1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/DataTypes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 if (B) 46 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 47 } 48 49 MachineBasicBlock::~MachineBasicBlock() { 50 } 51 52 /// Return the MCSymbol for this basic block. 53 MCSymbol *MachineBasicBlock::getSymbol() const { 54 if (!CachedMCSymbol) { 55 const MachineFunction *MF = getParent(); 56 MCContext &Ctx = MF->getContext(); 57 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 58 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 59 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 60 Twine(MF->getFunctionNumber()) + 61 "_" + Twine(getNumber())); 62 } 63 64 return CachedMCSymbol; 65 } 66 67 68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 69 MBB.print(OS); 70 return OS; 71 } 72 73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 74 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 75 } 76 77 /// When an MBB is added to an MF, we need to update the parent pointer of the 78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 79 /// operand list for registers. 80 /// 81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 82 /// gets the next available unique MBB number. If it is removed from a 83 /// MachineFunction, it goes back to being #-1. 84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 85 MachineBasicBlock *N) { 86 MachineFunction &MF = *N->getParent(); 87 N->Number = MF.addToMBBNumbering(N); 88 89 // Make sure the instructions have their operands in the reginfo lists. 90 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 91 for (MachineBasicBlock::instr_iterator 92 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 93 I->AddRegOperandsToUseLists(RegInfo); 94 } 95 96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 97 MachineBasicBlock *N) { 98 N->getParent()->removeFromMBBNumbering(N->Number); 99 N->Number = -1; 100 } 101 102 /// When we add an instruction to a basic block list, we update its parent 103 /// pointer and add its operands from reg use/def lists if appropriate. 104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 105 assert(!N->getParent() && "machine instruction already in a basic block"); 106 N->setParent(Parent); 107 108 // Add the instruction's register operands to their corresponding 109 // use/def lists. 110 MachineFunction *MF = Parent->getParent(); 111 N->AddRegOperandsToUseLists(MF->getRegInfo()); 112 } 113 114 /// When we remove an instruction from a basic block list, we update its parent 115 /// pointer and remove its operands from reg use/def lists if appropriate. 116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 117 assert(N->getParent() && "machine instruction not in a basic block"); 118 119 // Remove from the use/def lists. 120 if (MachineFunction *MF = N->getMF()) 121 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 122 123 N->setParent(nullptr); 124 } 125 126 /// When moving a range of instructions from one MBB list to another, we need to 127 /// update the parent pointers and the use/def lists. 128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 129 instr_iterator First, 130 instr_iterator Last) { 131 assert(Parent->getParent() == FromList.Parent->getParent() && 132 "MachineInstr parent mismatch!"); 133 assert(this != &FromList && "Called without a real transfer..."); 134 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 135 136 // If splicing between two blocks within the same function, just update the 137 // parent pointers. 138 for (; First != Last; ++First) 139 First->setParent(Parent); 140 } 141 142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 143 assert(!MI->getParent() && "MI is still in a block!"); 144 Parent->getParent()->DeleteMachineInstr(MI); 145 } 146 147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 148 instr_iterator I = instr_begin(), E = instr_end(); 149 while (I != E && I->isPHI()) 150 ++I; 151 assert((I == E || !I->isInsideBundle()) && 152 "First non-phi MI cannot be inside a bundle!"); 153 return I; 154 } 155 156 MachineBasicBlock::iterator 157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 158 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 159 160 iterator E = end(); 161 while (I != E && (I->isPHI() || I->isPosition() || 162 TII->isBasicBlockPrologue(*I))) 163 ++I; 164 // FIXME: This needs to change if we wish to bundle labels 165 // inside the bundle. 166 assert((I == E || !I->isInsideBundle()) && 167 "First non-phi / non-label instruction is inside a bundle!"); 168 return I; 169 } 170 171 MachineBasicBlock::iterator 172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 173 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 174 175 iterator E = end(); 176 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 177 TII->isBasicBlockPrologue(*I))) 178 ++I; 179 // FIXME: This needs to change if we wish to bundle labels / dbg_values 180 // inside the bundle. 181 assert((I == E || !I->isInsideBundle()) && 182 "First non-phi / non-label / non-debug " 183 "instruction is inside a bundle!"); 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 188 iterator B = begin(), E = end(), I = E; 189 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 190 ; /*noop */ 191 while (I != E && !I->isTerminator()) 192 ++I; 193 return I; 194 } 195 196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 197 instr_iterator B = instr_begin(), E = instr_end(), I = E; 198 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 199 ; /*noop */ 200 while (I != E && !I->isTerminator()) 201 ++I; 202 return I; 203 } 204 205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 206 // Skip over begin-of-block dbg_value instructions. 