xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision df082ac45aa034b8b5194123035554a93ed6d38e)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 static cl::opt<bool> PrintSlotIndexes(
43     "print-slotindexes",
44     cl::desc("When printing machine IR, annotate instructions and blocks with "
45              "SlotIndexes when available"),
46     cl::init(true), cl::Hidden);
47 
48 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
49     : BB(B), Number(-1), xParent(&MF) {
50   Insts.Parent = this;
51   if (B)
52     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
53 }
54 
55 MachineBasicBlock::~MachineBasicBlock() {
56 }
57 
58 /// Return the MCSymbol for this basic block.
59 MCSymbol *MachineBasicBlock::getSymbol() const {
60   if (!CachedMCSymbol) {
61     const MachineFunction *MF = getParent();
62     MCContext &Ctx = MF->getContext();
63     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
64 
65     bool BasicBlockSymbols = MF->hasBBSections() || MF->hasBBLabels();
66     auto Delimiter = BasicBlockSymbols ? "." : "_";
67     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
68 
69     // With Basic Block Sections, we emit a symbol for every basic block. To
70     // keep the size of strtab small, we choose a unary encoding which can
71     // compress the symbol names significantly.  The basic blocks for function
72     // foo are named a.BB.foo, aa.BB.foo, and so on.
73     if (BasicBlockSymbols) {
74       auto Iter = MF->getBBSectionsSymbolPrefix().begin();
75       if (getNumber() < 0 ||
76           getNumber() >= (int)MF->getBBSectionsSymbolPrefix().size())
77         report_fatal_error("Unreachable MBB: " + Twine(getNumber()));
78       std::string Prefix(Iter + 1, Iter + getNumber() + 1);
79       std::reverse(Prefix.begin(), Prefix.end());
80       CachedMCSymbol =
81           Ctx.getOrCreateSymbol(Prefix + Twine(Delimiter) + "BB" +
82                                 Twine(Delimiter) + Twine(MF->getName()));
83     } else {
84       CachedMCSymbol = Ctx.getOrCreateSymbol(
85           Twine(Prefix) + "BB" + Twine(MF->getFunctionNumber()) +
86           Twine(Delimiter) + Twine(getNumber()));
87     }
88   }
89   return CachedMCSymbol;
90 }
91 
92 
93 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
94   MBB.print(OS);
95   return OS;
96 }
97 
98 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
99   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
100 }
101 
102 /// When an MBB is added to an MF, we need to update the parent pointer of the
103 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
104 /// operand list for registers.
105 ///
106 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
107 /// gets the next available unique MBB number. If it is removed from a
108 /// MachineFunction, it goes back to being #-1.
109 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
110     MachineBasicBlock *N) {
111   MachineFunction &MF = *N->getParent();
112   N->Number = MF.addToMBBNumbering(N);
113 
114   // Make sure the instructions have their operands in the reginfo lists.
115   MachineRegisterInfo &RegInfo = MF.getRegInfo();
116   for (MachineBasicBlock::instr_iterator
117          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
118     I->AddRegOperandsToUseLists(RegInfo);
119 }
120 
121 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
122     MachineBasicBlock *N) {
123   N->getParent()->removeFromMBBNumbering(N->Number);
124   N->Number = -1;
125 }
126 
127 /// When we add an instruction to a basic block list, we update its parent
128 /// pointer and add its operands from reg use/def lists if appropriate.
129 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
130   assert(!N->getParent() && "machine instruction already in a basic block");
131   N->setParent(Parent);
132 
133   // Add the instruction's register operands to their corresponding
134   // use/def lists.
135   MachineFunction *MF = Parent->getParent();
136   N->AddRegOperandsToUseLists(MF->getRegInfo());
137   MF->handleInsertion(*N);
138 }
139 
140 /// When we remove an instruction from a basic block list, we update its parent
141 /// pointer and remove its operands from reg use/def lists if appropriate.
142 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
143   assert(N->getParent() && "machine instruction not in a basic block");
144 
145   // Remove from the use/def lists.
146   if (MachineFunction *MF = N->getMF()) {
147     MF->handleRemoval(*N);
148     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
149   }
150 
151   N->setParent(nullptr);
152 }
153 
154 /// When moving a range of instructions from one MBB list to another, we need to
155 /// update the parent pointers and the use/def lists.
156 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
157                                                        instr_iterator First,
158                                                        instr_iterator Last) {
159   assert(Parent->getParent() == FromList.Parent->getParent() &&
160          "cannot transfer MachineInstrs between MachineFunctions");
161 
162   // If it's within the same BB, there's nothing to do.
163   if (this == &FromList)
164     return;
165 
166   assert(Parent != FromList.Parent && "Two lists have the same parent?");
167 
168   // If splicing between two blocks within the same function, just update the
169   // parent pointers.
170   for (; First != Last; ++First)
171     First->setParent(Parent);
172 }
173 
174 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
175   assert(!MI->getParent() && "MI is still in a block!");
176   Parent->getParent()->DeleteMachineInstr(MI);
177 }
178 
179 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
180   instr_iterator I = instr_begin(), E = instr_end();
181   while (I != E && I->isPHI())
182     ++I;
183   assert((I == E || !I->isInsideBundle()) &&
184          "First non-phi MI cannot be inside a bundle!");
185   return I;
186 }
187 
188 MachineBasicBlock::iterator
189 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
190   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
191 
192   iterator E = end();
193   while (I != E && (I->isPHI() || I->isPosition() ||
194                     TII->isBasicBlockPrologue(*I)))
195     ++I;
196   // FIXME: This needs to change if we wish to bundle labels
197   // inside the bundle.
198   assert((I == E || !I->isInsideBundle()) &&
199          "First non-phi / non-label instruction is inside a bundle!");
200   return I;
201 }
202 
203 MachineBasicBlock::iterator
204 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
205   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
206 
207   iterator E = end();
208   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
209                     TII->isBasicBlockPrologue(*I)))
210     ++I;
211   // FIXME: This needs to change if we wish to bundle labels / dbg_values
212   // inside the bundle.
