xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision cfd2c5ce580fce744f6fd6ba34e869cab05e94c3)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/CodeGen/LiveIntervals.h"
15 #include "llvm/CodeGen/LivePhysRegs.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <algorithm>
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "codegen"
40 
41 static cl::opt<bool> PrintSlotIndexes(
42     "print-slotindexes",
43     cl::desc("When printing machine IR, annotate instructions and blocks with "
44              "SlotIndexes when available"),
45     cl::init(true), cl::Hidden);
46 
47 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
48     : BB(B), Number(-1), xParent(&MF) {
49   Insts.Parent = this;
50   if (B)
51     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
52 }
53 
54 MachineBasicBlock::~MachineBasicBlock() = default;
55 
56 /// Return the MCSymbol for this basic block.
57 MCSymbol *MachineBasicBlock::getSymbol() const {
58   if (!CachedMCSymbol) {
59     const MachineFunction *MF = getParent();
60     MCContext &Ctx = MF->getContext();
61 
62     // We emit a non-temporary symbol -- with a descriptive name -- if it begins
63     // a section (with basic block sections). Otherwise we fall back to use temp
64     // label.
65     if (MF->hasBBSections() && isBeginSection()) {
66       SmallString<5> Suffix;
67       if (SectionID == MBBSectionID::ColdSectionID) {
68         Suffix += ".cold";
69       } else if (SectionID == MBBSectionID::ExceptionSectionID) {
70         Suffix += ".eh";
71       } else {
72         // For symbols that represent basic block sections, we add ".__part." to
73         // allow tools like symbolizers to know that this represents a part of
74         // the original function.
75         Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
76       }
77       CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
78     } else {
79       const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
80       CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
81                                              Twine(MF->getFunctionNumber()) +
82                                              "_" + Twine(getNumber()));
83     }
84   }
85   return CachedMCSymbol;
86 }
87 
88 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
89   if (!CachedEHCatchretMCSymbol) {
90     const MachineFunction *MF = getParent();
91     SmallString<128> SymbolName;
92     raw_svector_ostream(SymbolName)
93         << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
94     CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
95   }
96   return CachedEHCatchretMCSymbol;
97 }
98 
99 MCSymbol *MachineBasicBlock::getEndSymbol() const {
100   if (!CachedEndMCSymbol) {
101     const MachineFunction *MF = getParent();
102     MCContext &Ctx = MF->getContext();
103     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
104     CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
105                                               Twine(MF->getFunctionNumber()) +
106                                               "_" + Twine(getNumber()));
107   }
108   return CachedEndMCSymbol;
109 }
110 
111 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
112   MBB.print(OS);
113   return OS;
114 }
115 
116 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
117   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
118 }
119 
120 /// When an MBB is added to an MF, we need to update the parent pointer of the
121 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
122 /// operand list for registers.
123 ///
124 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
125 /// gets the next available unique MBB number. If it is removed from a
126 /// MachineFunction, it goes back to being #-1.
127 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
128     MachineBasicBlock *N) {
129   MachineFunction &MF = *N->getParent();
130   N->Number = MF.addToMBBNumbering(N);
131 
132   // Make sure the instructions have their operands in the reginfo lists.
133   MachineRegisterInfo &RegInfo = MF.getRegInfo();
134   for (MachineInstr &MI : N->instrs())
135     MI.addRegOperandsToUseLists(RegInfo);
136 }
137 
138 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
139     MachineBasicBlock *N) {
140   N->getParent()->removeFromMBBNumbering(N->Number);
141   N->Number = -1;
142 }
143 
144 /// When we add an instruction to a basic block list, we update its parent
145 /// pointer and add its operands from reg use/def lists if appropriate.
146 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
147   assert(!N->getParent() && "machine instruction already in a basic block");
148   N->setParent(Parent);
149 
150   // Add the instruction's register operands to their corresponding
151   // use/def lists.
