bool First = true;
333     for (const auto &LI : liveins()) {
334       if (!First)
335         OS << ", ";
336       First = false;
337       OS << printReg(LI.PhysReg, TRI);
338       if (!LI.LaneMask.all())
339         OS << ":0x" << PrintLaneMask(LI.LaneMask);
340     }
341     OS << '\n';
342   }
343 
344   if (!succ_empty()) {
345     if (Indexes) OS << '\t';
346     // Print the successors
347     OS.indent(2) << "successors: ";
348     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
349       if (I != succ_begin())
350         OS << ", ";
351       OS << printMBBReference(**I);
352       if (!Probs.empty())
353         OS << '('
354            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
355            << ')';
356     }
357     if (!Probs.empty()) {
358       // Print human readable probabilities as comments.
359       OS << "; ";
360       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
361         const BranchProbability &BP = *getProbabilityIterator(I);
362         if (I != succ_begin())
363           OS << ", ";
364         OS << printMBBReference(**I) << '('
365            << format("%.2f%%",
366                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
367                           100.0 * 100.0) /
368                          100.0)
369            << ')';
370       }
371       OS << '\n';
372     }
373   }
374 
375   // Print the preds of this block according to the CFG.
376   if (!pred_empty()) {
377     if (Indexes) OS << '\t';
378     // Don't indent(2), align with previous line attributes.
379     OS << "; predecessors: ";
380     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
381       if (I != pred_begin())
382         OS << ", ";
383       OS << printMBBReference(**I);
384     }
385     OS << '\n';
386   }
387 
388   bool IsInBundle = false;
389   for (const MachineInstr &MI : instrs()) {
390     if (Indexes) {
391       if (Indexes->hasIndex(MI))
392         OS << Indexes->getInstructionIndex(MI);
393       OS << '\t';
394     }
395 
396     if (IsInBundle && !MI.isInsideBundle()) {
397       OS.indent(2) << "}\n";
398       IsInBundle = false;
399     }
400 
401     OS.indent(IsInBundle ? 4 : 2);
402     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
403              &TII);
404 
405     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
406       OS << " {";
407       IsInBundle = true;
408     }
409 
410     OS << '\n';
411   }
412 
413   if (IsInBundle)
414     OS.indent(2) << "}\n";
415 
416   if (IrrLoopHeaderWeight) {
417     if (Indexes) OS << '\t';
418     OS << "    Irreducible loop header weight: "
419        << IrrLoopHeaderWeight.getValue();
420     OS << '\n';
421   }
422 }
423 
424 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
425                                        bool /*PrintType*/) const {
426   OS << "%bb." << getNumber();
427 }
428 
429 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
430   LiveInVector::iterator I = find_if(
431       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
432   if (I == LiveIns.end())
433     return;
434 
435   I->LaneMask &= ~LaneMask;
436   if (I->LaneMask.none())
437     LiveIns.erase(I);
438 }
439 
440 MachineBasicBlock::livein_iterator
441 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
442   // Get non-const version of iterator.
443   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
444   return LiveIns.erase(LI);
445 }
446 
447 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
448   livein_iterator I = find_if(
449       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
450   return I != livein_end() && (I->LaneMask & LaneMask).any();
451 }
452 
453 void MachineBasicBlock::sortUniqueLiveIns() {
454   std::sort(LiveIns.begin(), LiveIns.end(),
455             [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
456               return LI0.PhysReg < LI1.PhysReg;
457             });
458   // Liveins are sorted by physreg now we can merge their lanemasks.
459   LiveInVector::const_iterator I = LiveIns.begin();
460   LiveInVector::const_iterator J;
461   LiveInVector::iterator Out = LiveIns.begin();
462   for (; I != LiveIns.end(); ++Out, I = J) {
463     unsigned PhysReg = I->PhysReg;
464     LaneBitmask LaneMask = I->LaneMask;
465     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
466       LaneMask |= J->LaneMask;
467     Out->PhysReg = PhysReg;
468     Out->LaneMask = LaneMask;
469   }
470   LiveIns.erase(Out, LiveIns.end());
471 }
472 
473 unsigned
474 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
475   assert(getParent() && "MBB must be inserted in function");
476   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
477   assert(RC && "Register class is required");
478   assert((isEHPad() || this == &getParent()->front()) &&
479          "Only the entry block and landing pads can have physreg live ins");
480 
481   bool LiveIn = isLiveIn(PhysReg);
482   iterator I = SkipPHIsAndLabels(begin()), E = end();
483   MachineRegisterInfo &MRI = getParent()->getRegInfo();
484   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
485 
486   // Look for an existing copy.
