xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision e72ca520bb4806d4003ef69698089fd83a5777cb)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LivePhysRegs.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetRegisterInfo.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/Config/llvm-config.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCContext.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 #include <cmath>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "codegen"
42 
43 static cl::opt<bool> PrintSlotIndexes(
44     "print-slotindexes",
45     cl::desc("When printing machine IR, annotate instructions and blocks with "
46              "SlotIndexes when available"),
47     cl::init(true), cl::Hidden);
48 
49 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
50     : BB(B), Number(-1), xParent(&MF) {
51   Insts.Parent = this;
52   if (B)
53     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
54 }
55 
56 MachineBasicBlock::~MachineBasicBlock() = default;
57 
58 /// Return the MCSymbol for this basic block.
59 MCSymbol *MachineBasicBlock::getSymbol() const {
60   if (!CachedMCSymbol) {
61     const MachineFunction *MF = getParent();
62     MCContext &Ctx = MF->getContext();
63 
64     // We emit a non-temporary symbol -- with a descriptive name -- if it begins
65     // a section (with basic block sections). Otherwise we fall back to use temp
66     // label.
67     if (MF->hasBBSections() && isBeginSection()) {
68       SmallString<5> Suffix;
69       if (SectionID == MBBSectionID::ColdSectionID) {
70         Suffix += ".cold";
71       } else if (SectionID == MBBSectionID::ExceptionSectionID) {
72         Suffix += ".eh";
73       } else {
74         // For symbols that represent basic block sections, we add ".__part." to
75         // allow tools like symbolizers to know that this represents a part of
76         // the original function.
77         Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
78       }
79       CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
80     } else {
81       const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
82       CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
83                                              Twine(MF->getFunctionNumber()) +
84                                              "_" + Twine(getNumber()));
85     }
86   }
87   return CachedMCSymbol;
88 }
89 
90 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
91   if (!CachedEHCatchretMCSymbol) {
92     const MachineFunction *MF = getParent();
93     SmallString<128> SymbolName;
94     raw_svector_ostream(SymbolName)
95         << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
96     CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
97   }
98   return CachedEHCatchretMCSymbol;
99 }
100 
101 MCSymbol *MachineBasicBlock::getEndSymbol() const {
102   if (!CachedEndMCSymbol) {
103     const MachineFunction *MF = getParent();
104     MCContext &Ctx = MF->getContext();
105     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
106     CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
107                                               Twine(MF->getFunctionNumber()) +
108                                               "_" + Twine(getNumber()));
109   }
110   return CachedEndMCSymbol;
111 }
112 
113 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
114   MBB.print(OS);
115   return OS;
116 }
117 
118 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
119   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
120 }
121 
122 /// When an MBB is added to an MF, we need to update the parent pointer of the
123 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
124 /// operand list for registers.
125 ///
126 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
127 /// gets the next available unique MBB number. If it is removed from a
128 /// MachineFunction, it goes back to being #-1.
129 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
130     MachineBasicBlock *N) {
131   MachineFunction &MF = *N->getParent();
132   N->Number = MF.addToMBBNumbering(N);
133 
134   // Make sure the instructions have their operands in the reginfo lists.
135   MachineRegisterInfo &RegInfo = MF.getRegInfo();
136   for (MachineInstr &MI : N->instrs())
137     MI.addRegOperandsToUseLists(RegInfo);
138 }
139 
140 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
141     MachineBasicBlock *N) {
142   N->getParent()->removeFromMBBNumbering(N->Number);
143   N->Number = -1;
144 }
145 
146 /// When we add an instruction to a basic block list, we update its parent
147 /// pointer and add its operands from reg use/def lists if appropriate.
148 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
149   assert(!N->getParent() && "machine instruction already in a basic block");
150   N->setParent(Parent);
151 
152   // Add the instruction's register operands to their corresponding
153   // use/def lists.
154   MachineFunction *MF = Parent->getParent();
155   N->addRegOperandsToUseLists(MF->getRegInfo());
156   MF->handleInsertion(*N);
157 }
158 
159 /// When we remove an instruction from a basic block list, we update its parent
160 /// pointer and remove its operands from reg use/def lists if appropriate.
161 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
162   assert(N->getParent() && "machine instruction not in a basic block");
163 
164   // Remove from the use/def lists.
165   if (MachineFunction *MF = N->getMF()) {
166     MF->handleRemoval(*N);
167     N->removeRegOperandsFromUseLists(MF->getRegInfo());
168   }
169 
170   N->setParent(nullptr);
171 }
172 
173 /// When moving a range of instructions from one MBB list to another, we need to
174 /// update the parent pointers and the use/def lists.
175 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
176                                                        instr_iterator First,
177                                                        instr_iterator Last) {
178   assert(Parent->getParent() == FromList.Parent->getParent() &&
179          "cannot transfer MachineInstrs between MachineFunctions");
180 
181   // If it's within the same BB, there's nothing to do.
182   if (this == &FromList)
183     return;
184 
185   assert(Parent != FromList.Parent && "Two lists have the same parent?");
186 
187   // If splicing between two blocks within the same function, just update the
188   // parent pointers.
189   for (; First != Last; ++First)
190     First->setParent(Parent);
191 }
192 
193 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
194   assert(!MI->getParent() && "MI is still in a block!");
195   Parent->getParent()->deleteMachineInstr(MI);
196 }
197 
198 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
199   instr_iterator I = instr_begin(), E = instr_end();
200   while (I != E && I->isPHI())
201     ++I;
202   assert((I == E || !I->isInsideBundle()) &&
203          "First non-phi MI cannot be inside a bundle!");
204   return I;
205 }
206 
207 MachineBasicBlock::iterator
208 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
209   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
210 
211   iterator E = end();
212   while (I != E && (I->isPHI() || I->isPosition() ||
213                     TII->isBasicBlockPrologue(*I)))
214     ++I;
215   // FIXME: This needs to change if we wish to bundle labels
216   // inside the bundle.
217   assert((I == E || !I->isInsideBundle()) &&
218          "First non-phi / non-label instruction is inside a bundle!");
219   return I;
220 }
221 
222 MachineBasicBlock::iterator
223 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
224                                           bool SkipPseudoOp) {
225   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
226 
227   iterator E = end();
228   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
229                     (SkipPseudoOp && I->isPseudoProbe()) ||
230                     TII->isBasicBlockPrologue(*I)))
231     ++I;
232   // FIXME: This needs to change if we wish to bundle labels / dbg_values
233   // inside the bundle.
