1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/Format.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb) 43 : BB(bb), Number(-1), xParent(&mf) { 44 Insts.Parent = this; 45 } 46 47 MachineBasicBlock::~MachineBasicBlock() { 48 } 49 50 /// Return the MCSymbol for this basic block. 51 MCSymbol *MachineBasicBlock::getSymbol() const { 52 if (!CachedMCSymbol) { 53 const MachineFunction *MF = getParent(); 54 MCContext &Ctx = MF->getContext(); 55 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 56 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 57 Twine(MF->getFunctionNumber()) + 58 "_" + Twine(getNumber())); 59 } 60 61 return CachedMCSymbol; 62 } 63 64 65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 66 MBB.print(OS); 67 return OS; 68 } 69 70 /// When an MBB is added to an MF, we need to update the parent pointer of the 71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 72 /// operand list for registers. 73 /// 74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 75 /// gets the next available unique MBB number. If it is removed from a 76 /// MachineFunction, it goes back to being #-1. 77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 78 MachineFunction &MF = *N->getParent(); 79 N->Number = MF.addToMBBNumbering(N); 80 81 // Make sure the instructions have their operands in the reginfo lists. 82 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 83 for (MachineBasicBlock::instr_iterator 84 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 85 I->AddRegOperandsToUseLists(RegInfo); 86 } 87 88 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 89 N->getParent()->removeFromMBBNumbering(N->Number); 90 N->Number = -1; 91 } 92 93 /// When we add an instruction to a basic block list, we update its parent 94 /// pointer and add its operands from reg use/def lists if appropriate. 95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 96 assert(!N->getParent() && "machine instruction already in a basic block"); 97 N->setParent(Parent); 98 99 // Add the instruction's register operands to their corresponding 100 // use/def lists. 101 MachineFunction *MF = Parent->getParent(); 102 N->AddRegOperandsToUseLists(MF->getRegInfo()); 103 } 104 105 /// When we remove an instruction from a basic block list, we update its parent 106 /// pointer and remove its operands from reg use/def lists if appropriate. 107 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 108 assert(N->getParent() && "machine instruction not in a basic block"); 109 110 // Remove from the use/def lists. 111 if (MachineFunction *MF = N->getParent()->getParent()) 112 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 113 114 N->setParent(nullptr); 115 } 116 117 /// When moving a range of instructions from one MBB list to another, we need to 118 /// update the parent pointers and the use/def lists. 119 void ilist_traits<MachineInstr>:: 120 transferNodesFromList(ilist_traits<MachineInstr> &fromList, 121 ilist_iterator<MachineInstr> first, 122 ilist_iterator<MachineInstr> last) { 123 assert(Parent->getParent() == fromList.Parent->getParent() && 124 "MachineInstr parent mismatch!"); 125 126 // Splice within the same MBB -> no change. 127 if (Parent == fromList.Parent) return; 128 129 // If splicing between two blocks within the same function, just update the 130 // parent pointers. 131 for (; first != last; ++first) 132 first->setParent(Parent); 133 } 134 135 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 136 assert(!MI->getParent() && "MI is still in a block!"); 137 Parent->getParent()->DeleteMachineInstr(MI); 138 } 139 140 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 141 instr_iterator I = instr_begin(), E = instr_end(); 142 while (I != E && I->isPHI()) 143 ++I; 144 assert((I == E || !I->isInsideBundle()) && 145 "First non-phi MI cannot be inside a bundle!"); 146 return I; 147 } 148 149 MachineBasicBlock::iterator 150 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 151 iterator E = end(); 152 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 153 ++I; 154 // FIXME: This needs to change if we wish to bundle labels / dbg_values 155 // inside the bundle. 156 assert((I == E || !I->isInsideBundle()) && 157 "First non-phi / non-label instruction is inside a bundle!"); 158 return I; 159 } 160 161 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 162 iterator B = begin(), E = end(), I = E; 163 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 164 ; /*noop */ 165 while (I != E && !I->isTerminator()) 166 ++I; 167 return I; 168 } 169 170 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 171 instr_iterator B = instr_begin(), E = instr_end(), I = E; 172 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 173 ; /*noop */ 174 while (I != E && !I->isTerminator()) 175 ++I; 176 return I; 177 } 178 179 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 180 // Skip over begin-of-block dbg_value instructions. 181 iterator I = begin(), E = end(); 182 while (I != E && I->isDebugValue()) 183 ++I; 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 188 // Skip over end-of-block dbg_value instructions. 