487   if (LiveIn)
488     for (;I != E && I->isCopy(); ++I)
489       if (I->getOperand(1).getReg() == PhysReg) {
490         unsigned VirtReg = I->getOperand(0).getReg();
491         if (!MRI.constrainRegClass(VirtReg, RC))
492           llvm_unreachable("Incompatible live-in register class.");
493         return VirtReg;
494       }
495 
496   // No luck, create a virtual register.
497   unsigned VirtReg = MRI.createVirtualRegister(RC);
498   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
499     .addReg(PhysReg, RegState::Kill);
500   if (!LiveIn)
501     addLiveIn(PhysReg);
502   return VirtReg;
503 }
504 
505 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
506   getParent()->splice(NewAfter->getIterator(), getIterator());
507 }
508 
509 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
510   getParent()->splice(++NewBefore->getIterator(), getIterator());
511 }
512 
513 void MachineBasicBlock::updateTerminator() {
514   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
515   // A block with no successors has no concerns with fall-through edges.
516   if (this->succ_empty())
517     return;
518 
519   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
520   SmallVector<MachineOperand, 4> Cond;
521   DebugLoc DL = findBranchDebugLoc();
522   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
523   (void) B;
524   assert(!B && "UpdateTerminators requires analyzable predecessors!");
525   if (Cond.empty()) {
526     if (TBB) {
527       // The block has an unconditional branch. If its successor is now its
528       // layout successor, delete the branch.
529       if (isLayoutSuccessor(TBB))
530         TII->removeBranch(*this);
531     } else {
532       // The block has an unconditional fallthrough. If its successor is not its
533       // layout successor, insert a branch. First we have to locate the only
534       // non-landing-pad successor, as that is the fallthrough block.
535       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
536         if ((*SI)->isEHPad())
537           continue;
538         assert(!TBB && "Found more than one non-landing-pad successor!");
539         TBB = *SI;
540       }
541 
542       // If there is no non-landing-pad successor, the block has no fall-through
543       // edges to be concerned with.
544       if (!TBB)
545         return;
546 
547       // Finally update the unconditional successor to be reached via a branch
548       // if it would not be reached by fallthrough.
549       if (!isLayoutSuccessor(TBB))
550         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
551     }
552     return;
553   }
554 
555   if (FBB) {
556     // The block has a non-fallthrough conditional branch. If one of its
557     // successors is its layout successor, rewrite it to a fallthrough
558     // conditional branch.
559     if (isLayoutSuccessor(TBB)) {
560       if (TII->reverseBranchCondition(Cond))
561         return;
562       TII->removeBranch(*this);
563       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
564     } else if (isLayoutSuccessor(FBB)) {
565       TII->removeBranch(*this);
566       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
567     }
568     return;
569   }
570 
571   // Walk through the successors and find the successor which is not a landing
572   // pad and is not the conditional branch destination (in TBB) as the
573   // fallthrough successor.
574   MachineBasicBlock *FallthroughBB = nullptr;
575   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
576     if ((*SI)->isEHPad() || *SI == TBB)
577       continue;
578     assert(!FallthroughBB && "Found more than one fallthrough successor.");
579     FallthroughBB = *SI;
580   }
581 
582   if (!FallthroughBB) {
583     if (canFallThrough()) {
584       // We fallthrough to the same basic block as the conditional jump targets.
585       // Remove the conditional jump, leaving unconditional fallthrough.
586       // FIXME: This does not seem like a reasonable pattern to support, but it
587       // has been seen in the wild coming out of degenerate ARM test cases.
588       TII->removeBranch(*this);
589 
590       // Finally update the unconditional successor to be reached via a branch if
591       // it would not be reached by fallthrough.
592       if (!isLayoutSuccessor(TBB))
593         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
594       return;
595     }
596 
597     // We enter here iff exactly one successor is TBB which cannot fallthrough
598     // and the rest successors if any are EHPads.  In this case, we need to
599     // change the conditional branch into unconditional branch.
600     TII->removeBranch(*this);
601     Cond.clear();
602     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
603     return;
604   }
605 
606   // The block has a fallthrough conditional branch.
607   if (isLayoutSuccessor(TBB)) {
608     if (TII->reverseBranchCondition(Cond)) {
609       // We can't reverse the condition, add an unconditional branch.