207 return skipDebugInstructionsForward(begin(), end()); 208 } 209 210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 211 // Skip over end-of-block dbg_value instructions. 212 instr_iterator B = instr_begin(), I = instr_end(); 213 while (I != B) { 214 --I; 215 // Return instruction that starts a bundle. 216 if (I->isDebugValue() || I->isInsideBundle()) 217 continue; 218 return I; 219 } 220 // The block is all debug values. 221 return end(); 222 } 223 224 bool MachineBasicBlock::hasEHPadSuccessor() const { 225 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 226 if ((*I)->isEHPad()) 227 return true; 228 return false; 229 } 230 231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 233 print(dbgs()); 234 } 235 #endif 236 237 bool MachineBasicBlock::isLegalToHoistInto() const { 238 if (isReturnBlock() || hasEHPadSuccessor()) 239 return false; 240 return true; 241 } 242 243 StringRef MachineBasicBlock::getName() const { 244 if (const BasicBlock *LBB = getBasicBlock()) 245 return LBB->getName(); 246 else 247 return StringRef("", 0); 248 } 249 250 /// Return a hopefully unique identifier for this block. 251 std::string MachineBasicBlock::getFullName() const { 252 std::string Name; 253 if (getParent()) 254 Name = (getParent()->getName() + ":").str(); 255 if (getBasicBlock()) 256 Name += getBasicBlock()->getName(); 257 else 258 Name += ("BB" + Twine(getNumber())).str(); 259 return Name; 260 } 261 262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 263 bool IsStandalone) const { 264 const MachineFunction *MF = getParent(); 265 if (!MF) { 266 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 267 << " is null\n"; 268 return; 269 } 270 const Function &F = MF->getFunction(); 271 const Module *M = F.getParent(); 272 ModuleSlotTracker MST(M); 273 MST.incorporateFunction(F); 274 print(OS, MST, Indexes, IsStandalone); 275 } 276 277 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 278 const SlotIndexes *Indexes, 279 bool IsStandalone) const { 280 const MachineFunction *MF = getParent(); 281 if (!MF) { 282 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 283 << " is null\n"; 284 return; 285 } 286 287 if (Indexes) 288 OS << Indexes->getMBBStartIdx(this) << '\t'; 289 290 OS << "bb." << getNumber(); 291 bool HasAttributes = false; 292 if (const auto *BB = getBasicBlock()) { 293 if (BB->hasName()) { 294 OS << "." << BB->getName(); 295 } else { 296 HasAttributes = true; 297 OS << " ("; 298 int Slot = MST.getLocalSlot(BB); 299 if (Slot == -1) 300 OS << "<ir-block badref>"; 301 else 302 OS << (Twine("%ir-block.") + Twine(Slot)).str(); 303 } 304 } 305 306 if (hasAddressTaken()) { 307 OS << (HasAttributes ? ", " : " ("); 308 OS << "address-taken"; 309 HasAttributes = true; 310 } 311 if (isEHPad()) { 312 OS << (HasAttributes ? ", " : " ("); 313 OS << "landing-pad"; 314 HasAttributes = true; 315 } 316 if (getAlignment()) { 317 OS << (HasAttributes ? ", " : " ("); 318 OS << "align " << getAlignment(); 319 HasAttributes = true; 320 } 321 if (HasAttributes) 322 OS << ")"; 323 OS << ":\n"; 324 325 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 326 if (!livein_empty()) { 327 if (Indexes) OS << '\t'; 328 OS << " Live Ins:"; 329 for (const auto &LI : LiveIns) { 330 OS << ' ' << printReg(LI.PhysReg, TRI); 331 if (!LI.LaneMask.all()) 332 OS << ':' << PrintLaneMask(LI.LaneMask); 333 } 334 OS << '\n'; 335 } 336 // Print the preds of this block according to the CFG. 337 if (!pred_empty()) { 338 if (Indexes) OS << '\t'; 339 OS << " Predecessors according to CFG:"; 340 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 341 OS << " " << printMBBReference(*(*PI)); 342 OS << '\n'; 343 } 344 345 for (auto &I : instrs()) { 346 if (Indexes) { 347 if (Indexes->hasIndex(I)) 348 OS << Indexes->getInstructionIndex(I); 349 OS << '\t'; 350 } 351 OS << '\t'; 352 if (I.isInsideBundle()) 353 OS << " * "; 354 I.print(OS, MST, IsStandalone); 355 OS << '\n'; 356 } 357 358 // Print the successors of this block according to the CFG. 359 if (!succ_empty()) { 360 if (Indexes) OS << '\t'; 361 OS << " Successors according to CFG:"; 362 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 363 OS << " " << printMBBReference(*(*SI)); 364 if (!Probs.empty()) 365 OS << '(' << *getProbabilityIterator(SI) << ')'; 366 } 367 OS << '\n'; 368 } 369 if (IrrLoopHeaderWeight) { 370 if (Indexes) OS << '\t'; 371 OS << " Irreducible loop header weight: " 372 << IrrLoopHeaderWeight.getValue(); 373 OS << '\n'; 374 } 375 } 376 377 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 378 bool /*PrintType*/) const { 379 OS << "%bb." << getNumber(); 380 } 381 382 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 383 LiveInVector::iterator I = find_if( 384 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 385 if (I == LiveIns.end()) 386 return; 387 388 I->LaneMask &= ~LaneMask; 389 if (I->LaneMask.none()) 390 LiveIns.erase(I); 391 } 392 393 MachineBasicBlock::livein_iterator 394 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 395 // Get non-const version of iterator. 396 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 397 return LiveIns.erase(LI); 398 } 399 400 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 401 livein_iterator I = find_if( 402 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 403 return I != livein_end() && (I->LaneMask & LaneMask).any(); 404 } 405 406 void MachineBasicBlock::sortUniqueLiveIns() { 407 std::sort(LiveIns.begin(), LiveIns.end(), 408 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 409 return LI0.PhysReg < LI1.PhysReg; 410 }); 411 // Liveins are sorted by physreg now we can merge their lanemasks. 