189 instr_iterator B = instr_begin(), I = instr_end(); 190 while (I != B) { 191 --I; 192 // Return instruction that starts a bundle. 193 if (I->isDebugValue() || I->isInsideBundle()) 194 continue; 195 return I; 196 } 197 // The block is all debug values. 198 return end(); 199 } 200 201 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 202 // A block with a landing pad successor only has one other successor. 203 if (succ_size() > 2) 204 return nullptr; 205 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 206 if ((*I)->isEHPad()) 207 return *I; 208 return nullptr; 209 } 210 211 bool MachineBasicBlock::hasEHPadSuccessor() const { 212 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 213 if ((*I)->isEHPad()) 214 return true; 215 return false; 216 } 217 218 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 219 void MachineBasicBlock::dump() const { 220 print(dbgs()); 221 } 222 #endif 223 224 StringRef MachineBasicBlock::getName() const { 225 if (const BasicBlock *LBB = getBasicBlock()) 226 return LBB->getName(); 227 else 228 return "(null)"; 229 } 230 231 /// Return a hopefully unique identifier for this block. 232 std::string MachineBasicBlock::getFullName() const { 233 std::string Name; 234 if (getParent()) 235 Name = (getParent()->getName() + ":").str(); 236 if (getBasicBlock()) 237 Name += getBasicBlock()->getName(); 238 else 239 Name += ("BB" + Twine(getNumber())).str(); 240 return Name; 241 } 242 243 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 244 const MachineFunction *MF = getParent(); 245 if (!MF) { 246 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 247 << " is null\n"; 248 return; 249 } 250 const Function *F = MF->getFunction(); 251 const Module *M = F ? F->getParent() : nullptr; 252 ModuleSlotTracker MST(M); 253 print(OS, MST, Indexes); 254 } 255 256 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 257 SlotIndexes *Indexes) const { 258 const MachineFunction *MF = getParent(); 259 if (!MF) { 260 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 261 << " is null\n"; 262 return; 263 } 264 265 if (Indexes) 266 OS << Indexes->getMBBStartIdx(this) << '\t'; 267 268 OS << "BB#" << getNumber() << ": "; 269 270 const char *Comma = ""; 271 if (const BasicBlock *LBB = getBasicBlock()) { 272 OS << Comma << "derived from LLVM BB "; 273 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 274 Comma = ", "; 275 } 276 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 277 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 278 if (Alignment) 279 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 280 << " bytes)"; 281 282 OS << '\n'; 283 284 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 285 if (!livein_empty()) { 286 if (Indexes) OS << '\t'; 287 OS << " Live Ins:"; 288 for (const auto &LI : make_range(livein_begin(), livein_end())) { 289 OS << ' ' << PrintReg(LI.PhysReg, TRI); 290 if (LI.LaneMask != ~0u) 291 OS << format(":%08X", LI.LaneMask); 292 } 293 OS << '\n'; 294 } 295 // Print the preds of this block according to the CFG. 296 if (!pred_empty()) { 297 if (Indexes) OS << '\t'; 298 OS << " Predecessors according to CFG:"; 299 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 300 OS << " BB#" << (*PI)->getNumber(); 301 OS << '\n'; 302 } 303 304 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 305 if (Indexes) { 306 if (Indexes->hasIndex(I)) 307 OS << Indexes->getInstructionIndex(I); 308 OS << '\t'; 309 } 310 OS << '\t'; 311 if (I->isInsideBundle()) 312 OS << " * "; 313 I->print(OS, MST); 314 } 315 316 // Print the successors of this block according to the CFG. 317 if (!succ_empty()) { 318 if (Indexes) OS << '\t'; 319 OS << " Successors according to CFG:"; 320 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 321 OS << " BB#" << (*SI)->getNumber(); 322 if (!Weights.empty()) 323 OS << '(' << *getWeightIterator(SI) << ')'; 324 } 325 OS << '\n'; 326 } 327 } 328 329 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 330 bool /*PrintType*/) const { 331 OS << "BB#" << getNumber(); 332 } 333 334 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 335 LiveInVector::iterator I = std::find_if( 336 LiveIns.begin(), LiveIns.end(), 337 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 338 if (I == LiveIns.end()) 339 return; 340 341 I->LaneMask &= ~LaneMask; 342 if (I->LaneMask == 0) 343 LiveIns.erase(I); 344 } 345 346 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 347 livein_iterator I = std::find_if( 348 LiveIns.begin(), LiveIns.end(), 349 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 350 return I != livein_end() && (I->LaneMask & LaneMask) != 0; 351 } 352 353 void MachineBasicBlock::sortUniqueLiveIns() { 354 std::sort(LiveIns.begin(), LiveIns.end(), 355 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 356 return LI0.PhysReg < LI1.PhysReg; 357 }); 358 // Liveins are sorted by physreg now we can merge their lanemasks. 