152   MachineFunction *MF = Parent->getParent();
153   N->addRegOperandsToUseLists(MF->getRegInfo());
154   MF->handleInsertion(*N);
155 }
156 
157 /// When we remove an instruction from a basic block list, we update its parent
158 /// pointer and remove its operands from reg use/def lists if appropriate.
159 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
160   assert(N->getParent() && "machine instruction not in a basic block");
161 
162   // Remove from the use/def lists.
163   if (MachineFunction *MF = N->getMF()) {
164     MF->handleRemoval(*N);
165     N->removeRegOperandsFromUseLists(MF->getRegInfo());
166   }
167 
168   N->setParent(nullptr);
169 }
170 
171 /// When moving a range of instructions from one MBB list to another, we need to
172 /// update the parent pointers and the use/def lists.
173 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
174                                                        instr_iterator First,
175                                                        instr_iterator Last) {
176   assert(Parent->getParent() == FromList.Parent->getParent() &&
177          "cannot transfer MachineInstrs between MachineFunctions");
178 
179   // If it's within the same BB, there's nothing to do.
180   if (this == &FromList)
181     return;
182 
183   assert(Parent != FromList.Parent && "Two lists have the same parent?");
184 
185   // If splicing between two blocks within the same function, just update the
186   // parent pointers.
187   for (; First != Last; ++First)
188     First->setParent(Parent);
189 }
190 
191 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
192   assert(!MI->getParent() && "MI is still in a block!");
193   Parent->getParent()->deleteMachineInstr(MI);
194 }
195 
196 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
197   instr_iterator I = instr_begin(), E = instr_end();
198   while (I != E && I->isPHI())
199     ++I;
200   assert((I == E || !I->isInsideBundle()) &&
201          "First non-phi MI cannot be inside a bundle!");
202   return I;
203 }
204 
205 MachineBasicBlock::iterator
206 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
207   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
208 
209   iterator E = end();
210   while (I != E && (I->isPHI() || I->isPosition() ||
211                     TII->isBasicBlockPrologue(*I)))
212     ++I;
213   // FIXME: This needs to change if we wish to bundle labels
214   // inside the bundle.
215   assert((I == E || !I->isInsideBundle()) &&
216          "First non-phi / non-label instruction is inside a bundle!");
217   return I;
218 }
219 
220 MachineBasicBlock::iterator
221 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
222                                           bool SkipPseudoOp) {
223   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
224 
225   iterator E = end();
226   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
227                     (SkipPseudoOp && I->isPseudoProbe()) ||
228                     TII->isBasicBlockPrologue(*I)))
229     ++I;
230   // FIXME: This needs to change if we wish to bundle labels / dbg_values
231   // inside the bundle.
232   assert((I == E || !I->isInsideBundle()) &&
233          "First non-phi / non-label / non-debug "
234          "instruction is inside a bundle!");
235   return I;
236 }
237 
238 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
239   iterator B = begin(), E = end(), I = E;
240   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
241     ; /*noop */
242   while (I != E && !I->isTerminator())
243     ++I;
244   return I;
245 }
246 
247 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
248   instr_iterator B = instr_begin(), E = instr_end(), I = E;
249   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
250     ; /*noop */
251   while (I != E && !I->isTerminator())
252     ++I;
253   return I;
254 }
255 
256 MachineBasicBlock::iterator
257 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
258   // Skip over begin-of-block dbg_value instructions.
259   return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
260 }
261 
262 MachineBasicBlock::iterator
263 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
264   // Skip over end-of-block dbg_value instructions.
265   instr_iterator B = instr_begin(), I = instr_end();
266   while (I != B) {
267     --I;
268     // Return instruction that starts a bundle.
269     if (I->isDebugInstr() || I->isInsideBundle())
270       continue;
271     if (SkipPseudoOp && I->isPseudoProbe())
272       continue;
273     return I;
274   }
275   // The block is all debug values.