412 LiveInVector::const_iterator I = LiveIns.begin(); 413 LiveInVector::const_iterator J; 414 LiveInVector::iterator Out = LiveIns.begin(); 415 for (; I != LiveIns.end(); ++Out, I = J) { 416 unsigned PhysReg = I->PhysReg; 417 LaneBitmask LaneMask = I->LaneMask; 418 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 419 LaneMask |= J->LaneMask; 420 Out->PhysReg = PhysReg; 421 Out->LaneMask = LaneMask; 422 } 423 LiveIns.erase(Out, LiveIns.end()); 424 } 425 426 unsigned 427 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 428 assert(getParent() && "MBB must be inserted in function"); 429 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 430 assert(RC && "Register class is required"); 431 assert((isEHPad() || this == &getParent()->front()) && 432 "Only the entry block and landing pads can have physreg live ins"); 433 434 bool LiveIn = isLiveIn(PhysReg); 435 iterator I = SkipPHIsAndLabels(begin()), E = end(); 436 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 437 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 438 439 // Look for an existing copy. 440 if (LiveIn) 441 for (;I != E && I->isCopy(); ++I) 442 if (I->getOperand(1).getReg() == PhysReg) { 443 unsigned VirtReg = I->getOperand(0).getReg(); 444 if (!MRI.constrainRegClass(VirtReg, RC)) 445 llvm_unreachable("Incompatible live-in register class."); 446 return VirtReg; 447 } 448 449 // No luck, create a virtual register. 450 unsigned VirtReg = MRI.createVirtualRegister(RC); 451 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 452 .addReg(PhysReg, RegState::Kill); 453 if (!LiveIn) 454 addLiveIn(PhysReg); 455 return VirtReg; 456 } 457 458 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 459 getParent()->splice(NewAfter->getIterator(), getIterator()); 460 } 461 462 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 463 getParent()->splice(++NewBefore->getIterator(), getIterator()); 464 } 465 466 void MachineBasicBlock::updateTerminator() { 467 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 468 // A block with no successors has no concerns with fall-through edges. 469 if (this->succ_empty()) 470 return; 471 472 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 473 SmallVector<MachineOperand, 4> Cond; 474 DebugLoc DL = findBranchDebugLoc(); 475 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 476 (void) B; 477 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 478 if (Cond.empty()) { 479 if (TBB) { 480 // The block has an unconditional branch. If its successor is now its 481 // layout successor, delete the branch. 482 if (isLayoutSuccessor(TBB)) 483 TII->removeBranch(*this); 484 } else { 485 // The block has an unconditional fallthrough. If its successor is not its 486 // layout successor, insert a branch. First we have to locate the only 487 // non-landing-pad successor, as that is the fallthrough block. 488 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 489 if ((*SI)->isEHPad()) 490 continue; 491 assert(!TBB && "Found more than one non-landing-pad successor!"); 492 TBB = *SI; 493 } 494 495 // If there is no non-landing-pad successor, the block has no fall-through 496 // edges to be concerned with. 497 if (!TBB) 498 return; 499 500 // Finally update the unconditional successor to be reached via a branch 501 // if it would not be reached by fallthrough. 502 if (!isLayoutSuccessor(TBB)) 503 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 504 } 505 return; 506 } 507 508 if (FBB) { 509 // The block has a non-fallthrough conditional branch. If one of its 510 // successors is its layout successor, rewrite it to a fallthrough 511 // conditional branch. 512 if (isLayoutSuccessor(TBB)) { 513 if (TII->reverseBranchCondition(Cond)) 514 return; 515 TII->removeBranch(*this); 516 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 517 } else if (isLayoutSuccessor(FBB)) { 518 TII->removeBranch(*this); 519 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 520 } 521 return; 522 } 523 524 // Walk through the successors and find the successor which is not a landing 525 // pad and is not the conditional branch destination (in TBB) as the 526 // fallthrough successor. 527 MachineBasicBlock *FallthroughBB = nullptr; 528 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 529 if ((*SI)->isEHPad() || *SI == TBB) 530 continue; 531 assert(!FallthroughBB && "Found more than one fallthrough successor."); 532 FallthroughBB = *SI; 533 } 534 535 if (!FallthroughBB) { 536 if (canFallThrough()) { 537 // We fallthrough to the same basic block as the conditional jump targets. 538 // Remove the conditional jump, leaving unconditional fallthrough. 539 // FIXME: This does not seem like a reasonable pattern to support, but it 540 // has been seen in the wild coming out of degenerate ARM test cases. 541 TII->removeBranch(*this); 542 543 // Finally update the unconditional successor to be reached via a branch if 544 // it would not be reached by fallthrough. 545 if (!isLayoutSuccessor(TBB)) 546 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 547 return; 548 } 549 550 // We enter here iff exactly one successor is TBB which cannot fallthrough 551 // and the rest successors if any are EHPads. In this case, we need to 552 // change the conditional branch into unconditional branch. 553 TII->removeBranch(*this); 554 Cond.clear(); 555 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 556 return; 557 } 558 559 // The block has a fallthrough conditional branch. 560 if (isLayoutSuccessor(TBB)) { 561 if (TII->reverseBranchCondition(Cond)) { 562 // We can't reverse the condition, add an unconditional branch. 