234   assert((I == E || !I->isInsideBundle()) &&
235          "First non-phi / non-label / non-debug "
236          "instruction is inside a bundle!");
237   return I;
238 }
239 
240 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
241   iterator B = begin(), E = end(), I = E;
242   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
243     ; /*noop */
244   while (I != E && !I->isTerminator())
245     ++I;
246   return I;
247 }
248 
249 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
250   instr_iterator B = instr_begin(), E = instr_end(), I = E;
251   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
252     ; /*noop */
253   while (I != E && !I->isTerminator())
254     ++I;
255   return I;
256 }
257 
258 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() {
259   return find_if(instrs(), [](auto &II) { return II.isTerminator(); });
260 }
261 
262 MachineBasicBlock::iterator
263 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
264   // Skip over begin-of-block dbg_value instructions.
265   return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
266 }
267 
268 MachineBasicBlock::iterator
269 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
270   // Skip over end-of-block dbg_value instructions.
271   instr_iterator B = instr_begin(), I = instr_end();
272   while (I != B) {
273     --I;
274     // Return instruction that starts a bundle.
275     if (I->isDebugInstr() || I->isInsideBundle())
276       continue;
277     if (SkipPseudoOp && I->isPseudoProbe())
278       continue;
279     return I;
280   }
281   // The block is all debug values.
282   return end();
283 }
284 
285 bool MachineBasicBlock::hasEHPadSuccessor() const {
286   for (const MachineBasicBlock *Succ : successors())
287     if (Succ->isEHPad())
288       return true;
289   return false;
290 }
291 
292 bool MachineBasicBlock::isEntryBlock() const {
293   return getParent()->begin() == getIterator();
294 }
295 
296 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
297 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
298   print(dbgs());
299 }
300 #endif
301 
302 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
303   for (const MachineBasicBlock *Succ : successors()) {
304     if (Succ->isInlineAsmBrIndirectTarget())
305       return true;
306   }
307   return false;
308 }
309 
310 bool MachineBasicBlock::isLegalToHoistInto() const {
311   if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
312     return false;
313   return true;
314 }
315 
316 StringRef MachineBasicBlock::getName() const {
317   if (const BasicBlock *LBB = getBasicBlock())
318     return LBB->getName();
319   else
320     return StringRef("", 0);
321 }
322 
323 /// Return a hopefully unique identifier for this block.
324 std::string MachineBasicBlock::getFullName() const {
325   std::string Name;
326   if (getParent())
327     Name = (getParent()->getName() + ":").str();
328   if (getBasicBlock())
329     Name += getBasicBlock()->getName();
330   else
331     Name += ("BB" + Twine(getNumber())).str();
332   return Name;
333 }
334 
335 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
336                               bool IsStandalone) const {
337   const MachineFunction *MF = getParent();
338   if (!MF) {
339     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
340        << " is null\n";
341     return;
342   }
343   const Function &F = MF->getFunction();
344   const Module *M = F.getParent();
345   ModuleSlotTracker MST(M);
346   MST.incorporateFunction(F);
347   print(OS, MST, Indexes, IsStandalone);
348 }
349 
350 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
351                               const SlotIndexes *Indexes,
352                               bool IsStandalone) const {
353   const MachineFunction *MF = getParent();
354   if (!MF) {
355     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
356        << " is null\n";
357     return;
358   }
359 
360   if (Indexes && PrintSlotIndexes)
361     OS << Indexes->getMBBStartIdx(this) << '\t';
362 
363   printName(OS, PrintNameIr | PrintNameAttributes, &MST);
364   OS << ":\n";
365 
366   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
367   const MachineRegisterInfo &MRI = MF->getRegInfo();
368   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
369   bool HasLineAttributes = false;
370 
371   // Print the preds of this block according to the CFG.
372   if (!pred_empty() && IsStandalone) {
373     if (Indexes) OS << '\t';
374     // Don't indent(2), align with previous line attributes.
375     OS << "; predecessors: ";
376     ListSeparator LS;
377     for (auto *Pred : predecessors())
378       OS << LS << printMBBReference(*Pred);
379     OS << '\n';
380     HasLineAttributes = true;
381   }
382 
383   if (!succ_empty()) {
384     if (Indexes) OS << '\t';
385     // Print the successors
386     OS.indent(2) << "successors: ";
387     ListSeparator LS;
388     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
389       OS << LS << printMBBReference(**I);
390       if (!Probs.empty())
391         OS << '('
392            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
393            << ')';
394     }
395     if (!Probs.empty() && IsStandalone) {
396       // Print human readable probabilities as comments.
397       OS << "; ";
398       ListSeparator LS;
399       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
400         const BranchProbability &BP = getSuccProbability(I);
401         OS << LS << printMBBReference(**I) << '('
402            << format("%.2f%%",
403                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
404                           100.0 * 100.0) /
405                          100.0)
406            << ')';
407       }
408     }
409 
410     OS << '\n';
411     HasLineAttributes = true;
412   }
413 
414   if (!livein_empty() && MRI.tracksLiveness()) {
415     if (Indexes) OS << '\t';
416     OS.indent(2) << "liveins: ";
417 
418     ListSeparator LS;
419     for (const auto &LI : liveins()) {
420       OS << LS << printReg(LI.PhysReg, TRI);
421       if (!LI.LaneMask.all())
422         OS << ":0x" << PrintLaneMask(LI.LaneMask);
423     }
424     HasLineAttributes = true;
425   }
426 
427   if (HasLineAttributes)
428     OS << '\n';
429 
430   bool IsInBundle = false;
431   for (const MachineInstr &MI : instrs()) {
432     if (Indexes && PrintSlotIndexes) {
433       if (Indexes->hasIndex(MI))
434         OS << Indexes->getInstructionIndex(MI);
435       OS << '\t';
436     }
437 
438     if (IsInBundle && !MI.isInsideBundle()) {
439       OS.indent(2) << "}\n";
440       IsInBundle = false;
441     }
442 
443     OS.indent(IsInBundle ? 4 : 2);
444     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
445              /*AddNewLine=*/false, &TII);
446 
447     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
448       OS << " {";
449       IsInBundle = true;
450     }
451     OS << '\n';
452   }
453 
454   if (IsInBundle)
455     OS.indent(2) << "}\n";
456 
457   if (IrrLoopHeaderWeight && IsStandalone) {
458     if (Indexes) OS << '\t';
459     OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight
460                  << '\n';
461   }
462 }
463 
464 /// Print the basic block's name as:
465 ///
466 ///    bb.{number}[.{ir-name}] [(attributes...)]