276   return end();
277 }
278 
279 bool MachineBasicBlock::hasEHPadSuccessor() const {
280   for (const MachineBasicBlock *Succ : successors())
281     if (Succ->isEHPad())
282       return true;
283   return false;
284 }
285 
286 bool MachineBasicBlock::isEntryBlock() const {
287   return getParent()->begin() == getIterator();
288 }
289 
290 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
291 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
292   print(dbgs());
293 }
294 #endif
295 
296 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
297   for (const MachineBasicBlock *Succ : successors()) {
298     if (Succ->isInlineAsmBrIndirectTarget())
299       return true;
300   }
301   return false;
302 }
303 
304 bool MachineBasicBlock::isLegalToHoistInto() const {
305   if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
306     return false;
307   return true;
308 }
309 
310 StringRef MachineBasicBlock::getName() const {
311   if (const BasicBlock *LBB = getBasicBlock())
312     return LBB->getName();
313   else
314     return StringRef("", 0);
315 }
316 
317 /// Return a hopefully unique identifier for this block.
318 std::string MachineBasicBlock::getFullName() const {
319   std::string Name;
320   if (getParent())
321     Name = (getParent()->getName() + ":").str();
322   if (getBasicBlock())
323     Name += getBasicBlock()->getName();
324   else
325     Name += ("BB" + Twine(getNumber())).str();
326   return Name;
327 }
328 
329 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
330                               bool IsStandalone) const {
331   const MachineFunction *MF = getParent();
332   if (!MF) {
333     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
334        << " is null\n";
335     return;
336   }
337   const Function &F = MF->getFunction();
338   const Module *M = F.getParent();
339   ModuleSlotTracker MST(M);
340   MST.incorporateFunction(F);
341   print(OS, MST, Indexes, IsStandalone);
342 }
343 
344 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
345                               const SlotIndexes *Indexes,
346                               bool IsStandalone) const {
347   const MachineFunction *MF = getParent();
348   if (!MF) {
349     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
350        << " is null\n";
351     return;
352   }
353 
354   if (Indexes && PrintSlotIndexes)
355     OS << Indexes->getMBBStartIdx(this) << '\t';
356 
357   printName(OS, PrintNameIr | PrintNameAttributes, &MST);
358   OS << ":\n";
359 
360   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
361   const MachineRegisterInfo &MRI = MF->getRegInfo();
362   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
363   bool HasLineAttributes = false;
364 
365   // Print the preds of this block according to the CFG.
366   if (!pred_empty() && IsStandalone) {
367     if (Indexes) OS << '\t';
368     // Don't indent(2), align with previous line attributes.
369     OS << "; predecessors: ";
370     ListSeparator LS;
371     for (auto *Pred : predecessors())
372       OS << LS << printMBBReference(*Pred);
373     OS << '\n';
374     HasLineAttributes = true;
375   }
376 
377   if (!succ_empty()) {
378     if (Indexes) OS << '\t';
379     // Print the successors
380     OS.indent(2) << "successors: ";
381     ListSeparator LS;
382     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
383       OS << LS << printMBBReference(**I);
384       if (!Probs.empty())
385         OS << '('
386            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
387            << ')';
388     }
389     if (!Probs.empty() && IsStandalone) {
390       // Print human readable probabilities as comments.