563 Cond.clear(); 564 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 565 return; 566 } 567 TII->removeBranch(*this); 568 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 569 } else if (!isLayoutSuccessor(FallthroughBB)) { 570 TII->removeBranch(*this); 571 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 572 } 573 } 574 575 void MachineBasicBlock::validateSuccProbs() const { 576 #ifndef NDEBUG 577 int64_t Sum = 0; 578 for (auto Prob : Probs) 579 Sum += Prob.getNumerator(); 580 // Due to precision issue, we assume that the sum of probabilities is one if 581 // the difference between the sum of their numerators and the denominator is 582 // no greater than the number of successors. 583 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 584 Probs.size() && 585 "The sum of successors's probabilities exceeds one."); 586 #endif // NDEBUG 587 } 588 589 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 590 BranchProbability Prob) { 591 // Probability list is either empty (if successor list isn't empty, this means 592 // disabled optimization) or has the same size as successor list. 593 if (!(Probs.empty() && !Successors.empty())) 594 Probs.push_back(Prob); 595 Successors.push_back(Succ); 596 Succ->addPredecessor(this); 597 } 598 599 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 600 // We need to make sure probability list is either empty or has the same size 601 // of successor list. When this function is called, we can safely delete all 602 // probability in the list. 603 Probs.clear(); 604 Successors.push_back(Succ); 605 Succ->addPredecessor(this); 606 } 607 608 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 609 bool NormalizeSuccProbs) { 610 succ_iterator I = find(Successors, Succ); 611 removeSuccessor(I, NormalizeSuccProbs); 612 } 613 614 MachineBasicBlock::succ_iterator 615 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 616 assert(I != Successors.end() && "Not a current successor!"); 617 618 // If probability list is empty it means we don't use it (disabled 619 // optimization). 620 if (!Probs.empty()) { 621 probability_iterator WI = getProbabilityIterator(I); 622 Probs.erase(WI); 623 if (NormalizeSuccProbs) 624 normalizeSuccProbs(); 625 } 626 627 (*I)->removePredecessor(this); 628 return Successors.erase(I); 629 } 630 631 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 632 MachineBasicBlock *New) { 633 if (Old == New) 634 return; 635 636 succ_iterator E = succ_end(); 637 succ_iterator NewI = E; 638 succ_iterator OldI = E; 639 for (succ_iterator I = succ_begin(); I != E; ++I) { 640 if (*I == Old) { 641 OldI = I; 642 if (NewI != E) 643 break; 644 } 645 if (*I == New) { 646 NewI = I; 647 if (OldI != E) 648 break; 649 } 650 } 651 assert(OldI != E && "Old is not a successor of this block"); 652 653 // If New isn't already a successor, let it take Old's place. 654 if (NewI == E) { 655 Old->removePredecessor(this); 656 New->addPredecessor(this); 657 *OldI = New; 658 return; 659 } 660 661 // New is already a successor. 662 // Update its probability instead of adding a duplicate edge. 663 if (!Probs.empty()) { 664 auto ProbIter = getProbabilityIterator(NewI); 665 if (!ProbIter->isUnknown()) 666 *ProbIter += *getProbabilityIterator(OldI); 667 } 668 removeSuccessor(OldI); 669 } 670 671 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 672 Predecessors.push_back(Pred); 673 } 674 675 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 676 pred_iterator I = find(Predecessors, Pred); 677 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 678 Predecessors.erase(I); 679 } 680 681 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 682 if (this == FromMBB) 683 return; 684 685 while (!FromMBB->succ_empty()) { 686 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 687 688 // If probability list is empty it means we don't use it (disabled optimization). 689 if (!FromMBB->Probs.empty()) { 690 auto Prob = *FromMBB->Probs.begin(); 691 addSuccessor(Succ, Prob); 692 } else 693 addSuccessorWithoutProb(Succ); 694 695 FromMBB->removeSuccessor(Succ); 696 } 697 } 698 699 void 700 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 701 if (this == FromMBB) 702 return; 703 704 while (!FromMBB->succ_empty()) { 705 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 706 if (!FromMBB->Probs.empty()) { 707 auto Prob = *FromMBB->Probs.begin(); 708 addSuccessor(Succ, Prob); 709 } else 710 addSuccessorWithoutProb(Succ); 711 FromMBB->removeSuccessor(Succ); 712 713 // Fix up any PHI nodes in the successor. 714 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 715 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 716 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 717 MachineOperand &MO = MI->getOperand(i); 718 if (MO.getMBB() == FromMBB) 719 MO.setMBB(this); 720 } 721 } 722 normalizeSuccProbs(); 723 } 724 725 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 726 return is_contained(predecessors(), MBB); 727 } 728 729 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 730 return is_contained(successors(), MBB); 731 } 732 733 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 734 MachineFunction::const_iterator I(this); 735 return std::next(I) == MachineFunction::const_iterator(MBB); 736 } 737 738 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 739 MachineFunction::iterator Fallthrough = getIterator(); 740 ++Fallthrough; 741 // If FallthroughBlock is off the end of the function, it can't fall through. 742 if (Fallthrough == getParent()->end()) 743 return nullptr; 744 745 // If FallthroughBlock isn't a successor, no fallthrough is possible. 746 if (!isSuccessor(&*Fallthrough)) 747 return nullptr; 748 749 // Analyze the branches, if any, at the end of the block. 750 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 751 SmallVector<MachineOperand, 4> Cond; 752 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 753 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 754 // If we couldn't analyze the branch, examine the last instruction. 