467 ///
468 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
469 /// (which is the default). If the IR block has no name, it is identified
470 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
471 ///
472 /// When the \ref PrintNameAttributes flag is passed, additional attributes
473 /// of the block are printed when set.
474 ///
475 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
476 ///                       the parts to print.
477 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
478 ///                          incorporate its own tracker when necessary to
479 ///                          determine the block's IR name.
480 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
481                                   ModuleSlotTracker *moduleSlotTracker) const {
482   os << "bb." << getNumber();
483   bool hasAttributes = false;
484 
485   auto PrintBBRef = [&](const BasicBlock *bb) {
486     os << "%ir-block.";
487     if (bb->hasName()) {
488       os << bb->getName();
489     } else {
490       int slot = -1;
491 
492       if (moduleSlotTracker) {
493         slot = moduleSlotTracker->getLocalSlot(bb);
494       } else if (bb->getParent()) {
495         ModuleSlotTracker tmpTracker(bb->getModule(), false);
496         tmpTracker.incorporateFunction(*bb->getParent());
497         slot = tmpTracker.getLocalSlot(bb);
498       }
499 
500       if (slot == -1)
501         os << "<ir-block badref>";
502       else
503         os << slot;
504     }
505   };
506 
507   if (printNameFlags & PrintNameIr) {
508     if (const auto *bb = getBasicBlock()) {
509       if (bb->hasName()) {
510         os << '.' << bb->getName();
511       } else {
512         hasAttributes = true;
513         os << " (";
514         PrintBBRef(bb);
515       }
516     }
517   }
518 
519   if (printNameFlags & PrintNameAttributes) {
520     if (isMachineBlockAddressTaken()) {
521       os << (hasAttributes ? ", " : " (");
522       os << "machine-block-address-taken";
523       hasAttributes = true;
524     }
525     if (isIRBlockAddressTaken()) {
526       os << (hasAttributes ? ", " : " (");
527       os << "ir-block-address-taken ";
528       PrintBBRef(getAddressTakenIRBlock());
529       hasAttributes = true;
530     }
531     if (isEHPad()) {
532       os << (hasAttributes ? ", " : " (");
533       os << "landing-pad";
534       hasAttributes = true;
535     }
536     if (isInlineAsmBrIndirectTarget()) {
537       os << (hasAttributes ? ", " : " (");
538       os << "inlineasm-br-indirect-target";
539       hasAttributes = true;
540     }
541     if (isEHFuncletEntry()) {
542       os << (hasAttributes ? ", " : " (");
543       os << "ehfunclet-entry";
544       hasAttributes = true;
545     }
546     if (getAlignment() != Align(1)) {
547       os << (hasAttributes ? ", " : " (");
548       os << "align " << getAlignment().value();
549       hasAttributes = true;
550     }
551     if (getSectionID() != MBBSectionID(0)) {
552       os << (hasAttributes ? ", " : " (");
553       os << "bbsections ";
554       switch (getSectionID().Type) {
555       case MBBSectionID::SectionType::Exception:
556         os << "Exception";
557         break;
558       case MBBSectionID::SectionType::Cold:
559         os << "Cold";
560         break;
561       default:
562         os << getSectionID().Number;
563       }
564       hasAttributes = true;
565     }
566   }
567 
568   if (hasAttributes)
569     os << ')';
570 }
571 
572 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
573                                        bool /*PrintType*/) const {
574   OS << '%';
575   printName(OS, 0);
576 }
577 
578 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
579   LiveInVector::iterator I = find_if(
580       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
581   if (I == LiveIns.end())
582     return;
583 
584   I->LaneMask &= ~LaneMask;
585   if (I->LaneMask.none())
586     LiveIns.erase(I);
587 }
588 
589 MachineBasicBlock::livein_iterator
590 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
591   // Get non-const version of iterator.
592   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
593   return LiveIns.erase(LI);
594 }
595 
596 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
597   livein_iterator I = find_if(
598       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
599   return I != livein_end() && (I->LaneMask & LaneMask).any();
600 }
601 
602 void MachineBasicBlock::sortUniqueLiveIns() {
603   llvm::sort(LiveIns,
604              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
605                return LI0.PhysReg < LI1.PhysReg;
606              });
607   // Liveins are sorted by physreg now we can merge their lanemasks.
608   LiveInVector::const_iterator I = LiveIns.begin();
609   LiveInVector::const_iterator J;
610   LiveInVector::iterator Out = LiveIns.begin();
611   for (; I != LiveIns.end(); ++Out, I = J) {
612     MCRegister PhysReg = I->PhysReg;
613     LaneBitmask LaneMask = I->LaneMask;
614     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
615       LaneMask |= J->LaneMask;
616     Out->PhysReg = PhysReg;
617     Out->LaneMask = LaneMask;
618   }
619   LiveIns.erase(Out, LiveIns.end());
620 }
621 
622 Register
623 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
624   assert(getParent() && "MBB must be inserted in function");
625   assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
626   assert(RC && "Register class is required");
627   assert((isEHPad() || this == &getParent()->front()) &&
628          "Only the entry block and landing pads can have physreg live ins");
629 
630   bool LiveIn = isLiveIn(PhysReg);
631   iterator I = SkipPHIsAndLabels(begin()), E = end();
632   MachineRegisterInfo &MRI = getParent()->getRegInfo();
633   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
634 
635   // Look for an existing copy.
636   if (LiveIn)
637     for (;I != E && I->isCopy(); ++I)
638       if (I->getOperand(1).getReg() == PhysReg) {
639         Register VirtReg = I->getOperand(0).getReg();
640         if (!MRI.constrainRegClass(VirtReg, RC))
641           llvm_unreachable("Incompatible live-in register class.");
642         return VirtReg;
643       }
644 
645   // No luck, create a virtual register.
646   Register VirtReg = MRI.createVirtualRegister(RC);
647   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
648     .addReg(PhysReg, RegState::Kill);
649   if (!LiveIn)
650     addLiveIn(PhysReg);
651   return VirtReg;
652 }
653 
654 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
655   getParent()->splice(NewAfter->getIterator(), getIterator());
656 }
657 
658 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
659   getParent()->splice(++NewBefore->getIterator(), getIterator());
660 }
661 
662 void MachineBasicBlock::updateTerminator(
663     MachineBasicBlock *PreviousLayoutSuccessor) {
664   LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
665                     << "\n");
666 
667   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
668   // A block with no successors has no concerns with fall-through edges.