610       Cond.clear();
611       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
612       return;
613     }
614     TII->removeBranch(*this);
615     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
616   } else if (!isLayoutSuccessor(FallthroughBB)) {
617     TII->removeBranch(*this);
618     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
619   }
620 }
621 
622 void MachineBasicBlock::validateSuccProbs() const {
623 #ifndef NDEBUG
624   int64_t Sum = 0;
625   for (auto Prob : Probs)
626     Sum += Prob.getNumerator();
627   // Due to precision issue, we assume that the sum of probabilities is one if
628   // the difference between the sum of their numerators and the denominator is
629   // no greater than the number of successors.
630   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
631              Probs.size() &&
632          "The sum of successors's probabilities exceeds one.");
633 #endif // NDEBUG
634 }
635 
636 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
637                                      BranchProbability Prob) {
638   // Probability list is either empty (if successor list isn't empty, this means
639   // disabled optimization) or has the same size as successor list.
640   if (!(Probs.empty() && !Successors.empty()))
641     Probs.push_back(Prob);
642   Successors.push_back(Succ);
643   Succ->addPredecessor(this);
644 }
645 
646 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
647   // We need to make sure probability list is either empty or has the same size
648   // of successor list. When this function is called, we can safely delete all
649   // probability in the list.
650   Probs.clear();
651   Successors.push_back(Succ);
652   Succ->addPredecessor(this);
653 }
654 
655 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
656                                         bool NormalizeSuccProbs) {
657   succ_iterator I = find(Successors, Succ);
658   removeSuccessor(I, NormalizeSuccProbs);
659 }
660 
661 MachineBasicBlock::succ_iterator
662 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
663   assert(I != Successors.end() && "Not a current successor!");
664 
665   // If probability list is empty it means we don't use it (disabled
666   // optimization).
667   if (!Probs.empty()) {
668     probability_iterator WI = getProbabilityIterator(I);
669     Probs.erase(WI);
670     if (NormalizeSuccProbs)
671       normalizeSuccProbs();
672   }
673 
674   (*I)->removePredecessor(this);
675   return Successors.erase(I);
676 }
677 
678 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
679                                          MachineBasicBlock *New) {
680   if (Old == New)
681     return;
682 
683   succ_iterator E = succ_end();
684   succ_iterator NewI = E;
685   succ_iterator OldI = E;
686   for (succ_iterator I = succ_begin(); I != E; ++I) {
687     if (*I == Old) {
688       OldI = I;
689       if (NewI != E)
690         break;
691     }
692     if (*I == New) {
693       NewI = I;
694       if (OldI != E)
695         break;
696     }
697   }
698   assert(OldI != E && "Old is not a successor of this block");
699 
700   // If New isn't already a successor, let it take Old's place.
701   if (NewI == E) {
702     Old->removePredecessor(this);
703     New->addPredecessor(this);
704     *OldI = New;
705     return;
706   }
707 
708   // New is already a successor.
709   // Update its probability instead of adding a duplicate edge.
710   if (!Probs.empty()) {
711     auto ProbIter = getProbabilityIterator(NewI);
712     if (!ProbIter->isUnknown())
713       *ProbIter += *getProbabilityIterator(OldI);
714   }
715   removeSuccessor(OldI);
716 }
717 
718 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
719   Predecessors.push_back(Pred);
720 }
721 
722 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
723   pred_iterator I = find(Predecessors, Pred);
724   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
725   Predecessors.erase(I);
726 }
727 
728 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
729   if (this == FromMBB)
730     return;
731 
732   while (!FromMBB->succ_empty()) {
733     MachineBasicBlock *Succ = *FromMBB->succ_begin();
734 
735     // If probability list is empty it means we don't use it (disabled optimization).
736     if (!FromMBB->Probs.empty()) {
737       auto Prob = *FromMBB->Probs.begin();
738       addSuccessor(Succ, Prob);
739     } else
740       addSuccessorWithoutProb(Succ);
741 
742     FromMBB->removeSuccessor(Succ);
743   }
744 }
745 
746 void
747 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
748   if (this == FromMBB)
749     return;
750 
751   while (!FromMBB->succ_empty()) {
752     MachineBasicBlock *Succ = *FromMBB->succ_begin();
753     if (!FromMBB->Probs.empty()) {
754       auto Prob = *FromMBB->Probs.begin();
755       addSuccessor(Succ, Prob);
756     } else
757       addSuccessorWithoutProb(Succ);
758     FromMBB->removeSuccessor(Succ);
759 
760     // Fix up any PHI nodes in the successor.