755 // If the block doesn't end in a known control barrier, assume fallthrough 756 // is possible. The isPredicated check is needed because this code can be 757 // called during IfConversion, where an instruction which is normally a 758 // Barrier is predicated and thus no longer an actual control barrier. 759 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 760 ? &*Fallthrough 761 : nullptr; 762 } 763 764 // If there is no branch, control always falls through. 765 if (!TBB) return &*Fallthrough; 766 767 // If there is some explicit branch to the fallthrough block, it can obviously 768 // reach, even though the branch should get folded to fall through implicitly. 769 if (MachineFunction::iterator(TBB) == Fallthrough || 770 MachineFunction::iterator(FBB) == Fallthrough) 771 return &*Fallthrough; 772 773 // If it's an unconditional branch to some block not the fall through, it 774 // doesn't fall through. 775 if (Cond.empty()) return nullptr; 776 777 // Otherwise, if it is conditional and has no explicit false block, it falls 778 // through. 779 return (FBB == nullptr) ? &*Fallthrough : nullptr; 780 } 781 782 bool MachineBasicBlock::canFallThrough() { 783 return getFallThrough() != nullptr; 784 } 785 786 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 787 Pass &P) { 788 if (!canSplitCriticalEdge(Succ)) 789 return nullptr; 790 791 MachineFunction *MF = getParent(); 792 DebugLoc DL; // FIXME: this is nowhere 793 794 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 795 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 796 DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 797 << " -- " << printMBBReference(*NMBB) << " -- " 798 << printMBBReference(*Succ) << '\n'); 799 800 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 801 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 802 if (LIS) 803 LIS->insertMBBInMaps(NMBB); 804 else if (Indexes) 805 Indexes->insertMBBInMaps(NMBB); 806 807 // On some targets like Mips, branches may kill virtual registers. Make sure 808 // that LiveVariables is properly updated after updateTerminator replaces the 809 // terminators. 810 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 811 812 // Collect a list of virtual registers killed by the terminators. 813 SmallVector<unsigned, 4> KilledRegs; 814 if (LV) 815 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 816 I != E; ++I) { 817 MachineInstr *MI = &*I; 818 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 819 OE = MI->operands_end(); OI != OE; ++OI) { 820 if (!OI->isReg() || OI->getReg() == 0 || 821 !OI->isUse() || !OI->isKill() || OI->isUndef()) 822 continue; 823 unsigned Reg = OI->getReg(); 824 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 825 LV->getVarInfo(Reg).removeKill(*MI)) { 826 KilledRegs.push_back(Reg); 827 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 828 OI->setIsKill(false); 829 } 830 } 831 } 832 833 SmallVector<unsigned, 4> UsedRegs; 834 if (LIS) { 835 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 836 I != E; ++I) { 837 MachineInstr *MI = &*I; 838 839 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 840 OE = MI->operands_end(); OI != OE; ++OI) { 841 if (!OI->isReg() || OI->getReg() == 0) 842 continue; 843 844 unsigned Reg = OI->getReg(); 845 if (!is_contained(UsedRegs, Reg)) 846 UsedRegs.push_back(Reg); 847 } 848 } 849 } 850 851 ReplaceUsesOfBlockWith(Succ, NMBB); 852 853 // If updateTerminator() removes instructions, we need to remove them from 854 // SlotIndexes. 855 SmallVector<MachineInstr*, 4> Terminators; 856 if (Indexes) { 857 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 858 I != E; ++I) 859 Terminators.push_back(&*I); 860 } 861 862 updateTerminator(); 863 864 if (Indexes) { 865 SmallVector<MachineInstr*, 4> NewTerminators; 866 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 867 I != E; ++I) 868 NewTerminators.push_back(&*I); 869 870 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 871 E = Terminators.end(); I != E; ++I) { 872 if (!is_contained(NewTerminators, *I)) 873 Indexes->removeMachineInstrFromMaps(**I); 874 } 875 } 876 877 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 878 NMBB->addSuccessor(Succ); 879 if (!NMBB->isLayoutSuccessor(Succ)) { 880 SmallVector<MachineOperand, 4> Cond; 881 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 882 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 883 884 if (Indexes) { 885 for (MachineInstr &MI : NMBB->instrs()) { 886 // Some instructions may have been moved to NMBB by updateTerminator(), 887 // so we first remove any instruction that already has an index. 888 if (Indexes->hasIndex(MI)) 889 Indexes->removeMachineInstrFromMaps(MI); 890 Indexes->insertMachineInstrInMaps(MI); 891 } 892 } 893 } 894 895 // Fix PHI nodes in Succ so they refer to NMBB instead of this 896 for (MachineBasicBlock::instr_iterator 897 i = Succ->instr_begin(),e = Succ->instr_end(); 898 i != e && i->isPHI(); ++i) 899 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 900 if (i->getOperand(ni+1).getMBB() == this) 901 i->getOperand(ni+1).setMBB(NMBB); 902 903 // Inherit live-ins from the successor 904 for (const auto &LI : Succ->liveins()) 905 NMBB->addLiveIn(LI); 906 907 // Update LiveVariables. 908 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 909 if (LV) { 910 // Restore kills of virtual registers that were killed by the terminators. 911 while (!KilledRegs.empty()) { 912 unsigned Reg = KilledRegs.pop_back_val(); 913 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 914 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 915 continue; 916 if (TargetRegisterInfo::isVirtualRegister(Reg)) 917 LV->getVarInfo(Reg).Kills.push_back(&*I); 918 DEBUG(dbgs() << "Restored terminator kill: " << *I); 919 break; 920 } 921 } 922 // Update relevant live-through information. 