213   assert((I == E || !I->isInsideBundle()) &&
214          "First non-phi / non-label / non-debug "
215          "instruction is inside a bundle!");
216   return I;
217 }
218 
219 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
220   iterator B = begin(), E = end(), I = E;
221   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
222     ; /*noop */
223   while (I != E && !I->isTerminator())
224     ++I;
225   return I;
226 }
227 
228 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
229   instr_iterator B = instr_begin(), E = instr_end(), I = E;
230   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
231     ; /*noop */
232   while (I != E && !I->isTerminator())
233     ++I;
234   return I;
235 }
236 
237 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
238   // Skip over begin-of-block dbg_value instructions.
239   return skipDebugInstructionsForward(begin(), end());
240 }
241 
242 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
243   // Skip over end-of-block dbg_value instructions.
244   instr_iterator B = instr_begin(), I = instr_end();
245   while (I != B) {
246     --I;
247     // Return instruction that starts a bundle.
248     if (I->isDebugInstr() || I->isInsideBundle())
249       continue;
250     return I;
251   }
252   // The block is all debug values.
253   return end();
254 }
255 
256 bool MachineBasicBlock::hasEHPadSuccessor() const {
257   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
258     if ((*I)->isEHPad())
259       return true;
260   return false;
261 }
262 
263 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
264 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
265   print(dbgs());
266 }
267 #endif
268 
269 bool MachineBasicBlock::isLegalToHoistInto() const {
270   if (isReturnBlock() || hasEHPadSuccessor())
271     return false;
272   return true;
273 }
274 
275 StringRef MachineBasicBlock::getName() const {
276   if (const BasicBlock *LBB = getBasicBlock())
277     return LBB->getName();
278   else
279     return StringRef("", 0);
280 }
281 
282 /// Return a hopefully unique identifier for this block.
283 std::string MachineBasicBlock::getFullName() const {
284   std::string Name;
285   if (getParent())
286     Name = (getParent()->getName() + ":").str();
287   if (getBasicBlock())
288     Name += getBasicBlock()->getName();
289   else
290     Name += ("BB" + Twine(getNumber())).str();
291   return Name;
292 }
293 
294 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
295                               bool IsStandalone) const {
296   const MachineFunction *MF = getParent();
297   if (!MF) {
298     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
299        << " is null\n";
300     return;
301   }
302   const Function &F = MF->getFunction();
303   const Module *M = F.getParent();
304   ModuleSlotTracker MST(M);
305   MST.incorporateFunction(F);
306   print(OS, MST, Indexes, IsStandalone);
307 }
308 
309 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
310                               const SlotIndexes *Indexes,
311                               bool IsStandalone) const {
312   const MachineFunction *MF = getParent();
313   if (!MF) {
314     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
315        << " is null\n";
316     return;
317   }
318 
319   if (Indexes && PrintSlotIndexes)
320     OS << Indexes->getMBBStartIdx(this) << '\t';
321 
322   OS << "bb." << getNumber();
323   bool HasAttributes = false;
324   if (const auto *BB = getBasicBlock()) {
325     if (BB->hasName()) {
326       OS << "." << BB->getName();
327     } else {
328       HasAttributes = true;
329       OS << " (";
330       int Slot = MST.getLocalSlot(BB);
331       if (Slot == -1)
332         OS << "<ir-block badref>";
333       else
334         OS << (Twine("%ir-block.") + Twine(Slot)).str();
335     }
336   }
337 
338   if (hasAddressTaken()) {
339     OS << (HasAttributes ? ", " : " (");
340     OS << "address-taken";
341     HasAttributes = true;
342   }
343   if (isEHPad()) {
344     OS << (HasAttributes ? ", " : " (");
345     OS << "landing-pad";
346     HasAttributes = true;
347   }
348   if (getAlignment() != Align(1)) {
349     OS << (HasAttributes ? ", " : " (");
350     OS << "align " << Log2(getAlignment());
351     HasAttributes = true;
352   }
353   if (HasAttributes)
354     OS << ")";
355   OS << ":\n";
356 
357   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
358   const MachineRegisterInfo &MRI = MF->getRegInfo();
359   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
360   bool HasLineAttributes = false;
361 
362   // Print the preds of this block according to the CFG.
363   if (!pred_empty() && IsStandalone) {
364     if (Indexes) OS << '\t';
365     // Don't indent(2), align with previous line attributes.
366     OS << "; predecessors: ";
367     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
368       if (I != pred_begin())
369         OS << ", ";
370       OS << printMBBReference(**I);
371     }
372     OS << '\n';
373     HasLineAttributes = true;
374   }
375 
376   if (!succ_empty()) {
377     if (Indexes) OS << '\t';
378     // Print the successors
379     OS.indent(2) << "successors: ";
380     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
381       if (I != succ_begin())
382         OS << ", ";
383       OS << printMBBReference(**I);
384       if (!Probs.empty())
385         OS << '('
386            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
387            << ')';
388     }
389     if (!Probs.empty() && IsStandalone) {
390       // Print human readable probabilities as comments.
391       OS << "; ";
392       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
393         const BranchProbability &BP = getSuccProbability(I);
394         if (I != succ_begin())
395           OS << ", ";
396         OS << printMBBReference(**I) << '('
397            << format("%.2f%%",
398                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
399                           100.0 * 100.0) /
400                          100.0)
401            << ')';
402       }
403     }
404 
405     OS << '\n';
406     HasLineAttributes = true;
407   }
408 
409   if (!livein_empty() && MRI.tracksLiveness()) {
410     if (Indexes) OS << '\t';
411     OS.indent(2) << "liveins: ";
412 
413     bool First = true;
414     for (const auto &LI : liveins()) {
415       if (!First)
416         OS << ", ";
417       First = false;
418       OS << printReg(LI.PhysReg, TRI);
419       if (!LI.LaneMask.all())
420         OS << ":0x" << PrintLaneMask(LI.LaneMask);
421     }
422     HasLineAttributes = true;
423   }
424 
425   if (HasLineAttributes)
426     OS << '\n';
427 
428   bool IsInBundle = false;
429   for (const MachineInstr &MI : instrs()) {
430     if (Indexes && PrintSlotIndexes) {
431       if (Indexes->hasIndex(MI))
432         OS << Indexes->getInstructionIndex(MI);
433       OS << '\t';
434     }
435 
436     if (IsInBundle && !MI.isInsideBundle()) {
437       OS.indent(2) << "}\n";
438       IsInBundle = false;
439     }
440 
441     OS.indent(IsInBundle ? 4 : 2);
442     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
443              /*AddNewLine=*/false, &TII);
444 
445     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
446       OS << " {";
447       IsInBundle = true;
448     }
449     OS << '\n';
450   }
451 
452   if (IsInBundle)
453     OS.indent(2) << "}\n";
454 
455   if (IrrLoopHeaderWeight && IsStandalone) {
456     if (Indexes) OS << '\t';
457     OS.indent(2) << "; Irreducible loop header weight: "
458                  << IrrLoopHeaderWeight.getValue() << '\n';
459   }
460 }
461 
462 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
463                                        bool /*PrintType*/) const {
464   OS << "%bb." << getNumber();
465 }
466 
467 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
468   LiveInVector::iterator I = find_if(
469       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
470   if (I == LiveIns.end())
471     return;
472 
473   I->LaneMask &= ~LaneMask;
474   if (I->LaneMask.none())
475     LiveIns.erase(I);
476 }
477 
478 MachineBasicBlock::livein_iterator
479 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
480   // Get non-const version of iterator.