359 LiveInVector::const_iterator I = LiveIns.begin(); 360 LiveInVector::const_iterator J; 361 LiveInVector::iterator Out = LiveIns.begin(); 362 for (; I != LiveIns.end(); ++Out, I = J) { 363 unsigned PhysReg = I->PhysReg; 364 LaneBitmask LaneMask = I->LaneMask; 365 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 366 LaneMask |= J->LaneMask; 367 Out->PhysReg = PhysReg; 368 Out->LaneMask = LaneMask; 369 } 370 LiveIns.erase(Out, LiveIns.end()); 371 } 372 373 unsigned 374 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 375 assert(getParent() && "MBB must be inserted in function"); 376 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 377 assert(RC && "Register class is required"); 378 assert((isEHPad() || this == &getParent()->front()) && 379 "Only the entry block and landing pads can have physreg live ins"); 380 381 bool LiveIn = isLiveIn(PhysReg); 382 iterator I = SkipPHIsAndLabels(begin()), E = end(); 383 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 384 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 385 386 // Look for an existing copy. 387 if (LiveIn) 388 for (;I != E && I->isCopy(); ++I) 389 if (I->getOperand(1).getReg() == PhysReg) { 390 unsigned VirtReg = I->getOperand(0).getReg(); 391 if (!MRI.constrainRegClass(VirtReg, RC)) 392 llvm_unreachable("Incompatible live-in register class."); 393 return VirtReg; 394 } 395 396 // No luck, create a virtual register. 397 unsigned VirtReg = MRI.createVirtualRegister(RC); 398 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 399 .addReg(PhysReg, RegState::Kill); 400 if (!LiveIn) 401 addLiveIn(PhysReg); 402 return VirtReg; 403 } 404 405 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 406 getParent()->splice(NewAfter, this); 407 } 408 409 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 410 MachineFunction::iterator BBI = NewBefore; 411 getParent()->splice(++BBI, this); 412 } 413 414 void MachineBasicBlock::updateTerminator() { 415 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 416 // A block with no successors has no concerns with fall-through edges. 417 if (this->succ_empty()) return; 418 419 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 420 SmallVector<MachineOperand, 4> Cond; 421 DebugLoc dl; // FIXME: this is nowhere 422 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 423 (void) B; 424 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 425 if (Cond.empty()) { 426 if (TBB) { 427 // The block has an unconditional branch. If its successor is now 428 // its layout successor, delete the branch. 429 if (isLayoutSuccessor(TBB)) 430 TII->RemoveBranch(*this); 431 } else { 432 // The block has an unconditional fallthrough. If its successor is not 433 // its layout successor, insert a branch. First we have to locate the 434 // only non-landing-pad successor, as that is the fallthrough block. 435 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 436 if ((*SI)->isEHPad()) 437 continue; 438 assert(!TBB && "Found more than one non-landing-pad successor!"); 439 TBB = *SI; 440 } 441 442 // If there is no non-landing-pad successor, the block has no 443 // fall-through edges to be concerned with. 444 if (!TBB) 445 return; 446 447 // Finally update the unconditional successor to be reached via a branch 448 // if it would not be reached by fallthrough. 449 if (!isLayoutSuccessor(TBB)) 450 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 451 } 452 } else { 453 if (FBB) { 454 // The block has a non-fallthrough conditional branch. If one of its 455 // successors is its layout successor, rewrite it to a fallthrough 456 // conditional branch. 457 if (isLayoutSuccessor(TBB)) { 458 if (TII->ReverseBranchCondition(Cond)) 459 return; 460 TII->RemoveBranch(*this); 461 TII->InsertBranch(*this, FBB, nullptr, Cond, dl); 462 } else if (isLayoutSuccessor(FBB)) { 463 TII->RemoveBranch(*this); 464 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 465 } 466 } else { 467 // Walk through the successors and find the successor which is not 468 // a landing pad and is not the conditional branch destination (in TBB) 469 // as the fallthrough successor. 470 MachineBasicBlock *FallthroughBB = nullptr; 471 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 472 if ((*SI)->isEHPad() || *SI == TBB) 473 continue; 474 assert(!FallthroughBB && "Found more than one fallthrough successor."); 475 FallthroughBB = *SI; 476 } 477 if (!FallthroughBB && canFallThrough()) { 478 // We fallthrough to the same basic block as the conditional jump 479 // targets. Remove the conditional jump, leaving unconditional 480 // fallthrough. 481 // FIXME: This does not seem like a reasonable pattern to support, but 482 // it has been seen in the wild coming out of degenerate ARM test cases. 483 TII->RemoveBranch(*this); 484 485 // Finally update the unconditional successor to be reached via a branch 486 // if it would not be reached by fallthrough. 487 if (!isLayoutSuccessor(TBB)) 488 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 489 return; 490 } 491 492 // The block has a fallthrough conditional branch. 493 if (isLayoutSuccessor(TBB)) { 494 if (TII->ReverseBranchCondition(Cond)) { 495 // We can't reverse the condition, add an unconditional branch. 