923 LV->addNewBlock(NMBB, this, Succ); 924 } 925 926 if (LIS) { 927 // After splitting the edge and updating SlotIndexes, live intervals may be 928 // in one of two situations, depending on whether this block was the last in 929 // the function. If the original block was the last in the function, all 930 // live intervals will end prior to the beginning of the new split block. If 931 // the original block was not at the end of the function, all live intervals 932 // will extend to the end of the new split block. 933 934 bool isLastMBB = 935 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 936 937 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 938 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 939 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 940 941 // Find the registers used from NMBB in PHIs in Succ. 942 SmallSet<unsigned, 8> PHISrcRegs; 943 for (MachineBasicBlock::instr_iterator 944 I = Succ->instr_begin(), E = Succ->instr_end(); 945 I != E && I->isPHI(); ++I) { 946 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 947 if (I->getOperand(ni+1).getMBB() == NMBB) { 948 MachineOperand &MO = I->getOperand(ni); 949 unsigned Reg = MO.getReg(); 950 PHISrcRegs.insert(Reg); 951 if (MO.isUndef()) 952 continue; 953 954 LiveInterval &LI = LIS->getInterval(Reg); 955 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 956 assert(VNI && 957 "PHI sources should be live out of their predecessors."); 958 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 959 } 960 } 961 } 962 963 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 964 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 965 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 966 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 967 continue; 968 969 LiveInterval &LI = LIS->getInterval(Reg); 970 if (!LI.liveAt(PrevIndex)) 971 continue; 972 973 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 974 if (isLiveOut && isLastMBB) { 975 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 976 assert(VNI && "LiveInterval should have VNInfo where it is live."); 977 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 978 } else if (!isLiveOut && !isLastMBB) { 979 LI.removeSegment(StartIndex, EndIndex); 980 } 981 } 982 983 // Update all intervals for registers whose uses may have been modified by 984 // updateTerminator(). 985 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 986 } 987 988 if (MachineDominatorTree *MDT = 989 P.getAnalysisIfAvailable<MachineDominatorTree>()) 990 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 991 992 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 993 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 994 // If one or the other blocks were not in a loop, the new block is not 995 // either, and thus LI doesn't need to be updated. 996 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 997 if (TIL == DestLoop) { 998 // Both in the same loop, the NMBB joins loop. 999 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1000 } else if (TIL->contains(DestLoop)) { 1001 // Edge from an outer loop to an inner loop. Add to the outer loop. 1002 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1003 } else if (DestLoop->contains(TIL)) { 1004 // Edge from an inner loop to an outer loop. Add to the outer loop. 1005 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1006 } else { 1007 // Edge from two loops with no containment relation. Because these 1008 // are natural loops, we know that the destination block must be the 1009 // header of its loop (adding a branch into a loop elsewhere would 1010 // create an irreducible loop). 1011 assert(DestLoop->getHeader() == Succ && 1012 "Should not create irreducible loops!"); 1013 if (MachineLoop *P = DestLoop->getParentLoop()) 1014 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1015 } 1016 } 1017 } 1018 1019 return NMBB; 1020 } 1021 1022 bool MachineBasicBlock::canSplitCriticalEdge( 1023 const MachineBasicBlock *Succ) const { 1024 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1025 // it in this generic function. 1026 if (Succ->isEHPad()) 1027 return false; 1028 1029 const MachineFunction *MF = getParent(); 1030 1031 // Performance might be harmed on HW that implements branching using exec mask 1032 // where both sides of the branches are always executed. 1033 if (MF->getTarget().requiresStructuredCFG()) 1034 return false; 1035 1036 // We may need to update this's terminator, but we can't do that if 1037 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1038 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1039 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1040 SmallVector<MachineOperand, 4> Cond; 1041 // AnalyzeBanch should modify this, since we did not allow modification. 1042 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1043 /*AllowModify*/ false)) 1044 return false; 1045 1046 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1047 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1048 // case that we can't handle. Since this never happens in properly optimized 1049 // code, just skip those edges. 1050 if (TBB && TBB == FBB) { 1051 DEBUG(dbgs() << "Won't split critical edge after degenerate " 1052 << printMBBReference(*this) << '\n'); 1053 return false; 1054 } 1055 return true; 1056 } 1057 1058 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1059 /// neighboring instructions so the bundle won't be broken by removing MI. 1060 static void unbundleSingleMI(MachineInstr *MI) { 1061 // Removing the first instruction in a bundle. 