669   if (this->succ_empty())
670     return;
671 
672   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
673   SmallVector<MachineOperand, 4> Cond;
674   DebugLoc DL = findBranchDebugLoc();
675   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
676   (void) B;
677   assert(!B && "UpdateTerminators requires analyzable predecessors!");
678   if (Cond.empty()) {
679     if (TBB) {
680       // The block has an unconditional branch. If its successor is now its
681       // layout successor, delete the branch.
682       if (isLayoutSuccessor(TBB))
683         TII->removeBranch(*this);
684     } else {
685       // The block has an unconditional fallthrough, or the end of the block is
686       // unreachable.
687 
688       // Unfortunately, whether the end of the block is unreachable is not
689       // immediately obvious; we must fall back to checking the successor list,
690       // and assuming that if the passed in block is in the succesor list and
691       // not an EHPad, it must be the intended target.
692       if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
693           PreviousLayoutSuccessor->isEHPad())
694         return;
695 
696       // If the unconditional successor block is not the current layout
697       // successor, insert a branch to jump to it.
698       if (!isLayoutSuccessor(PreviousLayoutSuccessor))
699         TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
700     }
701     return;
702   }
703 
704   if (FBB) {
705     // The block has a non-fallthrough conditional branch. If one of its
706     // successors is its layout successor, rewrite it to a fallthrough
707     // conditional branch.
708     if (isLayoutSuccessor(TBB)) {
709       if (TII->reverseBranchCondition(Cond))
710         return;
711       TII->removeBranch(*this);
712       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
713     } else if (isLayoutSuccessor(FBB)) {
714       TII->removeBranch(*this);
715       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
716     }
717     return;
718   }
719 
720   // We now know we're going to fallthrough to PreviousLayoutSuccessor.
721   assert(PreviousLayoutSuccessor);
722   assert(!PreviousLayoutSuccessor->isEHPad());
723   assert(isSuccessor(PreviousLayoutSuccessor));
724 
725   if (PreviousLayoutSuccessor == TBB) {
726     // We had a fallthrough to the same basic block as the conditional jump
727     // targets.  Remove the conditional jump, leaving an unconditional
728     // fallthrough or an unconditional jump.
729     TII->removeBranch(*this);
730     if (!isLayoutSuccessor(TBB)) {
731       Cond.clear();
732       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
733     }
734     return;
735   }
736 
737   // The block has a fallthrough conditional branch.
738   if (isLayoutSuccessor(TBB)) {
739     if (TII->reverseBranchCondition(Cond)) {
740       // We can't reverse the condition, add an unconditional branch.
741       Cond.clear();
742       TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
743       return;
744     }
745     TII->removeBranch(*this);
746     TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
747   } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
748     TII->removeBranch(*this);
749     TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
750   }
751 }
752 
753 void MachineBasicBlock::validateSuccProbs() const {
754 #ifndef NDEBUG
755   int64_t Sum = 0;
756   for (auto Prob : Probs)
757     Sum += Prob.getNumerator();
758   // Due to precision issue, we assume that the sum of probabilities is one if
759   // the difference between the sum of their numerators and the denominator is
760   // no greater than the number of successors.
761   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
762              Probs.size() &&
763          "The sum of successors's probabilities exceeds one.");
764 #endif // NDEBUG
765 }
766 
767 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
768                                      BranchProbability Prob) {
769   // Probability list is either empty (if successor list isn't empty, this means
770   // disabled optimization) or has the same size as successor list.
771   if (!(Probs.empty() && !Successors.empty()))
772     Probs.push_back(Prob);
773   Successors.push_back(Succ);
774   Succ->addPredecessor(this);
775 }
776 
777 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
778   // We need to make sure probability list is either empty or has the same size
779   // of successor list. When this function is called, we can safely delete all
780   // probability in the list.
781   Probs.clear();
782   Successors.push_back(Succ);
783   Succ->addPredecessor(this);
784 }
785 
786 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
787                                        MachineBasicBlock *New,
788                                        bool NormalizeSuccProbs) {
789   succ_iterator OldI = llvm::find(successors(), Old);
790   assert(OldI != succ_end() && "Old is not a successor of this block!");
791   assert(!llvm::is_contained(successors(), New) &&
792          "New is already a successor of this block!");
793 
794   // Add a new successor with equal probability as the original one. Note
795   // that we directly copy the probability using the iterator rather than
796   // getting a potentially synthetic probability computed when unknown. This
797   // preserves the probabilities as-is and then we can renormalize them and
798   // query them effectively afterward.
799   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
800                                   : *getProbabilityIterator(OldI));
801   if (NormalizeSuccProbs)
802     normalizeSuccProbs();
803 }
804 
805 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
806                                         bool NormalizeSuccProbs) {
807   succ_iterator I = find(Successors, Succ);
808   removeSuccessor(I, NormalizeSuccProbs);
809 }
810 
811 MachineBasicBlock::succ_iterator
812 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
813   assert(I != Successors.end() && "Not a current successor!");
814 
815   // If probability list is empty it means we don't use it (disabled
816   // optimization).
817   if (!Probs.empty()) {
818     probability_iterator WI = getProbabilityIterator(I);
819     Probs.erase(WI);
820     if (NormalizeSuccProbs)
821       normalizeSuccProbs();
822   }
823 
824   (*I)->removePredecessor(this);
825   return Successors.erase(I);
826 }
827 
828 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
829                                          MachineBasicBlock *New) {
830   if (Old == New)
831     return;
832 
833   succ_iterator E = succ_end();
834   succ_iterator NewI = E;
835   succ_iterator OldI = E;
836   for (succ_iterator I = succ_begin(); I != E; ++I) {
837     if (*I == Old) {
838       OldI = I;
839       if (NewI != E)
840         break;
841     }
842     if (*I == New) {
843       NewI = I;
844       if (OldI != E)
845         break;
846     }
847   }
848   assert(OldI != E && "Old is not a successor of this block");
849 
850   // If New isn't already a successor, let it take Old's place.
851   if (NewI == E) {
852     Old->removePredecessor(this);
853     New->addPredecessor(this);
854     *OldI = New;
855     return;
856   }
857 
858   // New is already a successor.
859   // Update its probability instead of adding a duplicate edge.