496 Cond.clear(); 497 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 498 return; 499 } 500 TII->RemoveBranch(*this); 501 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 502 } else if (!isLayoutSuccessor(FallthroughBB)) { 503 TII->RemoveBranch(*this); 504 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl); 505 } 506 } 507 } 508 } 509 510 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) { 511 512 // If we see non-zero value for the first time it means we actually use Weight 513 // list, so we fill all Weights with 0's. 514 if (weight != 0 && Weights.empty()) 515 Weights.resize(Successors.size()); 516 517 if (weight != 0 || !Weights.empty()) 518 Weights.push_back(weight); 519 520 Successors.push_back(succ); 521 succ->addPredecessor(this); 522 } 523 524 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) { 525 succ->removePredecessor(this); 526 succ_iterator I = std::find(Successors.begin(), Successors.end(), succ); 527 assert(I != Successors.end() && "Not a current successor!"); 528 529 // If Weight list is empty it means we don't use it (disabled optimization). 530 if (!Weights.empty()) { 531 weight_iterator WI = getWeightIterator(I); 532 Weights.erase(WI); 533 } 534 535 Successors.erase(I); 536 } 537 538 MachineBasicBlock::succ_iterator 539 MachineBasicBlock::removeSuccessor(succ_iterator I) { 540 assert(I != Successors.end() && "Not a current successor!"); 541 542 // If Weight list is empty it means we don't use it (disabled optimization). 543 if (!Weights.empty()) { 544 weight_iterator WI = getWeightIterator(I); 545 Weights.erase(WI); 546 } 547 548 (*I)->removePredecessor(this); 549 return Successors.erase(I); 550 } 551 552 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 553 MachineBasicBlock *New) { 554 if (Old == New) 555 return; 556 557 succ_iterator E = succ_end(); 558 succ_iterator NewI = E; 559 succ_iterator OldI = E; 560 for (succ_iterator I = succ_begin(); I != E; ++I) { 561 if (*I == Old) { 562 OldI = I; 563 if (NewI != E) 564 break; 565 } 566 if (*I == New) { 567 NewI = I; 568 if (OldI != E) 569 break; 570 } 571 } 572 assert(OldI != E && "Old is not a successor of this block"); 573 Old->removePredecessor(this); 574 575 // If New isn't already a successor, let it take Old's place. 576 if (NewI == E) { 577 New->addPredecessor(this); 578 *OldI = New; 579 return; 580 } 581 582 // New is already a successor. 583 // Update its weight instead of adding a duplicate edge. 584 if (!Weights.empty()) { 585 weight_iterator OldWI = getWeightIterator(OldI); 586 *getWeightIterator(NewI) += *OldWI; 587 Weights.erase(OldWI); 588 } 589 Successors.erase(OldI); 590 } 591 592 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) { 593 Predecessors.push_back(pred); 594 } 595 596 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) { 597 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred); 598 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 599 Predecessors.erase(I); 600 } 601 602 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) { 603 if (this == fromMBB) 604 return; 605 606 while (!fromMBB->succ_empty()) { 607 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 608 uint32_t Weight = 0; 609 610 // If Weight list is empty it means we don't use it (disabled optimization). 611 if (!fromMBB->Weights.empty()) 612 Weight = *fromMBB->Weights.begin(); 613 614 addSuccessor(Succ, Weight); 615 fromMBB->removeSuccessor(Succ); 616 } 617 } 618 619 void 620 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) { 621 if (this == fromMBB) 622 return; 623 624 while (!fromMBB->succ_empty()) { 625 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 626 uint32_t Weight = 0; 627 if (!fromMBB->Weights.empty()) 628 Weight = *fromMBB->Weights.begin(); 629 addSuccessor(Succ, Weight); 630 fromMBB->removeSuccessor(Succ); 631 632 // Fix up any PHI nodes in the successor. 633 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 634 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 635 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 636 MachineOperand &MO = MI->getOperand(i); 637 if (MO.getMBB() == fromMBB) 638 MO.setMBB(this); 639 } 640 } 641 } 642 643 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 644 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 645 } 646 647 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 648 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 649 } 650 651 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 652 MachineFunction::const_iterator I(this); 653 return std::next(I) == MachineFunction::const_iterator(MBB); 654 } 655 656 bool MachineBasicBlock::canFallThrough() { 657 MachineFunction::iterator Fallthrough = this; 658 ++Fallthrough; 659 // If FallthroughBlock is off the end of the function, it can't fall through. 660 if (Fallthrough == getParent()->end()) 661 return false; 662 663 // If FallthroughBlock isn't a successor, no fallthrough is possible. 664 if (!isSuccessor(Fallthrough)) 665 return false; 666 667 // Analyze the branches, if any, at the end of the block. 