761     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
762            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
763       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
764         MachineOperand &MO = MI->getOperand(i);
765         if (MO.getMBB() == FromMBB)
766           MO.setMBB(this);
767       }
768   }
769   normalizeSuccProbs();
770 }
771 
772 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
773   return is_contained(predecessors(), MBB);
774 }
775 
776 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
777   return is_contained(successors(), MBB);
778 }
779 
780 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
781   MachineFunction::const_iterator I(this);
782   return std::next(I) == MachineFunction::const_iterator(MBB);
783 }
784 
785 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
786   MachineFunction::iterator Fallthrough = getIterator();
787   ++Fallthrough;
788   // If FallthroughBlock is off the end of the function, it can't fall through.
789   if (Fallthrough == getParent()->end())
790     return nullptr;
791 
792   // If FallthroughBlock isn't a successor, no fallthrough is possible.
793   if (!isSuccessor(&*Fallthrough))
794     return nullptr;
795 
796   // Analyze the branches, if any, at the end of the block.
797   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
798   SmallVector<MachineOperand, 4> Cond;
799   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
800   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
801     // If we couldn't analyze the branch, examine the last instruction.
802     // If the block doesn't end in a known control barrier, assume fallthrough
803     // is possible. The isPredicated check is needed because this code can be
804     // called during IfConversion, where an instruction which is normally a
805     // Barrier is predicated and thus no longer an actual control barrier.
806     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
807                ? &*Fallthrough
808                : nullptr;
809   }
810 
811   // If there is no branch, control always falls through.
812   if (!TBB) return &*Fallthrough;
813 
814   // If there is some explicit branch to the fallthrough block, it can obviously
815   // reach, even though the branch should get folded to fall through implicitly.
816   if (MachineFunction::iterator(TBB) == Fallthrough ||
817       MachineFunction::iterator(FBB) == Fallthrough)
818     return &*Fallthrough;
819 
820   // If it's an unconditional branch to some block not the fall through, it
821   // doesn't fall through.
822   if (Cond.empty()) return nullptr;
823 
824   // Otherwise, if it is conditional and has no explicit false block, it falls
825   // through.
826   return (FBB == nullptr) ? &*Fallthrough : nullptr;
827 }
828 
829 bool MachineBasicBlock::canFallThrough() {
830   return getFallThrough() != nullptr;
831 }
832 
833 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
834                                                         Pass &P) {
835   if (!canSplitCriticalEdge(Succ))
836     return nullptr;
837 
838   MachineFunction *MF = getParent();
839   DebugLoc DL;  // FIXME: this is nowhere
840 
841   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
842   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
843   DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
844                << " -- " << printMBBReference(*NMBB) << " -- "
845                << printMBBReference(*Succ) << '\n');
846 
847   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
848   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
849   if (LIS)
850     LIS->insertMBBInMaps(NMBB);
851   else if (Indexes)
852     Indexes->insertMBBInMaps(NMBB);
853 
854   // On some targets like Mips, branches may kill virtual registers. Make sure
855   // that LiveVariables is properly updated after updateTerminator replaces the
856   // terminators.
857   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
858 
859   // Collect a list of virtual registers killed by the terminators.
860   SmallVector<unsigned, 4> KilledRegs;
861   if (LV)
862     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
863          I != E; ++I) {
864       MachineInstr *MI = &*I;
865       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
866            OE = MI->operands_end(); OI != OE; ++OI) {
867         if (!OI->isReg() || OI->getReg() == 0 ||
868             !OI->isUse() || !OI->isKill() || OI->isUndef())
869           continue;
870         unsigned Reg = OI->getReg();
871         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
872             LV->getVarInfo(Reg).removeKill(*MI)) {
873           KilledRegs.push_back(Reg);
874           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
875           OI->setIsKill(false);
876         }
877       }
878     }
879 
880   SmallVector<unsigned, 4> UsedRegs;
881   if (LIS) {
882     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
883          I != E; ++I) {
884       MachineInstr *MI = &*I;
885 
886       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
887            OE = MI->operands_end(); OI != OE; ++OI) {
888         if (!OI->isReg() || OI->getReg() == 0)
889           continue;
890 
891         unsigned Reg = OI->getReg();
892         if (!is_contained(UsedRegs, Reg))
893           UsedRegs.push_back(Reg);
894       }
895     }
896   }
897 
898   ReplaceUsesOfBlockWith(Succ, NMBB);
899 
900   // If updateTerminator() removes instructions, we need to remove them from
901   // SlotIndexes.