860   if (!Probs.empty()) {
861     auto ProbIter = getProbabilityIterator(NewI);
862     if (!ProbIter->isUnknown())
863       *ProbIter += *getProbabilityIterator(OldI);
864   }
865   removeSuccessor(OldI);
866 }
867 
868 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
869                                       succ_iterator I) {
870   if (!Orig->Probs.empty())
871     addSuccessor(*I, Orig->getSuccProbability(I));
872   else
873     addSuccessorWithoutProb(*I);
874 }
875 
876 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
877   Predecessors.push_back(Pred);
878 }
879 
880 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
881   pred_iterator I = find(Predecessors, Pred);
882   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
883   Predecessors.erase(I);
884 }
885 
886 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
887   if (this == FromMBB)
888     return;
889 
890   while (!FromMBB->succ_empty()) {
891     MachineBasicBlock *Succ = *FromMBB->succ_begin();
892 
893     // If probability list is empty it means we don't use it (disabled
894     // optimization).
895     if (!FromMBB->Probs.empty()) {
896       auto Prob = *FromMBB->Probs.begin();
897       addSuccessor(Succ, Prob);
898     } else
899       addSuccessorWithoutProb(Succ);
900 
901     FromMBB->removeSuccessor(Succ);
902   }
903 }
904 
905 void
906 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
907   if (this == FromMBB)
908     return;
909 
910   while (!FromMBB->succ_empty()) {
911     MachineBasicBlock *Succ = *FromMBB->succ_begin();
912     if (!FromMBB->Probs.empty()) {
913       auto Prob = *FromMBB->Probs.begin();
914       addSuccessor(Succ, Prob);
915     } else
916       addSuccessorWithoutProb(Succ);
917     FromMBB->removeSuccessor(Succ);
918 
919     // Fix up any PHI nodes in the successor.
920     Succ->replacePhiUsesWith(FromMBB, this);
921   }
922   normalizeSuccProbs();
923 }
924 
925 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
926   return is_contained(predecessors(), MBB);
927 }
928 
929 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
930   return is_contained(successors(), MBB);
931 }
932 
933 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
934   MachineFunction::const_iterator I(this);
935   return std::next(I) == MachineFunction::const_iterator(MBB);
936 }
937 
938 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const {
939   return Successors.size() == 1 ? Successors[0] : nullptr;
940 }
941 
942 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
943   MachineFunction::iterator Fallthrough = getIterator();
944   ++Fallthrough;
945   // If FallthroughBlock is off the end of the function, it can't fall through.
946   if (Fallthrough == getParent()->end())
947     return nullptr;
948 
949   // If FallthroughBlock isn't a successor, no fallthrough is possible.
950   if (!isSuccessor(&*Fallthrough))
951     return nullptr;
952 
953   // Analyze the branches, if any, at the end of the block.
954   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
955   SmallVector<MachineOperand, 4> Cond;
956   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
957   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
958     // If we couldn't analyze the branch, examine the last instruction.
959     // If the block doesn't end in a known control barrier, assume fallthrough
960     // is possible. The isPredicated check is needed because this code can be
961     // called during IfConversion, where an instruction which is normally a
962     // Barrier is predicated and thus no longer an actual control barrier.
963     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
964                ? &*Fallthrough
965                : nullptr;
966   }
967 
968   // If there is no branch, control always falls through.
969   if (!TBB) return &*Fallthrough;
970 
971   // If there is some explicit branch to the fallthrough block, it can obviously
972   // reach, even though the branch should get folded to fall through implicitly.
973   if (MachineFunction::iterator(TBB) == Fallthrough ||
974       MachineFunction::iterator(FBB) == Fallthrough)
975     return &*Fallthrough;
976 
977   // If it's an unconditional branch to some block not the fall through, it
978   // doesn't fall through.
979   if (Cond.empty()) return nullptr;
980 
981   // Otherwise, if it is conditional and has no explicit false block, it falls
982   // through.
983   return (FBB == nullptr) ? &*Fallthrough : nullptr;
984 }
985 
986 bool MachineBasicBlock::canFallThrough() {
987   return getFallThrough() != nullptr;
988 }
989 
990 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
991                                               bool UpdateLiveIns,
992                                               LiveIntervals *LIS) {
993   MachineBasicBlock::iterator SplitPoint(&MI);
994   ++SplitPoint;
995 
996   if (SplitPoint == end()) {
997     // Don't bother with a new block.
998     return this;
999   }
1000 
1001   MachineFunction *MF = getParent();
1002 
1003   LivePhysRegs LiveRegs;
1004   if (UpdateLiveIns) {
1005     // Make sure we add any physregs we define in the block as liveins to the
1006     // new block.
1007     MachineBasicBlock::iterator Prev(&MI);
1008     LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
1009     LiveRegs.addLiveOuts(*this);
1010     for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
1011       LiveRegs.stepBackward(*I);
1012   }
1013 
1014   MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
1015 
1016   MF->insert(++MachineFunction::iterator(this), SplitBB);
1017   SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
1018 
1019   SplitBB->transferSuccessorsAndUpdatePHIs(this);
1020   addSuccessor(SplitBB);
1021 
1022   if (UpdateLiveIns)
1023     addLiveIns(*SplitBB, LiveRegs);
1024 
1025   if (LIS)
1026     LIS->insertMBBInMaps(SplitBB);
1027 
1028   return SplitBB;
1029 }
1030 
1031 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1032     MachineBasicBlock *Succ, Pass &P,
1033     std::vector<SparseBitVector<>> *LiveInSets) {
1034   if (!canSplitCriticalEdge(Succ))
1035     return nullptr;
1036 
1037   MachineFunction *MF = getParent();
1038   MachineBasicBlock *PrevFallthrough = getNextNode();
1039   DebugLoc DL;  // FIXME: this is nowhere
1040 
1041   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1042   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1043   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1044                     << " -- " << printMBBReference(*NMBB) << " -- "
1045                     << printMBBReference(*Succ) << '\n');
1046 
1047   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1048   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1049   if (LIS)
1050     LIS->insertMBBInMaps(NMBB);
1051   else if (Indexes)
1052     Indexes->insertMBBInMaps(NMBB);
1053 
1054   // On some targets like Mips, branches may kill virtual registers. Make sure
1055   // that LiveVariables is properly updated after updateTerminator replaces the
1056   // terminators.
1057   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1058 
1059   // Collect a list of virtual registers killed by the terminators.