481   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
482   return LiveIns.erase(LI);
483 }
484 
485 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
486   livein_iterator I = find_if(
487       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
488   return I != livein_end() && (I->LaneMask & LaneMask).any();
489 }
490 
491 void MachineBasicBlock::sortUniqueLiveIns() {
492   llvm::sort(LiveIns,
493              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
494                return LI0.PhysReg < LI1.PhysReg;
495              });
496   // Liveins are sorted by physreg now we can merge their lanemasks.
497   LiveInVector::const_iterator I = LiveIns.begin();
498   LiveInVector::const_iterator J;
499   LiveInVector::iterator Out = LiveIns.begin();
500   for (; I != LiveIns.end(); ++Out, I = J) {
501     unsigned PhysReg = I->PhysReg;
502     LaneBitmask LaneMask = I->LaneMask;
503     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
504       LaneMask |= J->LaneMask;
505     Out->PhysReg = PhysReg;
506     Out->LaneMask = LaneMask;
507   }
508   LiveIns.erase(Out, LiveIns.end());
509 }
510 
511 unsigned
512 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
513   assert(getParent() && "MBB must be inserted in function");
514   assert(PhysReg.isPhysical() && "Expected physreg");
515   assert(RC && "Register class is required");
516   assert((isEHPad() || this == &getParent()->front()) &&
517          "Only the entry block and landing pads can have physreg live ins");
518 
519   bool LiveIn = isLiveIn(PhysReg);
520   iterator I = SkipPHIsAndLabels(begin()), E = end();
521   MachineRegisterInfo &MRI = getParent()->getRegInfo();
522   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
523 
524   // Look for an existing copy.
525   if (LiveIn)
526     for (;I != E && I->isCopy(); ++I)
527       if (I->getOperand(1).getReg() == PhysReg) {
528         Register VirtReg = I->getOperand(0).getReg();
529         if (!MRI.constrainRegClass(VirtReg, RC))
530           llvm_unreachable("Incompatible live-in register class.");
531         return VirtReg;
532       }
533 
534   // No luck, create a virtual register.
535   Register VirtReg = MRI.createVirtualRegister(RC);
536   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
537     .addReg(PhysReg, RegState::Kill);
538   if (!LiveIn)
539     addLiveIn(PhysReg);
540   return VirtReg;
541 }
542 
543 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
544   getParent()->splice(NewAfter->getIterator(), getIterator());
545 }
546 
547 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
548   getParent()->splice(++NewBefore->getIterator(), getIterator());
549 }
550 
551 // Returns true if this basic block and the Other are in the same section.
552 bool MachineBasicBlock::sameSection(const MachineBasicBlock *Other) const {
553   if (this == Other)
554     return true;
555 
556   if (this->getSectionType() != Other->getSectionType())
557     return false;
558 
559   // If either is in a unique section, return false.
560   if (this->getSectionType() == llvm::MachineBasicBlockSection::MBBS_Unique ||
561       Other->getSectionType() == llvm::MachineBasicBlockSection::MBBS_Unique)
562     return false;
563 
564   return true;
565 }
566 
567 const MachineBasicBlock *MachineBasicBlock::getSectionEndMBB() const {
568   if (this->isEndSection())
569     return this;
570   auto I = std::next(this->getIterator());
571   const MachineFunction *MF = getParent();
572   while (I != MF->end()) {
573     const MachineBasicBlock &MBB = *I;
574     if (MBB.isEndSection())
575       return &MBB;
576     I = std::next(I);
577   }
578   llvm_unreachable("No End Basic Block for this section.");
579 }
580 
581 // Returns true if this block begins any section.
582 bool MachineBasicBlock::isBeginSection() const {
583   return (SectionType == MBBS_Entry || SectionType == MBBS_Unique ||
584           getParent()->isSectionStartMBB(getNumber()));
585 }
586 
587 // Returns true if this block begins any section.
588 bool MachineBasicBlock::isEndSection() const {
589   return (SectionType == MBBS_Entry || SectionType == MBBS_Unique ||
590           getParent()->isSectionEndMBB(getNumber()));
591 }
592 
593 void MachineBasicBlock::updateTerminator() {
594   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
595   // A block with no successors has no concerns with fall-through edges.
596   if (this->succ_empty())
597     return;
598 
599   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
600   SmallVector<MachineOperand, 4> Cond;
601   DebugLoc DL = findBranchDebugLoc();
602   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
603   (void) B;
604   assert(!B && "UpdateTerminators requires analyzable predecessors!");
605   if (Cond.empty()) {
606     if (TBB) {
607       // The block has an unconditional branch. If its successor is now its
608       // layout successor, delete the branch.
609       if (isLayoutSuccessor(TBB))
610         TII->removeBranch(*this);
611     } else {
612       // The block has an unconditional fallthrough. If its successor is not its
613       // layout successor, insert a branch. First we have to locate the only
614       // non-landing-pad successor, as that is the fallthrough block.
615       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
616         if ((*SI)->isEHPad())
617           continue;
618         assert(!TBB && "Found more than one non-landing-pad successor!");
619         TBB = *SI;
620       }
621 
622       // If there is no non-landing-pad successor, the block has no fall-through
623       // edges to be concerned with.