902   SmallVector<MachineInstr*, 4> Terminators;
903   if (Indexes) {
904     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
905          I != E; ++I)
906       Terminators.push_back(&*I);
907   }
908 
909   updateTerminator();
910 
911   if (Indexes) {
912     SmallVector<MachineInstr*, 4> NewTerminators;
913     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
914          I != E; ++I)
915       NewTerminators.push_back(&*I);
916 
917     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
918         E = Terminators.end(); I != E; ++I) {
919       if (!is_contained(NewTerminators, *I))
920         Indexes->removeMachineInstrFromMaps(**I);
921     }
922   }
923 
924   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
925   NMBB->addSuccessor(Succ);
926   if (!NMBB->isLayoutSuccessor(Succ)) {
927     SmallVector<MachineOperand, 4> Cond;
928     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
929     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
930 
931     if (Indexes) {
932       for (MachineInstr &MI : NMBB->instrs()) {
933         // Some instructions may have been moved to NMBB by updateTerminator(),
934         // so we first remove any instruction that already has an index.
935         if (Indexes->hasIndex(MI))
936           Indexes->removeMachineInstrFromMaps(MI);
937         Indexes->insertMachineInstrInMaps(MI);
938       }
939     }
940   }
941 
942   // Fix PHI nodes in Succ so they refer to NMBB instead of this
943   for (MachineBasicBlock::instr_iterator
944          i = Succ->instr_begin(),e = Succ->instr_end();
945        i != e && i->isPHI(); ++i)
946     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
947       if (i->getOperand(ni+1).getMBB() == this)
948         i->getOperand(ni+1).setMBB(NMBB);
949 
950   // Inherit live-ins from the successor
951   for (const auto &LI : Succ->liveins())
952     NMBB->addLiveIn(LI);
953 
954   // Update LiveVariables.
955   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
956   if (LV) {
957     // Restore kills of virtual registers that were killed by the terminators.
958     while (!KilledRegs.empty()) {
959       unsigned Reg = KilledRegs.pop_back_val();
960       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
961         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
962           continue;
963         if (TargetRegisterInfo::isVirtualRegister(Reg))
964           LV->getVarInfo(Reg).Kills.push_back(&*I);
965         DEBUG(dbgs() << "Restored terminator kill: " << *I);
966         break;
967       }
968     }
969     // Update relevant live-through information.
970     LV->addNewBlock(NMBB, this, Succ);
971   }
972 
973   if (LIS) {
974     // After splitting the edge and updating SlotIndexes, live intervals may be
975     // in one of two situations, depending on whether this block was the last in
976     // the function. If the original block was the last in the function, all
977     // live intervals will end prior to the beginning of the new split block. If
978     // the original block was not at the end of the function, all live intervals
979     // will extend to the end of the new split block.
980 
981     bool isLastMBB =
982       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
983 
984     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
985     SlotIndex PrevIndex = StartIndex.getPrevSlot();
986     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
987 
988     // Find the registers used from NMBB in PHIs in Succ.
989     SmallSet<unsigned, 8> PHISrcRegs;
990     for (MachineBasicBlock::instr_iterator
991          I = Succ->instr_begin(), E = Succ->instr_end();
992          I != E && I->isPHI(); ++I) {
993       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
994         if (I->getOperand(ni+1).getMBB() == NMBB) {
995           MachineOperand &MO = I->getOperand(ni);
996           unsigned Reg = MO.getReg();
997           PHISrcRegs.insert(Reg);
998           if (MO.isUndef())
999             continue;
1000 
1001           LiveInterval &LI = LIS->getInterval(Reg);
1002           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1003           assert(VNI &&
1004                  "PHI sources should be live out of their predecessors.");
1005           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1006         }
1007       }
1008     }
1009 
1010     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1011     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1012       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1013       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1014         continue;
1015 
1016       LiveInterval &LI = LIS->getInterval(Reg);
1017       if (!LI.liveAt(PrevIndex))
1018         continue;
1019 
1020       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1021       if (isLiveOut && isLastMBB) {
1022         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1023         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1024         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1025       } else if (!isLiveOut && !isLastMBB) {
1026         LI.removeSegment(StartIndex, EndIndex);
1027       }
1028     }
1029 
1030     // Update all intervals for registers whose uses may have been modified by
1031     // updateTerminator().