1060   SmallVector<Register, 4> KilledRegs;
1061   if (LV)
1062     for (MachineInstr &MI :
1063          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1064       for (MachineOperand &MO : MI.operands()) {
1065         if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse() || !MO.isKill() ||
1066             MO.isUndef())
1067           continue;
1068         Register Reg = MO.getReg();
1069         if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) {
1070           KilledRegs.push_back(Reg);
1071           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1072           MO.setIsKill(false);
1073         }
1074       }
1075     }
1076 
1077   SmallVector<Register, 4> UsedRegs;
1078   if (LIS) {
1079     for (MachineInstr &MI :
1080          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1081       for (const MachineOperand &MO : MI.operands()) {
1082         if (!MO.isReg() || MO.getReg() == 0)
1083           continue;
1084 
1085         Register Reg = MO.getReg();
1086         if (!is_contained(UsedRegs, Reg))
1087           UsedRegs.push_back(Reg);
1088       }
1089     }
1090   }
1091 
1092   ReplaceUsesOfBlockWith(Succ, NMBB);
1093 
1094   // If updateTerminator() removes instructions, we need to remove them from
1095   // SlotIndexes.
1096   SmallVector<MachineInstr*, 4> Terminators;
1097   if (Indexes) {
1098     for (MachineInstr &MI :
1099          llvm::make_range(getFirstInstrTerminator(), instr_end()))
1100       Terminators.push_back(&MI);
1101   }
1102 
1103   // Since we replaced all uses of Succ with NMBB, that should also be treated
1104   // as the fallthrough successor
1105   if (Succ == PrevFallthrough)
1106     PrevFallthrough = NMBB;
1107   updateTerminator(PrevFallthrough);
1108 
1109   if (Indexes) {
1110     SmallVector<MachineInstr*, 4> NewTerminators;
1111     for (MachineInstr &MI :
1112          llvm::make_range(getFirstInstrTerminator(), instr_end()))
1113       NewTerminators.push_back(&MI);
1114 
1115     for (MachineInstr *Terminator : Terminators) {
1116       if (!is_contained(NewTerminators, Terminator))
1117         Indexes->removeMachineInstrFromMaps(*Terminator);
1118     }
1119   }
1120 
1121   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1122   NMBB->addSuccessor(Succ);
1123   if (!NMBB->isLayoutSuccessor(Succ)) {
1124     SmallVector<MachineOperand, 4> Cond;
1125     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1126     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1127 
1128     if (Indexes) {
1129       for (MachineInstr &MI : NMBB->instrs()) {
1130         // Some instructions may have been moved to NMBB by updateTerminator(),
1131         // so we first remove any instruction that already has an index.
1132         if (Indexes->hasIndex(MI))
1133           Indexes->removeMachineInstrFromMaps(MI);
1134         Indexes->insertMachineInstrInMaps(MI);
1135       }
1136     }
1137   }
1138 
1139   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1140   Succ->replacePhiUsesWith(this, NMBB);
1141 
1142   // Inherit live-ins from the successor
1143   for (const auto &LI : Succ->liveins())
1144     NMBB->addLiveIn(LI);
1145 
1146   // Update LiveVariables.
1147   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1148   if (LV) {
1149     // Restore kills of virtual registers that were killed by the terminators.
1150     while (!KilledRegs.empty()) {
1151       Register Reg = KilledRegs.pop_back_val();
1152       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1153         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1154           continue;
1155         if (Reg.isVirtual())
1156           LV->getVarInfo(Reg).Kills.push_back(&*I);
1157         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1158         break;
1159       }
1160     }
1161     // Update relevant live-through information.
1162     if (LiveInSets != nullptr)
1163       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1164     else
1165       LV->addNewBlock(NMBB, this, Succ);
1166   }
1167 
1168   if (LIS) {
1169     // After splitting the edge and updating SlotIndexes, live intervals may be
1170     // in one of two situations, depending on whether this block was the last in
1171     // the function. If the original block was the last in the function, all
1172     // live intervals will end prior to the beginning of the new split block. If
1173     // the original block was not at the end of the function, all live intervals
1174     // will extend to the end of the new split block.
1175 
1176     bool isLastMBB =
1177       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1178 
1179     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1180     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1181     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1182 
1183     // Find the registers used from NMBB in PHIs in Succ.
1184     SmallSet<Register, 8> PHISrcRegs;
1185     for (MachineBasicBlock::instr_iterator
1186          I = Succ->instr_begin(), E = Succ->instr_end();
1187          I != E && I->isPHI(); ++I) {
1188       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1189         if (I->getOperand(ni+1).getMBB() == NMBB) {
1190           MachineOperand &MO = I->getOperand(ni);
1191           Register Reg = MO.getReg();
1192           PHISrcRegs.insert(Reg);
1193           if (MO.isUndef())
1194             continue;
1195 
1196           LiveInterval &LI = LIS->getInterval(Reg);
1197           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1198           assert(VNI &&
1199                  "PHI sources should be live out of their predecessors.");
1200           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1201         }
1202       }
1203     }
1204 
1205     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1206     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1207       Register Reg = Register::index2VirtReg(i);
1208       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1209         continue;
1210 
1211       LiveInterval &LI = LIS->getInterval(Reg);
1212       if (!LI.liveAt(PrevIndex))
1213         continue;
1214 
1215       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1216       if (isLiveOut && isLastMBB) {
1217         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1218         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1219         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1220       } else if (!isLiveOut && !isLastMBB) {
1221         LI.removeSegment(StartIndex, EndIndex);
1222       }
1223     }
1224 
1225     // Update all intervals for registers whose uses may have been modified by
1226     // updateTerminator().
1227     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1228   }
1229 
1230   if (MachineDominatorTree *MDT =
1231           P.getAnalysisIfAvailable<MachineDominatorTree>())
1232     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1233 
1234   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1235     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1236       // If one or the other blocks were not in a loop, the new block is not
1237       // either, and thus LI doesn't need to be updated.
1238       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1239         if (TIL == DestLoop) {
1240           // Both in the same loop, the NMBB joins loop.
1241           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1242         } else if (TIL->contains(DestLoop)) {
1243           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1244           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1245         } else if (DestLoop->contains(TIL)) {
1246           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1247           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1248         } else {
1249           // Edge from two loops with no containment relation.  Because these
1250           // are natural loops, we know that the destination block must be the
1251           // header of its loop (adding a branch into a loop elsewhere would
1252           // create an irreducible loop).