624       if (!TBB)
625         return;
626 
627       // Finally update the unconditional successor to be reached via a branch
628       // if it would not be reached by fallthrough.
629       if (!isLayoutSuccessor(TBB))
630         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
631     }
632     return;
633   }
634 
635   if (FBB) {
636     // The block has a non-fallthrough conditional branch. If one of its
637     // successors is its layout successor, rewrite it to a fallthrough
638     // conditional branch.
639     if (isLayoutSuccessor(TBB)) {
640       if (TII->reverseBranchCondition(Cond))
641         return;
642       TII->removeBranch(*this);
643       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
644     } else if (isLayoutSuccessor(FBB)) {
645       TII->removeBranch(*this);
646       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
647     }
648     return;
649   }
650 
651   // Walk through the successors and find the successor which is not a landing
652   // pad and is not the conditional branch destination (in TBB) as the
653   // fallthrough successor.
654   MachineBasicBlock *FallthroughBB = nullptr;
655   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
656     if ((*SI)->isEHPad() || *SI == TBB)
657       continue;
658     assert(!FallthroughBB && "Found more than one fallthrough successor.");
659     FallthroughBB = *SI;
660   }
661 
662   if (!FallthroughBB) {
663     if (canFallThrough()) {
664       // We fallthrough to the same basic block as the conditional jump targets.
665       // Remove the conditional jump, leaving unconditional fallthrough.
666       // FIXME: This does not seem like a reasonable pattern to support, but it
667       // has been seen in the wild coming out of degenerate ARM test cases.
668       TII->removeBranch(*this);
669 
670       // Finally update the unconditional successor to be reached via a branch if
671       // it would not be reached by fallthrough.
672       if (!isLayoutSuccessor(TBB))
673         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
674       return;
675     }
676 
677     // We enter here iff exactly one successor is TBB which cannot fallthrough
678     // and the rest successors if any are EHPads.  In this case, we need to
679     // change the conditional branch into unconditional branch.
680     TII->removeBranch(*this);
681     Cond.clear();
682     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
683     return;
684   }
685 
686   // The block has a fallthrough conditional branch.
687   if (isLayoutSuccessor(TBB)) {
688     if (TII->reverseBranchCondition(Cond)) {
689       // We can't reverse the condition, add an unconditional branch.
690       Cond.clear();
691       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
692       return;
693     }
694     TII->removeBranch(*this);
695     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
696   } else if (!isLayoutSuccessor(FallthroughBB)) {
697     TII->removeBranch(*this);
698     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
699   }
700 }
701 
702 void MachineBasicBlock::validateSuccProbs() const {
703 #ifndef NDEBUG
704   int64_t Sum = 0;
705   for (auto Prob : Probs)
706     Sum += Prob.getNumerator();
707   // Due to precision issue, we assume that the sum of probabilities is one if
708   // the difference between the sum of their numerators and the denominator is
709   // no greater than the number of successors.
710   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
711              Probs.size() &&
712          "The sum of successors's probabilities exceeds one.");
713 #endif // NDEBUG
714 }
715 
716 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
717                                      BranchProbability Prob) {
718   // Probability list is either empty (if successor list isn't empty, this means
719   // disabled optimization) or has the same size as successor list.
720   if (!(Probs.empty() && !Successors.empty()))
721     Probs.push_back(Prob);
722   Successors.push_back(Succ);
723   Succ->addPredecessor(this);
724 }
725 
726 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
727   // We need to make sure probability list is either empty or has the same size
728   // of successor list. When this function is called, we can safely delete all
729   // probability in the list.
730   Probs.clear();
731   Successors.push_back(Succ);
732   Succ->addPredecessor(this);
733 }
734 
735 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
736                                        MachineBasicBlock *New,
737                                        bool NormalizeSuccProbs) {
738   succ_iterator OldI = llvm::find(successors(), Old);
739   assert(OldI != succ_end() && "Old is not a successor of this block!");
740   assert(llvm::find(successors(), New) == succ_end() &&
741          "New is already a successor of this block!");
742 
743   // Add a new successor with equal probability as the original one. Note
744   // that we directly copy the probability using the iterator rather than
745   // getting a potentially synthetic probability computed when unknown. This
746   // preserves the probabilities as-is and then we can renormalize them and
747   // query them effectively afterward.
748   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
749                                   : *getProbabilityIterator(OldI));
750   if (NormalizeSuccProbs)
751     normalizeSuccProbs();
752 }
753 
754 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
755                                         bool NormalizeSuccProbs) {
756   succ_iterator I = find(Successors, Succ);
757   removeSuccessor(I, NormalizeSuccProbs);
758 }
759 
760 MachineBasicBlock::succ_iterator
761 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
762   assert(I != Successors.end() && "Not a current successor!");
763 
764   // If probability list is empty it means we don't use it (disabled
765   // optimization).
766   if (!Probs.empty()) {
767     probability_iterator WI = getProbabilityIterator(I);
768     Probs.erase(WI);
769     if (NormalizeSuccProbs)
770       normalizeSuccProbs();
771   }
772 
773   (*I)->removePredecessor(this);
774   return Successors.erase(I);
775 }
776 
777 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
778                                          MachineBasicBlock *New) {
779   if (Old == New)
780     return;
781 
782   succ_iterator E = succ_end();
783   succ_iterator NewI = E;
784   succ_iterator OldI = E;
785   for (succ_iterator I = succ_begin(); I != E; ++I) {
786     if (*I == Old) {
787       OldI = I;
788       if (NewI != E)
789         break;
790     }
791     if (*I == New) {
792       NewI = I;
793       if (OldI != E)
794         break;
795     }
796   }
797   assert(OldI != E && "Old is not a successor of this block");
798 
799   // If New isn't already a successor, let it take Old's place.
800   if (NewI == E) {
801     Old->removePredecessor(this);
802     New->addPredecessor(this);
803     *OldI = New;
804     return;
805   }
806 
807   // New is already a successor.
808   // Update its probability instead of adding a duplicate edge.