1032     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1033   }
1034 
1035   if (MachineDominatorTree *MDT =
1036           P.getAnalysisIfAvailable<MachineDominatorTree>())
1037     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1038 
1039   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1040     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1041       // If one or the other blocks were not in a loop, the new block is not
1042       // either, and thus LI doesn't need to be updated.
1043       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1044         if (TIL == DestLoop) {
1045           // Both in the same loop, the NMBB joins loop.
1046           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1047         } else if (TIL->contains(DestLoop)) {
1048           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1049           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1050         } else if (DestLoop->contains(TIL)) {
1051           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1052           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1053         } else {
1054           // Edge from two loops with no containment relation.  Because these
1055           // are natural loops, we know that the destination block must be the
1056           // header of its loop (adding a branch into a loop elsewhere would
1057           // create an irreducible loop).
1058           assert(DestLoop->getHeader() == Succ &&
1059                  "Should not create irreducible loops!");
1060           if (MachineLoop *P = DestLoop->getParentLoop())
1061             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1062         }
1063       }
1064     }
1065 
1066   return NMBB;
1067 }
1068 
1069 bool MachineBasicBlock::canSplitCriticalEdge(
1070     const MachineBasicBlock *Succ) const {
1071   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1072   // it in this generic function.
1073   if (Succ->isEHPad())
1074     return false;
1075 
1076   const MachineFunction *MF = getParent();
1077 
1078   // Performance might be harmed on HW that implements branching using exec mask
1079   // where both sides of the branches are always executed.
1080   if (MF->getTarget().requiresStructuredCFG())
1081     return false;
1082 
1083   // We may need to update this's terminator, but we can't do that if
1084   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1085   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1086   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1087   SmallVector<MachineOperand, 4> Cond;
1088   // AnalyzeBanch should modify this, since we did not allow modification.
1089   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1090                          /*AllowModify*/ false))
1091     return false;
1092 
1093   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1094   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1095   // case that we can't handle. Since this never happens in properly optimized
1096   // code, just skip those edges.
1097   if (TBB && TBB == FBB) {
1098     DEBUG(dbgs() << "Won't split critical edge after degenerate "
1099                  << printMBBReference(*this) << '\n');
1100     return false;
1101   }
1102   return true;
1103 }
1104 
1105 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1106 /// neighboring instructions so the bundle won't be broken by removing MI.
1107 static void unbundleSingleMI(MachineInstr *MI) {
1108   // Removing the first instruction in a bundle.
1109   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1110     MI->unbundleFromSucc();
1111   // Removing the last instruction in a bundle.
1112   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1113     MI->unbundleFromPred();
1114   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1115   // are already fine.
1116 }
1117 
1118 MachineBasicBlock::instr_iterator
1119 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1120   unbundleSingleMI(&*I);
1121   return Insts.erase(I);
1122 }
1123 
1124 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1125   unbundleSingleMI(MI);
1126   MI->clearFlag(MachineInstr::BundledPred);
1127   MI->clearFlag(MachineInstr::BundledSucc);
1128   return Insts.remove(MI);
1129 }
1130 
1131 MachineBasicBlock::instr_iterator
1132 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1133   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1134          "Cannot insert instruction with bundle flags");
1135   // Set the bundle flags when inserting inside a bundle.
1136   if (I != instr_end() && I->isBundledWithPred()) {
1137     MI->setFlag(MachineInstr::BundledPred);
1138     MI->setFlag(MachineInstr::BundledSucc);
1139   }
1140   return Insts.insert(I, MI);
1141 }
1142 
1143 /// This method unlinks 'this' from the containing function, and returns it, but
1144 /// does not delete it.
1145 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1146   assert(getParent() && "Not embedded in a function!");
1147   getParent()->remove(this);
1148   return this;
1149 }
1150 
1151 /// This method unlinks 'this' from the containing function, and deletes it.
1152 void MachineBasicBlock::eraseFromParent() {
1153   assert(getParent() && "Not embedded in a function!");
1154   getParent()->erase(this);
1155 }
1156 
1157 /// Given a machine basic block that branched to 'Old', change the code and CFG
1158 /// so that it branches to 'New' instead.
1159 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1160                                                MachineBasicBlock *New) {
1161   assert(Old != New && "Cannot replace self with self!");
1162 
1163   MachineBasicBlock::instr_iterator I = instr_end();
1164   while (I != instr_begin()) {
1165     --I;
1166     if (!I->isTerminator()) break;
1167 
1168     // Scan the operands of this machine instruction, replacing any uses of Old
1169     // with New.