1253           assert(DestLoop->getHeader() == Succ &&
1254                  "Should not create irreducible loops!");
1255           if (MachineLoop *P = DestLoop->getParentLoop())
1256             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1257         }
1258       }
1259     }
1260 
1261   return NMBB;
1262 }
1263 
1264 bool MachineBasicBlock::canSplitCriticalEdge(
1265     const MachineBasicBlock *Succ) const {
1266   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1267   // it in this generic function.
1268   if (Succ->isEHPad())
1269     return false;
1270 
1271   // Splitting the critical edge to a callbr's indirect block isn't advised.
1272   // Don't do it in this generic function.
1273   if (Succ->isInlineAsmBrIndirectTarget())
1274     return false;
1275 
1276   const MachineFunction *MF = getParent();
1277   // Performance might be harmed on HW that implements branching using exec mask
1278   // where both sides of the branches are always executed.
1279   if (MF->getTarget().requiresStructuredCFG())
1280     return false;
1281 
1282   // We may need to update this's terminator, but we can't do that if
1283   // analyzeBranch fails. If this uses a jump table, we won't touch it.
1284   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1285   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1286   SmallVector<MachineOperand, 4> Cond;
1287   // AnalyzeBanch should modify this, since we did not allow modification.
1288   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1289                          /*AllowModify*/ false))
1290     return false;
1291 
1292   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1293   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1294   // case that we can't handle. Since this never happens in properly optimized
1295   // code, just skip those edges.
1296   if (TBB && TBB == FBB) {
1297     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1298                       << printMBBReference(*this) << '\n');
1299     return false;
1300   }
1301   return true;
1302 }
1303 
1304 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1305 /// neighboring instructions so the bundle won't be broken by removing MI.
1306 static void unbundleSingleMI(MachineInstr *MI) {
1307   // Removing the first instruction in a bundle.
1308   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1309     MI->unbundleFromSucc();
1310   // Removing the last instruction in a bundle.
1311   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1312     MI->unbundleFromPred();
1313   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1314   // are already fine.
1315 }
1316 
1317 MachineBasicBlock::instr_iterator
1318 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1319   unbundleSingleMI(&*I);
1320   return Insts.erase(I);
1321 }
1322 
1323 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1324   unbundleSingleMI(MI);
1325   MI->clearFlag(MachineInstr::BundledPred);
1326   MI->clearFlag(MachineInstr::BundledSucc);
1327   return Insts.remove(MI);
1328 }
1329 
1330 MachineBasicBlock::instr_iterator
1331 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1332   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1333          "Cannot insert instruction with bundle flags");
1334   // Set the bundle flags when inserting inside a bundle.
1335   if (I != instr_end() && I->isBundledWithPred()) {
1336     MI->setFlag(MachineInstr::BundledPred);
1337     MI->setFlag(MachineInstr::BundledSucc);
1338   }
1339   return Insts.insert(I, MI);
1340 }
1341 
1342 /// This method unlinks 'this' from the containing function, and returns it, but
1343 /// does not delete it.
1344 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1345   assert(getParent() && "Not embedded in a function!");
1346   getParent()->remove(this);
1347   return this;
1348 }
1349 
1350 /// This method unlinks 'this' from the containing function, and deletes it.
1351 void MachineBasicBlock::eraseFromParent() {
1352   assert(getParent() && "Not embedded in a function!");
1353   getParent()->erase(this);
1354 }
1355 
1356 /// Given a machine basic block that branched to 'Old', change the code and CFG
1357 /// so that it branches to 'New' instead.
1358 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1359                                                MachineBasicBlock *New) {
1360   assert(Old != New && "Cannot replace self with self!");
1361 
1362   MachineBasicBlock::instr_iterator I = instr_end();
1363   while (I != instr_begin()) {
1364     --I;
1365     if (!I->isTerminator()) break;
1366 
1367     // Scan the operands of this machine instruction, replacing any uses of Old
1368     // with New.
1369     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1370       if (I->getOperand(i).isMBB() &&
1371           I->getOperand(i).getMBB() == Old)
1372         I->getOperand(i).setMBB(New);
1373   }
1374 
1375   // Update the successor information.
1376   replaceSuccessor(Old, New);
1377 }
1378 
1379 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1380                                            MachineBasicBlock *New) {
1381   for (MachineInstr &MI : phis())
1382     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1383       MachineOperand &MO = MI.getOperand(i);
1384       if (MO.getMBB() == Old)
1385         MO.setMBB(New);
1386     }
1387 }
1388 
1389 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1390 /// instructions.  Return UnknownLoc if there is none.
1391 DebugLoc
1392 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1393   // Skip debug declarations, we don't want a DebugLoc from them.
1394   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1395   if (MBBI != instr_end())
1396     return MBBI->getDebugLoc();
1397   return {};
1398 }
1399 
1400 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1401   // Skip debug declarations, we don't want a DebugLoc from them.
1402   MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1403   if (!MBBI->isDebugInstr())
1404     return MBBI->getDebugLoc();
1405   return {};
1406 }
1407 
1408 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1409 /// instructions.  Return UnknownLoc if there is none.
1410 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1411   if (MBBI == instr_begin()) return {};
1412   // Skip debug instructions, we don't want a DebugLoc from them.
1413   MBBI = prev_nodbg(MBBI, instr_begin());
1414   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1415   return {};
1416 }
1417 
1418 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1419   if (MBBI == instr_rend())
1420     return {};
1421   // Skip debug declarations, we don't want a DebugLoc from them.
1422   MBBI = next_nodbg(MBBI, instr_rend());
1423   if (MBBI != instr_rend())
1424     return MBBI->getDebugLoc();
1425   return {};
1426 }
1427 
1428 /// Find and return the merged DebugLoc of the branch instructions of the block.
1429 /// Return UnknownLoc if there is none.
1430 DebugLoc
1431 MachineBasicBlock::findBranchDebugLoc() {
1432   DebugLoc DL;
1433   auto TI = getFirstTerminator();
1434   while (TI != end() && !TI->isBranch())
1435     ++TI;
1436 
1437   if (TI != end()) {
1438     DL = TI->getDebugLoc();
1439     for (++TI ; TI != end() ; ++TI)
1440       if (TI->isBranch())
1441         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1442   }
1443   return DL;
1444 }
1445 
1446 /// Return probability of the edge from this block to MBB.
1447 BranchProbability
1448 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1449   if (Probs.empty())
1450     return BranchProbability(1, succ_size());
1451 
1452   const auto &Prob = *getProbabilityIterator(Succ);
1453   if (Prob.isUnknown()) {
1454     // For unknown probabilities, collect the sum of all known ones, and evenly
1455     // ditribute the complemental of the sum to each unknown probability.