391       OS << "; ";
392       ListSeparator LS;
393       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
394         const BranchProbability &BP = getSuccProbability(I);
395         OS << LS << printMBBReference(**I) << '('
396            << format("%.2f%%",
397                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
398                           100.0 * 100.0) /
399                          100.0)
400            << ')';
401       }
402     }
403 
404     OS << '\n';
405     HasLineAttributes = true;
406   }
407 
408   if (!livein_empty() && MRI.tracksLiveness()) {
409     if (Indexes) OS << '\t';
410     OS.indent(2) << "liveins: ";
411 
412     ListSeparator LS;
413     for (const auto &LI : liveins()) {
414       OS << LS << printReg(LI.PhysReg, TRI);
415       if (!LI.LaneMask.all())
416         OS << ":0x" << PrintLaneMask(LI.LaneMask);
417     }
418     HasLineAttributes = true;
419   }
420 
421   if (HasLineAttributes)
422     OS << '\n';
423 
424   bool IsInBundle = false;
425   for (const MachineInstr &MI : instrs()) {
426     if (Indexes && PrintSlotIndexes) {
427       if (Indexes->hasIndex(MI))
428         OS << Indexes->getInstructionIndex(MI);
429       OS << '\t';
430     }
431 
432     if (IsInBundle && !MI.isInsideBundle()) {
433       OS.indent(2) << "}\n";
434       IsInBundle = false;
435     }
436 
437     OS.indent(IsInBundle ? 4 : 2);
438     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
439              /*AddNewLine=*/false, &TII);
440 
441     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
442       OS << " {";
443       IsInBundle = true;
444     }
445     OS << '\n';
446   }
447 
448   if (IsInBundle)
449     OS.indent(2) << "}\n";
450 
451   if (IrrLoopHeaderWeight && IsStandalone) {
452     if (Indexes) OS << '\t';
453     OS.indent(2) << "; Irreducible loop header weight: "
454                  << IrrLoopHeaderWeight.value() << '\n';
455   }
456 }
457 
458 /// Print the basic block's name as:
459 ///
460 ///    bb.{number}[.{ir-name}] [(attributes...)]
461 ///
462 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
463 /// (which is the default). If the IR block has no name, it is identified
464 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
465 ///
466 /// When the \ref PrintNameAttributes flag is passed, additional attributes
467 /// of the block are printed when set.
468 ///
469 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
470 ///                       the parts to print.
471 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
472 ///                          incorporate its own tracker when necessary to
473 ///                          determine the block's IR name.
474 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
475                                   ModuleSlotTracker *moduleSlotTracker) const {
476   os << "bb." << getNumber();
477   bool hasAttributes = false;
478 
479   auto PrintBBRef = [&](const BasicBlock *bb) {
480     os << "%ir-block.";
481     if (bb->hasName()) {
482       os << bb->getName();
483     } else {
484       int slot = -1;
485 
486       if (moduleSlotTracker) {
487         slot = moduleSlotTracker->getLocalSlot(bb);
488       } else if (bb->getParent()) {
489         ModuleSlotTracker tmpTracker(bb->getModule(), false);
490         tmpTracker.incorporateFunction(*bb->getParent());
491         slot = tmpTracker.getLocalSlot(bb);
492       }
493 
494       if (slot == -1)
495         os << "<ir-block badref>";
496       else
497         os << slot;
498     }
499   };
500 
501   if (printNameFlags & PrintNameIr) {
502     if (const auto *bb = getBasicBlock()) {
503       if (bb->hasName()) {
504         os << '.' << bb->getName();
505       } else {
506         hasAttributes = true;
507         os << " (";
508         PrintBBRef(bb);
509       }
510     }
511   }
512 
513   if (printNameFlags & PrintNameAttributes) {
514     if (isMachineBlockAddressTaken()) {
515       os << (hasAttributes ? ", " : " (");
516       os << "machine-block-address-taken";
517       hasAttributes = true;
518     }
519     if (isIRBlockAddressTaken()) {
520       os << (hasAttributes ? ", " : " (");
521       os << "ir-block-address-taken ";
522       PrintBBRef(getAddressTakenIRBlock());
523       hasAttributes = true;
524     }
525     if (isEHPad()) {
526       os << (hasAttributes ? ", " : " (");