668 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 669 SmallVector<MachineOperand, 4> Cond; 670 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 671 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 672 // If we couldn't analyze the branch, examine the last instruction. 673 // If the block doesn't end in a known control barrier, assume fallthrough 674 // is possible. The isPredicated check is needed because this code can be 675 // called during IfConversion, where an instruction which is normally a 676 // Barrier is predicated and thus no longer an actual control barrier. 677 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 678 } 679 680 // If there is no branch, control always falls through. 681 if (!TBB) return true; 682 683 // If there is some explicit branch to the fallthrough block, it can obviously 684 // reach, even though the branch should get folded to fall through implicitly. 685 if (MachineFunction::iterator(TBB) == Fallthrough || 686 MachineFunction::iterator(FBB) == Fallthrough) 687 return true; 688 689 // If it's an unconditional branch to some block not the fall through, it 690 // doesn't fall through. 691 if (Cond.empty()) return false; 692 693 // Otherwise, if it is conditional and has no explicit false block, it falls 694 // through. 695 return FBB == nullptr; 696 } 697 698 MachineBasicBlock * 699 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 700 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 701 // it in this generic function. 702 if (Succ->isEHPad()) 703 return nullptr; 704 705 MachineFunction *MF = getParent(); 706 DebugLoc dl; // FIXME: this is nowhere 707 708 // Performance might be harmed on HW that implements branching using exec mask 709 // where both sides of the branches are always executed. 710 if (MF->getTarget().requiresStructuredCFG()) 711 return nullptr; 712 713 // We may need to update this's terminator, but we can't do that if 714 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 715 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 716 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 717 SmallVector<MachineOperand, 4> Cond; 718 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 719 return nullptr; 720 721 // Avoid bugpoint weirdness: A block may end with a conditional branch but 722 // jumps to the same MBB is either case. We have duplicate CFG edges in that 723 // case that we can't handle. Since this never happens in properly optimized 724 // code, just skip those edges. 725 if (TBB && TBB == FBB) { 726 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 727 << getNumber() << '\n'); 728 return nullptr; 729 } 730 731 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 732 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 733 DEBUG(dbgs() << "Splitting critical edge:" 734 " BB#" << getNumber() 735 << " -- BB#" << NMBB->getNumber() 736 << " -- BB#" << Succ->getNumber() << '\n'); 737 738 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 739 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 740 if (LIS) 741 LIS->insertMBBInMaps(NMBB); 742 else if (Indexes) 743 Indexes->insertMBBInMaps(NMBB); 744 745 // On some targets like Mips, branches may kill virtual registers. Make sure 746 // that LiveVariables is properly updated after updateTerminator replaces the 747 // terminators. 748 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 749 750 // Collect a list of virtual registers killed by the terminators. 751 SmallVector<unsigned, 4> KilledRegs; 752 if (LV) 753 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 754 I != E; ++I) { 755 MachineInstr *MI = I; 756 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 757 OE = MI->operands_end(); OI != OE; ++OI) { 758 if (!OI->isReg() || OI->getReg() == 0 || 759 !OI->isUse() || !OI->isKill() || OI->isUndef()) 760 continue; 761 unsigned Reg = OI->getReg(); 762 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 763 LV->getVarInfo(Reg).removeKill(MI)) { 764 KilledRegs.push_back(Reg); 765 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 766 OI->setIsKill(false); 767 } 768 } 769 } 770 771 SmallVector<unsigned, 4> UsedRegs; 772 if (LIS) { 773 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 774 I != E; ++I) { 775 MachineInstr *MI = I; 776 777 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 778 OE = MI->operands_end(); OI != OE; ++OI) { 779 if (!OI->isReg() || OI->getReg() == 0) 780 continue; 781 782 unsigned Reg = OI->getReg(); 783 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 784 UsedRegs.push_back(Reg); 785 } 786 } 787 } 788 789 ReplaceUsesOfBlockWith(Succ, NMBB); 790 791 // If updateTerminator() removes instructions, we need to remove them from 792 // SlotIndexes. 