809   if (!Probs.empty()) {
810     auto ProbIter = getProbabilityIterator(NewI);
811     if (!ProbIter->isUnknown())
812       *ProbIter += *getProbabilityIterator(OldI);
813   }
814   removeSuccessor(OldI);
815 }
816 
817 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
818                                       succ_iterator I) {
819   if (Orig->Probs.empty())
820     addSuccessor(*I, Orig->getSuccProbability(I));
821   else
822     addSuccessorWithoutProb(*I);
823 }
824 
825 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
826   Predecessors.push_back(Pred);
827 }
828 
829 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
830   pred_iterator I = find(Predecessors, Pred);
831   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
832   Predecessors.erase(I);
833 }
834 
835 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
836   if (this == FromMBB)
837     return;
838 
839   while (!FromMBB->succ_empty()) {
840     MachineBasicBlock *Succ = *FromMBB->succ_begin();
841 
842     // If probability list is empty it means we don't use it (disabled
843     // optimization).
844     if (!FromMBB->Probs.empty()) {
845       auto Prob = *FromMBB->Probs.begin();
846       addSuccessor(Succ, Prob);
847     } else
848       addSuccessorWithoutProb(Succ);
849 
850     FromMBB->removeSuccessor(Succ);
851   }
852 }
853 
854 void
855 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
856   if (this == FromMBB)
857     return;
858 
859   while (!FromMBB->succ_empty()) {
860     MachineBasicBlock *Succ = *FromMBB->succ_begin();
861     if (!FromMBB->Probs.empty()) {
862       auto Prob = *FromMBB->Probs.begin();
863       addSuccessor(Succ, Prob);
864     } else
865       addSuccessorWithoutProb(Succ);
866     FromMBB->removeSuccessor(Succ);
867 
868     // Fix up any PHI nodes in the successor.
869     Succ->replacePhiUsesWith(FromMBB, this);
870   }
871   normalizeSuccProbs();
872 }
873 
874 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
875   return is_contained(predecessors(), MBB);
876 }
877 
878 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
879   return is_contained(successors(), MBB);
880 }
881 
882 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
883   MachineFunction::const_iterator I(this);
884   return std::next(I) == MachineFunction::const_iterator(MBB);
885 }
886 
887 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
888   MachineFunction::iterator Fallthrough = getIterator();
889   ++Fallthrough;
890   // If FallthroughBlock is off the end of the function, it can't fall through.
891   if (Fallthrough == getParent()->end())
892     return nullptr;
893 
894   // If FallthroughBlock isn't a successor, no fallthrough is possible.
895   if (!isSuccessor(&*Fallthrough))
896     return nullptr;
897 
898   // Analyze the branches, if any, at the end of the block.
899   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
900   SmallVector<MachineOperand, 4> Cond;
901   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
902   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
903     // If we couldn't analyze the branch, examine the last instruction.
904     // If the block doesn't end in a known control barrier, assume fallthrough
905     // is possible. The isPredicated check is needed because this code can be
906     // called during IfConversion, where an instruction which is normally a
907     // Barrier is predicated and thus no longer an actual control barrier.
908     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
909                ? &*Fallthrough
910                : nullptr;
911   }
912 
913   // If there is no branch, control always falls through.
914   if (!TBB) return &*Fallthrough;
915 
916   // If there is some explicit branch to the fallthrough block, it can obviously
917   // reach, even though the branch should get folded to fall through implicitly.
918   if (MachineFunction::iterator(TBB) == Fallthrough ||
919       MachineFunction::iterator(FBB) == Fallthrough)
920     return &*Fallthrough;
921 
922   // If it's an unconditional branch to some block not the fall through, it
923   // doesn't fall through.
924   if (Cond.empty()) return nullptr;
925 
926   // Otherwise, if it is conditional and has no explicit false block, it falls
927   // through.
928   return (FBB == nullptr) ? &*Fallthrough : nullptr;
929 }
930 
931 bool MachineBasicBlock::canFallThrough() {
932   return getFallThrough() != nullptr;
933 }
934 
935 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
936     MachineBasicBlock *Succ, Pass &P,
937     std::vector<SparseBitVector<>> *LiveInSets) {
938   if (!canSplitCriticalEdge(Succ))
939     return nullptr;
940 
941   MachineFunction *MF = getParent();
942   DebugLoc DL;  // FIXME: this is nowhere
943 
944   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
945   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
946   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
947                     << " -- " << printMBBReference(*NMBB) << " -- "
948                     << printMBBReference(*Succ) << '\n');
949 
950   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
951   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
952   if (LIS)
953     LIS->insertMBBInMaps(NMBB);
954   else if (Indexes)
955     Indexes->insertMBBInMaps(NMBB);
956 
957   // On some targets like Mips, branches may kill virtual registers. Make sure
958   // that LiveVariables is properly updated after updateTerminator replaces the
959   // terminators.
960   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
961 
962   // Collect a list of virtual registers killed by the terminators.
963   SmallVector<unsigned, 4> KilledRegs;
964   if (LV)
965     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
966          I != E; ++I) {
967       MachineInstr *MI = &*I;
968       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
969            OE = MI->operands_end(); OI != OE; ++OI) {
970         if (!OI->isReg() || OI->getReg() == 0 ||
971             !OI->isUse() || !OI->isKill() || OI->isUndef())
972           continue;
973         Register Reg = OI->getReg();
974         if (Register::isPhysicalRegister(Reg) ||
975             LV->getVarInfo(Reg).removeKill(*MI)) {
976           KilledRegs.push_back(Reg);
977           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
978           OI->setIsKill(false);
979         }
980       }
981     }
982 
983   SmallVector<unsigned, 4> UsedRegs;
984   if (LIS) {
985     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
986          I != E; ++I) {
987       MachineInstr *MI = &*I;
988 
989       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
990            OE = MI->operands_end(); OI != OE; ++OI) {
991         if (!OI->isReg() || OI->getReg() == 0)
992           continue;
993 
994         Register Reg = OI->getReg();
995         if (!is_contained(UsedRegs, Reg))
996           UsedRegs.push_back(Reg);
997       }
998     }
999   }
1000 
1001   ReplaceUsesOfBlockWith(Succ, NMBB);
1002 
1003   // If updateTerminator() removes instructions, we need to remove them from
1004   // SlotIndexes.