1170     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1171       if (I->getOperand(i).isMBB() &&
1172           I->getOperand(i).getMBB() == Old)
1173         I->getOperand(i).setMBB(New);
1174   }
1175 
1176   // Update the successor information.
1177   replaceSuccessor(Old, New);
1178 }
1179 
1180 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1181 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1182 /// MBB successors from the CFG.  DestA and DestB can be null.
1183 ///
1184 /// Besides DestA and DestB, retain other edges leading to LandingPads
1185 /// (currently there can be only one; we don't check or require that here).
1186 /// Note it is possible that DestA and/or DestB are LandingPads.
1187 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1188                                              MachineBasicBlock *DestB,
1189                                              bool IsCond) {
1190   // The values of DestA and DestB frequently come from a call to the
1191   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1192   // values from there.
1193   //
1194   // 1. If both DestA and DestB are null, then the block ends with no branches
1195   //    (it falls through to its successor).
1196   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1197   //    with only an unconditional branch.
1198   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1199   //    with a conditional branch that falls through to a successor (DestB).
1200   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1201   //    conditional branch followed by an unconditional branch. DestA is the
1202   //    'true' destination and DestB is the 'false' destination.
1203 
1204   bool Changed = false;
1205 
1206   MachineBasicBlock *FallThru = getNextNode();
1207 
1208   if (!DestA && !DestB) {
1209     // Block falls through to successor.
1210     DestA = FallThru;
1211     DestB = FallThru;
1212   } else if (DestA && !DestB) {
1213     if (IsCond)
1214       // Block ends in conditional jump that falls through to successor.
1215       DestB = FallThru;
1216   } else {
1217     assert(DestA && DestB && IsCond &&
1218            "CFG in a bad state. Cannot correct CFG edges");
1219   }
1220 
1221   // Remove superfluous edges. I.e., those which aren't destinations of this
1222   // basic block, duplicate edges, or landing pads.
1223   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1224   MachineBasicBlock::succ_iterator SI = succ_begin();
1225   while (SI != succ_end()) {
1226     const MachineBasicBlock *MBB = *SI;
1227     if (!SeenMBBs.insert(MBB).second ||
1228         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1229       // This is a superfluous edge, remove it.
1230       SI = removeSuccessor(SI);
1231       Changed = true;
1232     } else {
1233       ++SI;
1234     }
1235   }
1236 
1237   if (Changed)
1238     normalizeSuccProbs();
1239   return Changed;
1240 }
1241 
1242 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1243 /// instructions.  Return UnknownLoc if there is none.
1244 DebugLoc
1245 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1246   // Skip debug declarations, we don't want a DebugLoc from them.
1247   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1248   if (MBBI != instr_end())
1249     return MBBI->getDebugLoc();
1250   return {};
1251 }
1252 
1253 /// Find and return the merged DebugLoc of the branch instructions of the block.
1254 /// Return UnknownLoc if there is none.
1255 DebugLoc
1256 MachineBasicBlock::findBranchDebugLoc() {
1257   DebugLoc DL;
1258   auto TI = getFirstTerminator();
1259   while (TI != end() && !TI->isBranch())
1260     ++TI;
1261 
1262   if (TI != end()) {
1263     DL = TI->getDebugLoc();
1264     for (++TI ; TI != end() ; ++TI)
1265       if (TI->isBranch())
1266         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1267   }
1268   return DL;
1269 }
1270 
1271 /// Return probability of the edge from this block to MBB.
1272 BranchProbability
1273 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1274   if (Probs.empty())
1275     return BranchProbability(1, succ_size());
1276 
1277   const auto &Prob = *getProbabilityIterator(Succ);
1278   if (Prob.isUnknown()) {
1279     // For unknown probabilities, collect the sum of all known ones, and evenly
1280     // ditribute the complemental of the sum to each unknown probability.
1281     unsigned KnownProbNum = 0;
1282     auto Sum = BranchProbability::getZero();
1283     for (auto &P : Probs) {
1284       if (!P.isUnknown()) {
1285         Sum += P;
1286         KnownProbNum++;
1287       }
1288     }
1289     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1290   } else
1291     return Prob;
1292 }
1293 
1294 /// Set successor probability of a given iterator.