793 SmallVector<MachineInstr*, 4> Terminators; 794 if (Indexes) { 795 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 796 I != E; ++I) 797 Terminators.push_back(I); 798 } 799 800 updateTerminator(); 801 802 if (Indexes) { 803 SmallVector<MachineInstr*, 4> NewTerminators; 804 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 805 I != E; ++I) 806 NewTerminators.push_back(I); 807 808 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 809 E = Terminators.end(); I != E; ++I) { 810 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 811 NewTerminators.end()) 812 Indexes->removeMachineInstrFromMaps(*I); 813 } 814 } 815 816 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 817 NMBB->addSuccessor(Succ); 818 if (!NMBB->isLayoutSuccessor(Succ)) { 819 Cond.clear(); 820 TII->InsertBranch(*NMBB, Succ, nullptr, Cond, dl); 821 822 if (Indexes) { 823 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 824 I != E; ++I) { 825 // Some instructions may have been moved to NMBB by updateTerminator(), 826 // so we first remove any instruction that already has an index. 827 if (Indexes->hasIndex(I)) 828 Indexes->removeMachineInstrFromMaps(I); 829 Indexes->insertMachineInstrInMaps(I); 830 } 831 } 832 } 833 834 // Fix PHI nodes in Succ so they refer to NMBB instead of this 835 for (MachineBasicBlock::instr_iterator 836 i = Succ->instr_begin(),e = Succ->instr_end(); 837 i != e && i->isPHI(); ++i) 838 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 839 if (i->getOperand(ni+1).getMBB() == this) 840 i->getOperand(ni+1).setMBB(NMBB); 841 842 // Inherit live-ins from the successor 843 for (const auto &LI : Succ->liveins()) 844 NMBB->addLiveIn(LI); 845 846 // Update LiveVariables. 847 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 848 if (LV) { 849 // Restore kills of virtual registers that were killed by the terminators. 850 while (!KilledRegs.empty()) { 851 unsigned Reg = KilledRegs.pop_back_val(); 852 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 853 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 854 continue; 855 if (TargetRegisterInfo::isVirtualRegister(Reg)) 856 LV->getVarInfo(Reg).Kills.push_back(I); 857 DEBUG(dbgs() << "Restored terminator kill: " << *I); 858 break; 859 } 860 } 861 // Update relevant live-through information. 862 LV->addNewBlock(NMBB, this, Succ); 863 } 864 865 if (LIS) { 866 // After splitting the edge and updating SlotIndexes, live intervals may be 867 // in one of two situations, depending on whether this block was the last in 868 // the function. If the original block was the last in the function, all 869 // live intervals will end prior to the beginning of the new split block. If 870 // the original block was not at the end of the function, all live intervals 871 // will extend to the end of the new split block. 872 873 bool isLastMBB = 874 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 875 876 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 877 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 878 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 879 880 // Find the registers used from NMBB in PHIs in Succ. 881 SmallSet<unsigned, 8> PHISrcRegs; 882 for (MachineBasicBlock::instr_iterator 883 I = Succ->instr_begin(), E = Succ->instr_end(); 884 I != E && I->isPHI(); ++I) { 885 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 886 if (I->getOperand(ni+1).getMBB() == NMBB) { 887 MachineOperand &MO = I->getOperand(ni); 888 unsigned Reg = MO.getReg(); 889 PHISrcRegs.insert(Reg); 890 if (MO.isUndef()) 891 continue; 892 893 LiveInterval &LI = LIS->getInterval(Reg); 894 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 895 assert(VNI && 896 "PHI sources should be live out of their predecessors."); 897 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 898 } 899 } 900 } 901 902 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 903 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 904 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 905 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 906 continue; 907 908 LiveInterval &LI = LIS->getInterval(Reg); 909 if (!LI.liveAt(PrevIndex)) 910 continue; 911 912 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 913 if (isLiveOut && isLastMBB) { 914 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 915 assert(VNI && "LiveInterval should have VNInfo where it is live."); 916 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 917 } else if (!isLiveOut && !isLastMBB) { 918 LI.removeSegment(StartIndex, EndIndex); 919 } 920 } 921 922 // Update all intervals for registers whose uses may have been modified by 923 // updateTerminator(). 924 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 925 } 926 927 if (MachineDominatorTree *MDT = 928 P->getAnalysisIfAvailable<MachineDominatorTree>()) 929 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 930 931 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 932 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 933 // If one or the other blocks were not in a loop, the new block is not 934 // either, and thus LI doesn't need to be updated. 