1062 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1063 MI->unbundleFromSucc(); 1064 // Removing the last instruction in a bundle. 1065 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1066 MI->unbundleFromPred(); 1067 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1068 // are already fine. 1069 } 1070 1071 MachineBasicBlock::instr_iterator 1072 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1073 unbundleSingleMI(&*I); 1074 return Insts.erase(I); 1075 } 1076 1077 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1078 unbundleSingleMI(MI); 1079 MI->clearFlag(MachineInstr::BundledPred); 1080 MI->clearFlag(MachineInstr::BundledSucc); 1081 return Insts.remove(MI); 1082 } 1083 1084 MachineBasicBlock::instr_iterator 1085 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1086 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1087 "Cannot insert instruction with bundle flags"); 1088 // Set the bundle flags when inserting inside a bundle. 1089 if (I != instr_end() && I->isBundledWithPred()) { 1090 MI->setFlag(MachineInstr::BundledPred); 1091 MI->setFlag(MachineInstr::BundledSucc); 1092 } 1093 return Insts.insert(I, MI); 1094 } 1095 1096 /// This method unlinks 'this' from the containing function, and returns it, but 1097 /// does not delete it. 1098 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1099 assert(getParent() && "Not embedded in a function!"); 1100 getParent()->remove(this); 1101 return this; 1102 } 1103 1104 /// This method unlinks 'this' from the containing function, and deletes it. 1105 void MachineBasicBlock::eraseFromParent() { 1106 assert(getParent() && "Not embedded in a function!"); 1107 getParent()->erase(this); 1108 } 1109 1110 /// Given a machine basic block that branched to 'Old', change the code and CFG 1111 /// so that it branches to 'New' instead. 1112 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1113 MachineBasicBlock *New) { 1114 assert(Old != New && "Cannot replace self with self!"); 1115 1116 MachineBasicBlock::instr_iterator I = instr_end(); 1117 while (I != instr_begin()) { 1118 --I; 1119 if (!I->isTerminator()) break; 1120 1121 // Scan the operands of this machine instruction, replacing any uses of Old 1122 // with New. 1123 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1124 if (I->getOperand(i).isMBB() && 1125 I->getOperand(i).getMBB() == Old) 1126 I->getOperand(i).setMBB(New); 1127 } 1128 1129 // Update the successor information. 1130 replaceSuccessor(Old, New); 1131 } 1132 1133 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1134 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1135 /// MBB successors from the CFG. DestA and DestB can be null. 1136 /// 1137 /// Besides DestA and DestB, retain other edges leading to LandingPads 1138 /// (currently there can be only one; we don't check or require that here). 1139 /// Note it is possible that DestA and/or DestB are LandingPads. 1140 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1141 MachineBasicBlock *DestB, 1142 bool IsCond) { 1143 // The values of DestA and DestB frequently come from a call to the 1144 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1145 // values from there. 1146 // 1147 // 1. If both DestA and DestB are null, then the block ends with no branches 1148 // (it falls through to its successor). 1149 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1150 // with only an unconditional branch. 1151 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1152 // with a conditional branch that falls through to a successor (DestB). 1153 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1154 // conditional branch followed by an unconditional branch. DestA is the 1155 // 'true' destination and DestB is the 'false' destination. 1156 1157 bool Changed = false; 1158 1159 MachineBasicBlock *FallThru = getNextNode(); 1160 1161 if (!DestA && !DestB) { 1162 // Block falls through to successor. 1163 DestA = FallThru; 1164 DestB = FallThru; 1165 } else if (DestA && !DestB) { 1166 if (IsCond) 1167 // Block ends in conditional jump that falls through to successor. 1168 DestB = FallThru; 1169 } else { 1170 assert(DestA && DestB && IsCond && 1171 "CFG in a bad state. Cannot correct CFG edges"); 1172 } 1173 1174 // Remove superfluous edges. I.e., those which aren't destinations of this 1175 // basic block, duplicate edges, or landing pads. 1176 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1177 MachineBasicBlock::succ_iterator SI = succ_begin(); 1178 while (SI != succ_end()) { 1179 const MachineBasicBlock *MBB = *SI; 1180 if (!SeenMBBs.insert(MBB).second || 1181 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1182 // This is a superfluous edge, remove it. 1183 SI = removeSuccessor(SI); 1184 Changed = true; 1185 } else { 1186 ++SI; 1187 } 1188 } 1189 1190 if (Changed) 1191 normalizeSuccProbs(); 1192 return Changed; 1193 } 1194 1195 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1196 /// instructions. Return UnknownLoc if there is none. 1197 DebugLoc 1198 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1199 // Skip debug declarations, we don't want a DebugLoc from them. 1200 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1201 if (MBBI != instr_end()) 1202 return MBBI->getDebugLoc(); 1203 return {}; 1204 } 1205 1206 /// Find and return the merged DebugLoc of the branch instructions of the block. 