1005   SmallVector<MachineInstr*, 4> Terminators;
1006   if (Indexes) {
1007     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1008          I != E; ++I)
1009       Terminators.push_back(&*I);
1010   }
1011 
1012   updateTerminator();
1013 
1014   if (Indexes) {
1015     SmallVector<MachineInstr*, 4> NewTerminators;
1016     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1017          I != E; ++I)
1018       NewTerminators.push_back(&*I);
1019 
1020     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
1021         E = Terminators.end(); I != E; ++I) {
1022       if (!is_contained(NewTerminators, *I))
1023         Indexes->removeMachineInstrFromMaps(**I);
1024     }
1025   }
1026 
1027   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1028   NMBB->addSuccessor(Succ);
1029   if (!NMBB->isLayoutSuccessor(Succ)) {
1030     SmallVector<MachineOperand, 4> Cond;
1031     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1032     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1033 
1034     if (Indexes) {
1035       for (MachineInstr &MI : NMBB->instrs()) {
1036         // Some instructions may have been moved to NMBB by updateTerminator(),
1037         // so we first remove any instruction that already has an index.
1038         if (Indexes->hasIndex(MI))
1039           Indexes->removeMachineInstrFromMaps(MI);
1040         Indexes->insertMachineInstrInMaps(MI);
1041       }
1042     }
1043   }
1044 
1045   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1046   Succ->replacePhiUsesWith(this, NMBB);
1047 
1048   // Inherit live-ins from the successor
1049   for (const auto &LI : Succ->liveins())
1050     NMBB->addLiveIn(LI);
1051 
1052   // Update LiveVariables.
1053   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1054   if (LV) {
1055     // Restore kills of virtual registers that were killed by the terminators.
1056     while (!KilledRegs.empty()) {
1057       unsigned Reg = KilledRegs.pop_back_val();
1058       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1059         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1060           continue;
1061         if (Register::isVirtualRegister(Reg))
1062           LV->getVarInfo(Reg).Kills.push_back(&*I);
1063         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1064         break;
1065       }
1066     }
1067     // Update relevant live-through information.
1068     if (LiveInSets != nullptr)
1069       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1070     else
1071       LV->addNewBlock(NMBB, this, Succ);
1072   }
1073 
1074   if (LIS) {
1075     // After splitting the edge and updating SlotIndexes, live intervals may be
1076     // in one of two situations, depending on whether this block was the last in
1077     // the function. If the original block was the last in the function, all
1078     // live intervals will end prior to the beginning of the new split block. If
1079     // the original block was not at the end of the function, all live intervals
1080     // will extend to the end of the new split block.
1081 
1082     bool isLastMBB =
1083       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1084 
1085     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1086     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1087     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1088 
1089     // Find the registers used from NMBB in PHIs in Succ.
1090     SmallSet<unsigned, 8> PHISrcRegs;
1091     for (MachineBasicBlock::instr_iterator
1092          I = Succ->instr_begin(), E = Succ->instr_end();
1093          I != E && I->isPHI(); ++I) {
1094       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1095         if (I->getOperand(ni+1).getMBB() == NMBB) {
1096           MachineOperand &MO = I->getOperand(ni);
1097           Register Reg = MO.getReg();
1098           PHISrcRegs.insert(Reg);
1099           if (MO.isUndef())
1100             continue;
1101 
1102           LiveInterval &LI = LIS->getInterval(Reg);
1103           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1104           assert(VNI &&
1105                  "PHI sources should be live out of their predecessors.");
1106           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1107         }
1108       }
1109     }
1110 
1111     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1112     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1113       unsigned Reg = Register::index2VirtReg(i);
1114       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1115         continue;
1116 
1117       LiveInterval &LI = LIS->getInterval(Reg);
1118       if (!LI.liveAt(PrevIndex))
1119         continue;
1120 
1121       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1122       if (isLiveOut && isLastMBB) {
1123         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1124         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1125         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1126       } else if (!isLiveOut && !isLastMBB) {
1127         LI.removeSegment(StartIndex, EndIndex);
1128       }
1129     }
1130 
1131     // Update all intervals for registers whose uses may have been modified by
1132     // updateTerminator().
1133     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1134   }
1135 
1136   if (MachineDominatorTree *MDT =
1137           P.getAnalysisIfAvailable<MachineDominatorTree>())
1138     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1139 
1140   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1141     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1142       // If one or the other blocks were not in a loop, the new block is not
1143       // either, and thus LI doesn't need to be updated.
1144       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1145         if (TIL == DestLoop) {
1146           // Both in the same loop, the NMBB joins loop.
1147           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1148         } else if (TIL->contains(DestLoop)) {
1149           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1150           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1151         } else if (DestLoop->contains(TIL)) {
1152           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1153           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1154         } else {
1155           // Edge from two loops with no containment relation.  Because these
1156           // are natural loops, we know that the destination block must be the
1157           // header of its loop (adding a branch into a loop elsewhere would
1158           // create an irreducible loop).
1159           assert(DestLoop->getHeader() == Succ &&
1160                  "Should not create irreducible loops!");
1161           if (MachineLoop *P = DestLoop->getParentLoop())
1162             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1163         }
1164       }
1165     }
1166 
1167   return NMBB;
1168 }
1169 
1170 bool MachineBasicBlock::canSplitCriticalEdge(
1171     const MachineBasicBlock *Succ) const {
1172   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1173   // it in this generic function.
1174   if (Succ->isEHPad())
1175     return false;
1176 
1177   // Splitting the critical edge to a callbr's indirect block isn't advised.
1178   // Don't do it in this generic function.
1179   if (isInlineAsmBrIndirectTarget(Succ))
1180     return false;
1181 
1182   const MachineFunction *MF = getParent();
1183   // Performance might be harmed on HW that implements branching using exec mask
1184   // where both sides of the branches are always executed.
1185   if (MF->getTarget().requiresStructuredCFG())
1186     return false;
1187 
1188   // We may need to update this's terminator, but we can't do that if
1189   // analyzeBranch fails. If this uses a jump table, we won't touch it.
1190   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1191   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1192   SmallVector<MachineOperand, 4> Cond;
1193   // AnalyzeBanch should modify this, since we did not allow modification.
1194   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1195                          /*AllowModify*/ false))
1196     return false;
1197 
1198   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1199   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1200   // case that we can't handle. Since this never happens in properly optimized
1201   // code, just skip those edges.