935 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 936 if (TIL == DestLoop) { 937 // Both in the same loop, the NMBB joins loop. 938 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 939 } else if (TIL->contains(DestLoop)) { 940 // Edge from an outer loop to an inner loop. Add to the outer loop. 941 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 942 } else if (DestLoop->contains(TIL)) { 943 // Edge from an inner loop to an outer loop. Add to the outer loop. 944 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 945 } else { 946 // Edge from two loops with no containment relation. Because these 947 // are natural loops, we know that the destination block must be the 948 // header of its loop (adding a branch into a loop elsewhere would 949 // create an irreducible loop). 950 assert(DestLoop->getHeader() == Succ && 951 "Should not create irreducible loops!"); 952 if (MachineLoop *P = DestLoop->getParentLoop()) 953 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 954 } 955 } 956 } 957 958 return NMBB; 959 } 960 961 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 962 /// neighboring instructions so the bundle won't be broken by removing MI. 963 static void unbundleSingleMI(MachineInstr *MI) { 964 // Removing the first instruction in a bundle. 965 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 966 MI->unbundleFromSucc(); 967 // Removing the last instruction in a bundle. 968 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 969 MI->unbundleFromPred(); 970 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 971 // are already fine. 972 } 973 974 MachineBasicBlock::instr_iterator 975 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 976 unbundleSingleMI(I); 977 return Insts.erase(I); 978 } 979 980 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 981 unbundleSingleMI(MI); 982 MI->clearFlag(MachineInstr::BundledPred); 983 MI->clearFlag(MachineInstr::BundledSucc); 984 return Insts.remove(MI); 985 } 986 987 MachineBasicBlock::instr_iterator 988 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 989 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 990 "Cannot insert instruction with bundle flags"); 991 // Set the bundle flags when inserting inside a bundle. 992 if (I != instr_end() && I->isBundledWithPred()) { 993 MI->setFlag(MachineInstr::BundledPred); 994 MI->setFlag(MachineInstr::BundledSucc); 995 } 996 return Insts.insert(I, MI); 997 } 998 999 /// This method unlinks 'this' from the containing function, and returns it, but 1000 /// does not delete it. 1001 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1002 assert(getParent() && "Not embedded in a function!"); 1003 getParent()->remove(this); 1004 return this; 1005 } 1006 1007 /// This method unlinks 'this' from the containing function, and deletes it. 1008 void MachineBasicBlock::eraseFromParent() { 1009 assert(getParent() && "Not embedded in a function!"); 1010 getParent()->erase(this); 1011 } 1012 1013 /// Given a machine basic block that branched to 'Old', change the code and CFG 1014 /// so that it branches to 'New' instead. 1015 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1016 MachineBasicBlock *New) { 1017 assert(Old != New && "Cannot replace self with self!"); 1018 1019 MachineBasicBlock::instr_iterator I = instr_end(); 1020 while (I != instr_begin()) { 1021 --I; 1022 if (!I->isTerminator()) break; 1023 1024 // Scan the operands of this machine instruction, replacing any uses of Old 1025 // with New. 1026 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1027 if (I->getOperand(i).isMBB() && 1028 I->getOperand(i).getMBB() == Old) 1029 I->getOperand(i).setMBB(New); 1030 } 1031 1032 // Update the successor information. 1033 replaceSuccessor(Old, New); 1034 } 1035 1036 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1037 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1038 /// MBB successors from the CFG. DestA and DestB can be null. 1039 /// 1040 /// Besides DestA and DestB, retain other edges leading to LandingPads 1041 /// (currently there can be only one; we don't check or require that here). 1042 /// Note it is possible that DestA and/or DestB are LandingPads. 1043 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1044 MachineBasicBlock *DestB, 1045 bool isCond) { 1046 // The values of DestA and DestB frequently come from a call to the 1047 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1048 // values from there. 1049 // 1050 // 1. If both DestA and DestB are null, then the block ends with no branches 1051 // (it falls through to its successor). 1052 // 2. If DestA is set, DestB is null, and isCond is false, then the block ends 1053 // with only an unconditional branch. 1054 // 3. If DestA is set, DestB is null, and isCond is true, then the block ends 1055 // with a conditional branch that falls through to a successor (DestB). 1056 // 4. If DestA and DestB is set and isCond is true, then the block ends with a 1057 // conditional branch followed by an unconditional branch. DestA is the 1058 // 'true' destination and DestB is the 'false' destination. 1059 1060 bool Changed = false; 1061 1062 MachineFunction::iterator FallThru = 1063 std::next(MachineFunction::iterator(this)); 1064 1065 if (!DestA && !DestB) { 1066 // Block falls through to successor. 1067 DestA = FallThru; 1068 DestB = FallThru; 1069 } else if (DestA && !DestB) { 1070 if (isCond) 1071 // Block ends in conditional jump that falls through to successor. 