1295 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1296                                            BranchProbability Prob) {
1297   assert(!Prob.isUnknown());
1298   if (Probs.empty())
1299     return;
1300   *getProbabilityIterator(I) = Prob;
1301 }
1302 
1303 /// Return probability iterator corresonding to the I successor iterator
1304 MachineBasicBlock::const_probability_iterator
1305 MachineBasicBlock::getProbabilityIterator(
1306     MachineBasicBlock::const_succ_iterator I) const {
1307   assert(Probs.size() == Successors.size() && "Async probability list!");
1308   const size_t index = std::distance(Successors.begin(), I);
1309   assert(index < Probs.size() && "Not a current successor!");
1310   return Probs.begin() + index;
1311 }
1312 
1313 /// Return probability iterator corresonding to the I successor iterator.
1314 MachineBasicBlock::probability_iterator
1315 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1316   assert(Probs.size() == Successors.size() && "Async probability list!");
1317   const size_t index = std::distance(Successors.begin(), I);
1318   assert(index < Probs.size() && "Not a current successor!");
1319   return Probs.begin() + index;
1320 }
1321 
1322 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1323 /// as of just before "MI".
1324 ///
1325 /// Search is localised to a neighborhood of
1326 /// Neighborhood instructions before (searching for defs or kills) and N
1327 /// instructions after (searching just for defs) MI.
1328 MachineBasicBlock::LivenessQueryResult
1329 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1330                                            unsigned Reg, const_iterator Before,
1331                                            unsigned Neighborhood) const {
1332   unsigned N = Neighborhood;
1333 
1334   // Start by searching backwards from Before, looking for kills, reads or defs.
1335   const_iterator I(Before);
1336   // If this is the first insn in the block, don't search backwards.
1337   if (I != begin()) {
1338     do {
1339       --I;
1340 
1341       MachineOperandIteratorBase::PhysRegInfo Info =
1342           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1343 
1344       // Defs happen after uses so they take precedence if both are present.
1345 
1346       // Register is dead after a dead def of the full register.
1347       if (Info.DeadDef)
1348         return LQR_Dead;
1349       // Register is (at least partially) live after a def.
1350       if (Info.Defined) {
1351         if (!Info.PartialDeadDef)
1352           return LQR_Live;
1353         // As soon as we saw a partial definition (dead or not),
1354         // we cannot tell if the value is partial live without
1355         // tracking the lanemasks. We are not going to do this,
1356         // so fall back on the remaining of the analysis.
1357         break;
1358       }
1359       // Register is dead after a full kill or clobber and no def.
1360       if (Info.Killed || Info.Clobbered)
1361         return LQR_Dead;
1362       // Register must be live if we read it.
1363       if (Info.Read)
1364         return LQR_Live;
1365     } while (I != begin() && --N > 0);
1366   }
1367 
1368   // Did we get to the start of the block?
1369   if (I == begin()) {
1370     // If so, the register's state is definitely defined by the live-in state.
1371     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
1372          ++RAI)
1373       if (isLiveIn(*RAI))
1374         return LQR_Live;
1375 
1376     return LQR_Dead;
1377   }
1378 
1379   N = Neighborhood;
1380 
1381   // Try searching forwards from Before, looking for reads or defs.
1382   I = const_iterator(Before);
1383   // If this is the last insn in the block, don't search forwards.
1384   if (I != end()) {
1385     for (++I; I != end() && N > 0; ++I, --N) {
1386       MachineOperandIteratorBase::PhysRegInfo Info =
1387           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1388 
1389       // Register is live when we read it here.
1390       if (Info.Read)
1391         return LQR_Live;
1392       // Register is dead if we can fully overwrite or clobber it here.
1393       if (Info.FullyDefined || Info.Clobbered)
1394         return LQR_Dead;
1395     }
1396   }
1397 
1398   // At this point we have no idea of the liveness of the register.
1399   return LQR_Unknown;
1400 }
1401 
1402 const uint32_t *
1403 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1404   // EH funclet entry does not preserve any registers.
1405   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1406 }
1407 
1408 const uint32_t *
1409 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1410   // If we see a return block with successors, this must be a funclet return,
1411   // which does not preserve any registers. If there are no successors, we don't
1412   // care what kind of return it is, putting a mask after it is a no-op.
1413   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1414 }
1415 
1416 void MachineBasicBlock::clearLiveIns() {
1417   LiveIns.clear();
1418 }
1419 
1420 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1421   assert(getParent()->getProperties().hasProperty(
1422       MachineFunctionProperties::Property::TracksLiveness) &&
1423       "Liveness information is accurate");
1424   return LiveIns.begin();
1425 }
1426