1202   if (TBB && TBB == FBB) {
1203     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1204                       << printMBBReference(*this) << '\n');
1205     return false;
1206   }
1207   return true;
1208 }
1209 
1210 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1211 /// neighboring instructions so the bundle won't be broken by removing MI.
1212 static void unbundleSingleMI(MachineInstr *MI) {
1213   // Removing the first instruction in a bundle.
1214   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1215     MI->unbundleFromSucc();
1216   // Removing the last instruction in a bundle.
1217   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1218     MI->unbundleFromPred();
1219   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1220   // are already fine.
1221 }
1222 
1223 MachineBasicBlock::instr_iterator
1224 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1225   unbundleSingleMI(&*I);
1226   return Insts.erase(I);
1227 }
1228 
1229 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1230   unbundleSingleMI(MI);
1231   MI->clearFlag(MachineInstr::BundledPred);
1232   MI->clearFlag(MachineInstr::BundledSucc);
1233   return Insts.remove(MI);
1234 }
1235 
1236 MachineBasicBlock::instr_iterator
1237 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1238   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1239          "Cannot insert instruction with bundle flags");
1240   // Set the bundle flags when inserting inside a bundle.
1241   if (I != instr_end() && I->isBundledWithPred()) {
1242     MI->setFlag(MachineInstr::BundledPred);
1243     MI->setFlag(MachineInstr::BundledSucc);
1244   }
1245   return Insts.insert(I, MI);
1246 }
1247 
1248 /// This method unlinks 'this' from the containing function, and returns it, but
1249 /// does not delete it.
1250 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1251   assert(getParent() && "Not embedded in a function!");
1252   getParent()->remove(this);
1253   return this;
1254 }
1255 
1256 /// This method unlinks 'this' from the containing function, and deletes it.
1257 void MachineBasicBlock::eraseFromParent() {
1258   assert(getParent() && "Not embedded in a function!");
1259   getParent()->erase(this);
1260 }
1261 
1262 /// Given a machine basic block that branched to 'Old', change the code and CFG
1263 /// so that it branches to 'New' instead.
1264 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1265                                                MachineBasicBlock *New) {
1266   assert(Old != New && "Cannot replace self with self!");
1267 
1268   MachineBasicBlock::instr_iterator I = instr_end();
1269   while (I != instr_begin()) {
1270     --I;
1271     if (!I->isTerminator()) break;
1272 
1273     // Scan the operands of this machine instruction, replacing any uses of Old
1274     // with New.
1275     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1276       if (I->getOperand(i).isMBB() &&
1277           I->getOperand(i).getMBB() == Old)
1278         I->getOperand(i).setMBB(New);
1279   }
1280 
1281   // Update the successor information.
1282   replaceSuccessor(Old, New);
1283 }
1284 
1285 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1286                                            MachineBasicBlock *New) {
1287   for (MachineInstr &MI : phis())
1288     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1289       MachineOperand &MO = MI.getOperand(i);
1290       if (MO.getMBB() == Old)
1291         MO.setMBB(New);
1292     }
1293 }
1294 
1295 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1296 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1297 /// MBB successors from the CFG.  DestA and DestB can be null.
1298 ///
1299 /// Besides DestA and DestB, retain other edges leading to LandingPads
1300 /// (currently there can be only one; we don't check or require that here).
1301 /// Note it is possible that DestA and/or DestB are LandingPads.
1302 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1303                                              MachineBasicBlock *DestB,
1304                                              bool IsCond) {
1305   // The values of DestA and DestB frequently come from a call to the
1306   // 'TargetInstrInfo::analyzeBranch' method. We take our meaning of the initial
1307   // values from there.
1308   //
1309   // 1. If both DestA and DestB are null, then the block ends with no branches
1310   //    (it falls through to its successor).
1311   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1312   //    with only an unconditional branch.
1313   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1314   //    with a conditional branch that falls through to a successor (DestB).
1315   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1316   //    conditional branch followed by an unconditional branch. DestA is the
1317   //    'true' destination and DestB is the 'false' destination.
1318 
1319   bool Changed = false;
1320 
1321   MachineBasicBlock *FallThru = getNextNode();
1322 
1323   if (!DestA && !DestB) {
1324     // Block falls through to successor.
1325     DestA = FallThru;
1326     DestB = FallThru;
1327   } else if (DestA && !DestB) {
1328     if (IsCond)
1329       // Block ends in conditional jump that falls through to successor.
1330       DestB = FallThru;
1331   } else {
1332     assert(DestA && DestB && IsCond &&
1333            "CFG in a bad state. Cannot correct CFG edges");
1334   }
1335 
1336   // Remove superfluous edges. I.e., those which aren't destinations of this
1337   // basic block, duplicate edges, or landing pads.
1338   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1339   MachineBasicBlock::succ_iterator SI = succ_begin();
1340   while (SI != succ_end()) {
1341     const MachineBasicBlock *MBB = *SI;
1342     if (!SeenMBBs.insert(MBB).second ||
1343         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1344       // This is a superfluous edge, remove it.
1345       SI = removeSuccessor(SI);
1346       Changed = true;
1347     } else {
1348       ++SI;
1349     }
1350   }
1351 
1352   if (Changed)
1353     normalizeSuccProbs();
1354   return Changed;
1355 }
1356 
1357 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1358 /// instructions.  Return UnknownLoc if there is none.
1359 DebugLoc
1360 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1361   // Skip debug declarations, we don't want a DebugLoc from them.
1362   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1363   if (MBBI != instr_end())
1364     return MBBI->getDebugLoc();
1365   return {};
1366 }
1367 
1368 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1369 /// instructions.  Return UnknownLoc if there is none.
1370 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1371   if (MBBI == instr_begin()) return {};
1372   // Skip debug declarations, we don't want a DebugLoc from them.
1373   MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin());
1374   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1375   return {};
1376 }
1377 
1378 /// Find and return the merged DebugLoc of the branch instructions of the block.
1379 /// Return UnknownLoc if there is none.