1072 DestB = FallThru; 1073 } else { 1074 assert(DestA && DestB && isCond && 1075 "CFG in a bad state. Cannot correct CFG edges"); 1076 } 1077 1078 // Remove superfluous edges. I.e., those which aren't destinations of this 1079 // basic block, duplicate edges, or landing pads. 1080 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1081 MachineBasicBlock::succ_iterator SI = succ_begin(); 1082 while (SI != succ_end()) { 1083 const MachineBasicBlock *MBB = *SI; 1084 if (!SeenMBBs.insert(MBB).second || 1085 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1086 // This is a superfluous edge, remove it. 1087 SI = removeSuccessor(SI); 1088 Changed = true; 1089 } else { 1090 ++SI; 1091 } 1092 } 1093 1094 return Changed; 1095 } 1096 1097 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1098 /// instructions. Return UnknownLoc if there is none. 1099 DebugLoc 1100 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1101 DebugLoc DL; 1102 instr_iterator E = instr_end(); 1103 if (MBBI == E) 1104 return DL; 1105 1106 // Skip debug declarations, we don't want a DebugLoc from them. 1107 while (MBBI != E && MBBI->isDebugValue()) 1108 MBBI++; 1109 if (MBBI != E) 1110 DL = MBBI->getDebugLoc(); 1111 return DL; 1112 } 1113 1114 /// Return weight of the edge from this block to MBB. 1115 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { 1116 if (Weights.empty()) 1117 return 0; 1118 1119 return *getWeightIterator(Succ); 1120 } 1121 1122 /// Set successor weight of a given iterator. 1123 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t weight) { 1124 if (Weights.empty()) 1125 return; 1126 *getWeightIterator(I) = weight; 1127 } 1128 1129 /// Return wight iterator corresonding to the I successor iterator. 1130 MachineBasicBlock::weight_iterator MachineBasicBlock:: 1131 getWeightIterator(MachineBasicBlock::succ_iterator I) { 1132 assert(Weights.size() == Successors.size() && "Async weight list!"); 1133 size_t index = std::distance(Successors.begin(), I); 1134 assert(index < Weights.size() && "Not a current successor!"); 1135 return Weights.begin() + index; 1136 } 1137 1138 /// Return wight iterator corresonding to the I successor iterator. 1139 MachineBasicBlock::const_weight_iterator MachineBasicBlock:: 1140 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { 1141 assert(Weights.size() == Successors.size() && "Async weight list!"); 1142 const size_t index = std::distance(Successors.begin(), I); 1143 assert(index < Weights.size() && "Not a current successor!"); 1144 return Weights.begin() + index; 1145 } 1146 1147 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1148 /// as of just before "MI". 1149 /// 1150 /// Search is localised to a neighborhood of 1151 /// Neighborhood instructions before (searching for defs or kills) and N 1152 /// instructions after (searching just for defs) MI. 1153 MachineBasicBlock::LivenessQueryResult 1154 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1155 unsigned Reg, const_iterator Before, 1156 unsigned Neighborhood) const { 1157 unsigned N = Neighborhood; 1158 1159 // Start by searching backwards from Before, looking for kills, reads or defs. 1160 const_iterator I(Before); 1161 // If this is the first insn in the block, don't search backwards. 1162 if (I != begin()) { 1163 do { 1164 --I; 1165 1166 MachineOperandIteratorBase::PhysRegInfo Analysis = 1167 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1168 1169 if (Analysis.Defines) 1170 // Outputs happen after inputs so they take precedence if both are 1171 // present. 1172 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 1173 1174 if (Analysis.Kills || Analysis.Clobbers) 1175 // Register killed, so isn't live. 1176 return LQR_Dead; 1177 1178 else if (Analysis.ReadsOverlap) 1179 // Defined or read without a previous kill - live. 1180 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 1181 1182 } while (I != begin() && --N > 0); 1183 } 1184 1185 // Did we get to the start of the block? 1186 if (I == begin()) { 1187 // If so, the register's state is definitely defined by the live-in state. 1188 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 1189 RAI.isValid(); ++RAI) { 1190 if (isLiveIn(*RAI)) 1191 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 1192 } 1193 1194 return LQR_Dead; 1195 } 1196 1197 N = Neighborhood; 1198 1199 // Try searching forwards from Before, looking for reads or defs. 1200 I = const_iterator(Before); 1201 // If this is the last insn in the block, don't search forwards. 1202 if (I != end()) { 1203 for (++I; I != end() && N > 0; ++I, --N) { 1204 MachineOperandIteratorBase::PhysRegInfo Analysis = 1205 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1206 1207 if (Analysis.ReadsOverlap) 1208 // Used, therefore must have been live. 1209 return (Analysis.Reads) ? 1210 LQR_Live : LQR_OverlappingLive; 1211 1212 else if (Analysis.Clobbers || Analysis.Defines) 1213 // Defined (but not read) therefore cannot have been live. 1214 return LQR_Dead; 1215 } 1216 } 1217 1218 // At this point we have no idea of the liveness of the register. 1219 return LQR_Unknown; 1220 } 1221