1456     unsigned KnownProbNum = 0;
1457     auto Sum = BranchProbability::getZero();
1458     for (const auto &P : Probs) {
1459       if (!P.isUnknown()) {
1460         Sum += P;
1461         KnownProbNum++;
1462       }
1463     }
1464     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1465   } else
1466     return Prob;
1467 }
1468 
1469 /// Set successor probability of a given iterator.
1470 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1471                                            BranchProbability Prob) {
1472   assert(!Prob.isUnknown());
1473   if (Probs.empty())
1474     return;
1475   *getProbabilityIterator(I) = Prob;
1476 }
1477 
1478 /// Return probability iterator corresonding to the I successor iterator
1479 MachineBasicBlock::const_probability_iterator
1480 MachineBasicBlock::getProbabilityIterator(
1481     MachineBasicBlock::const_succ_iterator I) const {
1482   assert(Probs.size() == Successors.size() && "Async probability list!");
1483   const size_t index = std::distance(Successors.begin(), I);
1484   assert(index < Probs.size() && "Not a current successor!");
1485   return Probs.begin() + index;
1486 }
1487 
1488 /// Return probability iterator corresonding to the I successor iterator.
1489 MachineBasicBlock::probability_iterator
1490 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1491   assert(Probs.size() == Successors.size() && "Async probability list!");
1492   const size_t index = std::distance(Successors.begin(), I);
1493   assert(index < Probs.size() && "Not a current successor!");
1494   return Probs.begin() + index;
1495 }
1496 
1497 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1498 /// as of just before "MI".
1499 ///
1500 /// Search is localised to a neighborhood of
1501 /// Neighborhood instructions before (searching for defs or kills) and N
1502 /// instructions after (searching just for defs) MI.
1503 MachineBasicBlock::LivenessQueryResult
1504 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1505                                            MCRegister Reg, const_iterator Before,
1506                                            unsigned Neighborhood) const {
1507   unsigned N = Neighborhood;
1508 
1509   // Try searching forwards from Before, looking for reads or defs.
1510   const_iterator I(Before);
1511   for (; I != end() && N > 0; ++I) {
1512     if (I->isDebugOrPseudoInstr())
1513       continue;
1514 
1515     --N;
1516 
1517     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1518 
1519     // Register is live when we read it here.
1520     if (Info.Read)
1521       return LQR_Live;
1522     // Register is dead if we can fully overwrite or clobber it here.
1523     if (Info.FullyDefined || Info.Clobbered)
1524       return LQR_Dead;
1525   }
1526 
1527   // If we reached the end, it is safe to clobber Reg at the end of a block of
1528   // no successor has it live in.
1529   if (I == end()) {
1530     for (MachineBasicBlock *S : successors()) {
1531       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1532         if (TRI->regsOverlap(LI.PhysReg, Reg))
1533           return LQR_Live;
1534       }
1535     }
1536 
1537     return LQR_Dead;
1538   }
1539 
1540 
1541   N = Neighborhood;
1542 
1543   // Start by searching backwards from Before, looking for kills, reads or defs.
1544   I = const_iterator(Before);
1545   // If this is the first insn in the block, don't search backwards.
1546   if (I != begin()) {
1547     do {
1548       --I;
1549 
1550       if (I->isDebugOrPseudoInstr())
1551         continue;
1552 
1553       --N;
1554 
1555       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1556 
1557       // Defs happen after uses so they take precedence if both are present.
1558 
1559       // Register is dead after a dead def of the full register.
1560       if (Info.DeadDef)
1561         return LQR_Dead;
1562       // Register is (at least partially) live after a def.
1563       if (Info.Defined) {
1564         if (!Info.PartialDeadDef)
1565           return LQR_Live;
1566         // As soon as we saw a partial definition (dead or not),
1567         // we cannot tell if the value is partial live without
1568         // tracking the lanemasks. We are not going to do this,
1569         // so fall back on the remaining of the analysis.
1570         break;
1571       }
1572       // Register is dead after a full kill or clobber and no def.
1573       if (Info.Killed || Info.Clobbered)
1574         return LQR_Dead;
1575       // Register must be live if we read it.
1576       if (Info.Read)
1577         return LQR_Live;
1578 
1579     } while (I != begin() && N > 0);
1580   }
1581 
1582   // If all the instructions before this in the block are debug instructions,
1583   // skip over them.
1584   while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1585     --I;
1586 
1587   // Did we get to the start of the block?
1588   if (I == begin()) {
1589     // If so, the register's state is definitely defined by the live-in state.
1590     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1591       if (TRI->regsOverlap(LI.PhysReg, Reg))
1592         return LQR_Live;
1593 
1594     return LQR_Dead;
1595   }
1596 
1597   // At this point we have no idea of the liveness of the register.
1598   return LQR_Unknown;
1599 }
1600 
1601 const uint32_t *
1602 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1603   // EH funclet entry does not preserve any registers.
1604   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1605 }
1606 
1607 const uint32_t *
1608 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1609   // If we see a return block with successors, this must be a funclet return,
1610   // which does not preserve any registers. If there are no successors, we don't
1611   // care what kind of return it is, putting a mask after it is a no-op.
1612   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1613 }
1614 
1615 void MachineBasicBlock::clearLiveIns() {
1616   LiveIns.clear();
1617 }
1618 
1619 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1620   assert(getParent()->getProperties().hasProperty(
1621       MachineFunctionProperties::Property::TracksLiveness) &&
1622       "Liveness information is accurate");
1623   return LiveIns.begin();
1624 }
1625 
1626 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1627   const MachineFunction &MF = *getParent();
1628   assert(MF.getProperties().hasProperty(
1629       MachineFunctionProperties::Property::TracksLiveness) &&
1630       "Liveness information is accurate");
1631 
1632   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1633   MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1634   if (MF.getFunction().hasPersonalityFn()) {
1635     auto PersonalityFn = MF.getFunction().getPersonalityFn();
1636     ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1637     ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1638   }
1639 
1640   return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1641 }
1642 
1643 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const {
1644   unsigned Cntr = 0;
1645   auto R = instructionsWithoutDebug(begin(), end());
1646   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1647     if (++Cntr > Limit)
1648       return true;
1649   }
1650   return false;
1651 }
1652 
1653 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1654 const MBBSectionID
1655     MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1656