1380 DebugLoc
1381 MachineBasicBlock::findBranchDebugLoc() {
1382   DebugLoc DL;
1383   auto TI = getFirstTerminator();
1384   while (TI != end() && !TI->isBranch())
1385     ++TI;
1386 
1387   if (TI != end()) {
1388     DL = TI->getDebugLoc();
1389     for (++TI ; TI != end() ; ++TI)
1390       if (TI->isBranch())
1391         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1392   }
1393   return DL;
1394 }
1395 
1396 /// Return probability of the edge from this block to MBB.
1397 BranchProbability
1398 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1399   if (Probs.empty())
1400     return BranchProbability(1, succ_size());
1401 
1402   const auto &Prob = *getProbabilityIterator(Succ);
1403   if (Prob.isUnknown()) {
1404     // For unknown probabilities, collect the sum of all known ones, and evenly
1405     // ditribute the complemental of the sum to each unknown probability.
1406     unsigned KnownProbNum = 0;
1407     auto Sum = BranchProbability::getZero();
1408     for (auto &P : Probs) {
1409       if (!P.isUnknown()) {
1410         Sum += P;
1411         KnownProbNum++;
1412       }
1413     }
1414     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1415   } else
1416     return Prob;
1417 }
1418 
1419 /// Set successor probability of a given iterator.
1420 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1421                                            BranchProbability Prob) {
1422   assert(!Prob.isUnknown());
1423   if (Probs.empty())
1424     return;
1425   *getProbabilityIterator(I) = Prob;
1426 }
1427 
1428 /// Return probability iterator corresonding to the I successor iterator
1429 MachineBasicBlock::const_probability_iterator
1430 MachineBasicBlock::getProbabilityIterator(
1431     MachineBasicBlock::const_succ_iterator I) const {
1432   assert(Probs.size() == Successors.size() && "Async probability list!");
1433   const size_t index = std::distance(Successors.begin(), I);
1434   assert(index < Probs.size() && "Not a current successor!");
1435   return Probs.begin() + index;
1436 }
1437 
1438 /// Return probability iterator corresonding to the I successor iterator.
1439 MachineBasicBlock::probability_iterator
1440 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1441   assert(Probs.size() == Successors.size() && "Async probability list!");
1442   const size_t index = std::distance(Successors.begin(), I);
1443   assert(index < Probs.size() && "Not a current successor!");
1444   return Probs.begin() + index;
1445 }
1446 
1447 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1448 /// as of just before "MI".
1449 ///
1450 /// Search is localised to a neighborhood of
1451 /// Neighborhood instructions before (searching for defs or kills) and N
1452 /// instructions after (searching just for defs) MI.
1453 MachineBasicBlock::LivenessQueryResult
1454 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1455                                            unsigned Reg, const_iterator Before,
1456                                            unsigned Neighborhood) const {
1457   unsigned N = Neighborhood;
1458 
1459   // Try searching forwards from Before, looking for reads or defs.
1460   const_iterator I(Before);
1461   for (; I != end() && N > 0; ++I) {
1462     if (I->isDebugInstr())
1463       continue;
1464 
1465     --N;
1466 
1467     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1468 
1469     // Register is live when we read it here.
1470     if (Info.Read)
1471       return LQR_Live;
1472     // Register is dead if we can fully overwrite or clobber it here.
1473     if (Info.FullyDefined || Info.Clobbered)
1474       return LQR_Dead;
1475   }
1476 
1477   // If we reached the end, it is safe to clobber Reg at the end of a block of
1478   // no successor has it live in.
1479   if (I == end()) {
1480     for (MachineBasicBlock *S : successors()) {
1481       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1482         if (TRI->regsOverlap(LI.PhysReg, Reg))
1483           return LQR_Live;
1484       }
1485     }
1486 
1487     return LQR_Dead;
1488   }
1489 
1490 
1491   N = Neighborhood;
1492 
1493   // Start by searching backwards from Before, looking for kills, reads or defs.
1494   I = const_iterator(Before);
1495   // If this is the first insn in the block, don't search backwards.
1496   if (I != begin()) {
1497     do {
1498       --I;
1499 
1500       if (I->isDebugInstr())
1501         continue;
1502 
1503       --N;
1504 
1505       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1506 
1507       // Defs happen after uses so they take precedence if both are present.
1508 
1509       // Register is dead after a dead def of the full register.
1510       if (Info.DeadDef)
1511         return LQR_Dead;
1512       // Register is (at least partially) live after a def.
1513       if (Info.Defined) {
1514         if (!Info.PartialDeadDef)
1515           return LQR_Live;
1516         // As soon as we saw a partial definition (dead or not),
1517         // we cannot tell if the value is partial live without
1518         // tracking the lanemasks. We are not going to do this,
1519         // so fall back on the remaining of the analysis.
1520         break;
1521       }
1522       // Register is dead after a full kill or clobber and no def.
1523       if (Info.Killed || Info.Clobbered)
1524         return LQR_Dead;
1525       // Register must be live if we read it.
1526       if (Info.Read)
1527         return LQR_Live;
1528 
1529     } while (I != begin() && N > 0);
1530   }
1531 
1532   // If all the instructions before this in the block are debug instructions,
1533   // skip over them.
1534   while (I != begin() && std::prev(I)->isDebugInstr())
1535     --I;
1536 
1537   // Did we get to the start of the block?
1538   if (I == begin()) {
1539     // If so, the register's state is definitely defined by the live-in state.
1540     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1541       if (TRI->regsOverlap(LI.PhysReg, Reg))
1542         return LQR_Live;
1543 
1544     return LQR_Dead;
1545   }
1546 
1547   // At this point we have no idea of the liveness of the register.
1548   return LQR_Unknown;
1549 }
1550 
1551 const uint32_t *
1552 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1553   // EH funclet entry does not preserve any registers.
1554   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1555 }
1556 
1557 const uint32_t *
1558 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1559   // If we see a return block with successors, this must be a funclet return,
1560   // which does not preserve any registers. If there are no successors, we don't
1561   // care what kind of return it is, putting a mask after it is a no-op.
1562   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1563 }
1564 
1565 void MachineBasicBlock::clearLiveIns() {
1566   LiveIns.clear();
1567 }
1568 
1569 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1570   assert(getParent()->getProperties().hasProperty(
1571       MachineFunctionProperties::Property::TracksLiveness) &&
1572       "Liveness information is accurate");
1573   return LiveIns.begin();
1574 }
1575