1207 /// Return UnknownLoc if there is none. 1208 DebugLoc 1209 MachineBasicBlock::findBranchDebugLoc() { 1210 DebugLoc DL; 1211 auto TI = getFirstTerminator(); 1212 while (TI != end() && !TI->isBranch()) 1213 ++TI; 1214 1215 if (TI != end()) { 1216 DL = TI->getDebugLoc(); 1217 for (++TI ; TI != end() ; ++TI) 1218 if (TI->isBranch()) 1219 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1220 } 1221 return DL; 1222 } 1223 1224 /// Return probability of the edge from this block to MBB. 1225 BranchProbability 1226 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1227 if (Probs.empty()) 1228 return BranchProbability(1, succ_size()); 1229 1230 const auto &Prob = *getProbabilityIterator(Succ); 1231 if (Prob.isUnknown()) { 1232 // For unknown probabilities, collect the sum of all known ones, and evenly 1233 // ditribute the complemental of the sum to each unknown probability. 1234 unsigned KnownProbNum = 0; 1235 auto Sum = BranchProbability::getZero(); 1236 for (auto &P : Probs) { 1237 if (!P.isUnknown()) { 1238 Sum += P; 1239 KnownProbNum++; 1240 } 1241 } 1242 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1243 } else 1244 return Prob; 1245 } 1246 1247 /// Set successor probability of a given iterator. 1248 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1249 BranchProbability Prob) { 1250 assert(!Prob.isUnknown()); 1251 if (Probs.empty()) 1252 return; 1253 *getProbabilityIterator(I) = Prob; 1254 } 1255 1256 /// Return probability iterator corresonding to the I successor iterator 1257 MachineBasicBlock::const_probability_iterator 1258 MachineBasicBlock::getProbabilityIterator( 1259 MachineBasicBlock::const_succ_iterator I) const { 1260 assert(Probs.size() == Successors.size() && "Async probability list!"); 1261 const size_t index = std::distance(Successors.begin(), I); 1262 assert(index < Probs.size() && "Not a current successor!"); 1263 return Probs.begin() + index; 1264 } 1265 1266 /// Return probability iterator corresonding to the I successor iterator. 1267 MachineBasicBlock::probability_iterator 1268 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1269 assert(Probs.size() == Successors.size() && "Async probability list!"); 1270 const size_t index = std::distance(Successors.begin(), I); 1271 assert(index < Probs.size() && "Not a current successor!"); 1272 return Probs.begin() + index; 1273 } 1274 1275 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1276 /// as of just before "MI". 1277 /// 1278 /// Search is localised to a neighborhood of 1279 /// Neighborhood instructions before (searching for defs or kills) and N 1280 /// instructions after (searching just for defs) MI. 1281 MachineBasicBlock::LivenessQueryResult 1282 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1283 unsigned Reg, const_iterator Before, 1284 unsigned Neighborhood) const { 1285 unsigned N = Neighborhood; 1286 1287 // Start by searching backwards from Before, looking for kills, reads or defs. 1288 const_iterator I(Before); 1289 // If this is the first insn in the block, don't search backwards. 1290 if (I != begin()) { 1291 do { 1292 --I; 1293 1294 MachineOperandIteratorBase::PhysRegInfo Info = 1295 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1296 1297 // Defs happen after uses so they take precedence if both are present. 1298 1299 // Register is dead after a dead def of the full register. 1300 if (Info.DeadDef) 1301 return LQR_Dead; 1302 // Register is (at least partially) live after a def. 1303 if (Info.Defined) { 1304 if (!Info.PartialDeadDef) 1305 return LQR_Live; 1306 // As soon as we saw a partial definition (dead or not), 1307 // we cannot tell if the value is partial live without 1308 // tracking the lanemasks. We are not going to do this, 1309 // so fall back on the remaining of the analysis. 1310 break; 1311 } 1312 // Register is dead after a full kill or clobber and no def. 1313 if (Info.Killed || Info.Clobbered) 1314 return LQR_Dead; 1315 // Register must be live if we read it. 1316 if (Info.Read) 1317 return LQR_Live; 1318 } while (I != begin() && --N > 0); 1319 } 1320 1321 // Did we get to the start of the block? 1322 if (I == begin()) { 1323 // If so, the register's state is definitely defined by the live-in state. 1324 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1325 ++RAI) 1326 if (isLiveIn(*RAI)) 1327 return LQR_Live; 1328 1329 return LQR_Dead; 1330 } 1331 1332 N = Neighborhood; 1333 1334 // Try searching forwards from Before, looking for reads or defs. 1335 I = const_iterator(Before); 1336 // If this is the last insn in the block, don't search forwards. 1337 if (I != end()) { 1338 for (++I; I != end() && N > 0; ++I, --N) { 1339 MachineOperandIteratorBase::PhysRegInfo Info = 1340 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1341 1342 // Register is live when we read it here. 1343 if (Info.Read) 1344 return LQR_Live; 1345 // Register is dead if we can fully overwrite or clobber it here. 1346 if (Info.FullyDefined || Info.Clobbered) 1347 return LQR_Dead; 1348 } 1349 } 1350 1351 // At this point we have no idea of the liveness of the register. 1352 return LQR_Unknown; 1353 } 1354 1355 const uint32_t * 1356 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1357 // EH funclet entry does not preserve any registers. 1358 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1359 } 1360 1361 const uint32_t * 1362 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1363 // If we see a return block with successors, this must be a funclet return, 1364 // which does not preserve any registers. If there are no successors, we don't 1365 // care what kind of return it is, putting a mask after it is a no-op. 1366 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1367 } 1368 1369 void MachineBasicBlock::clearLiveIns() { 1370 LiveIns.clear(); 1371 } 1372 1373 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1374 assert(getParent()->getProperties().hasProperty( 1375 MachineFunctionProperties::Property::TracksLiveness) && 1376 "Liveness information is accurate"); 1377 return LiveIns.begin(); 1378 } 1379