527       os << "landing-pad";
528       hasAttributes = true;
529     }
530     if (isInlineAsmBrIndirectTarget()) {
531       os << (hasAttributes ? ", " : " (");
532       os << "inlineasm-br-indirect-target";
533       hasAttributes = true;
534     }
535     if (isEHFuncletEntry()) {
536       os << (hasAttributes ? ", " : " (");
537       os << "ehfunclet-entry";
538       hasAttributes = true;
539     }
540     if (getAlignment() != Align(1)) {
541       os << (hasAttributes ? ", " : " (");
542       os << "align " << getAlignment().value();
543       hasAttributes = true;
544     }
545     if (getSectionID() != MBBSectionID(0)) {
546       os << (hasAttributes ? ", " : " (");
547       os << "bbsections ";
548       switch (getSectionID().Type) {
549       case MBBSectionID::SectionType::Exception:
550         os << "Exception";
551         break;
552       case MBBSectionID::SectionType::Cold:
553         os << "Cold";
554         break;
555       default:
556         os << getSectionID().Number;
557       }
558       hasAttributes = true;
559     }
560   }
561 
562   if (hasAttributes)
563     os << ')';
564 }
565 
566 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
567                                        bool /*PrintType*/) const {
568   OS << '%';
569   printName(OS, 0);
570 }
571 
572 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
573   LiveInVector::iterator I = find_if(
574       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
575   if (I == LiveIns.end())
576     return;
577 
578   I->LaneMask &= ~LaneMask;
579   if (I->LaneMask.none())
580     LiveIns.erase(I);
581 }
582 
583 MachineBasicBlock::livein_iterator
584 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
585   // Get non-const version of iterator.
586   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
587   return LiveIns.erase(LI);
588 }
589 
590 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
591   livein_iterator I = find_if(
592       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
593   return I != livein_end() && (I->LaneMask & LaneMask).any();
594 }
595 
596 void MachineBasicBlock::sortUniqueLiveIns() {
597   llvm::sort(LiveIns,
598              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
599                return LI0.PhysReg < LI1.PhysReg;
600              });
601   // Liveins are sorted by physreg now we can merge their lanemasks.
602   LiveInVector::const_iterator I = LiveIns.begin();
603   LiveInVector::const_iterator J;
604   LiveInVector::iterator Out = LiveIns.begin();
605   for (; I != LiveIns.end(); ++Out, I = J) {
606     MCRegister PhysReg = I->PhysReg;
607     LaneBitmask LaneMask = I->LaneMask;
608     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
609       LaneMask |= J->LaneMask;
610     Out->PhysReg = PhysReg;
611     Out->LaneMask = LaneMask;
612   }
613   LiveIns.erase(Out, LiveIns.end());
614 }
615 
616 Register
617 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
618   assert(getParent() && "MBB must be inserted in function");
619   assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
620   assert(RC && "Register class is required");
621   assert((isEHPad() || this == &getParent()->front()) &&
622          "Only the entry block and landing pads can have physreg live ins");
623 
624   bool LiveIn = isLiveIn(PhysReg);
625   iterator I = SkipPHIsAndLabels(begin()), E = end();
626   MachineRegisterInfo &MRI = getParent()->getRegInfo();
627   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
628 
629   // Look for an existing copy.
630   if (LiveIn)
631     for (;I != E && I->isCopy(); ++I)
632       if (I->getOperand(1).getReg() == PhysReg) {
633         Register VirtReg = I->getOperand(0).getReg();
634         if (!MRI.constrainRegClass(VirtReg, RC))
635           llvm_unreachable("Incompatible live-in register class.");
636         return VirtReg;
637       }
638 
639   // No luck, create a virtual register.
640   Register VirtReg = MRI.createVirtualRegister(RC);
641   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
642     .addReg(PhysReg, RegState::Kill);
643   if (!LiveIn)
644     addLiveIn(PhysReg);
645   return VirtReg;
646 }
647 
648 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
649   getParent()->splice(NewAfter->getIterator(), getIterator());
650 }
651 
652 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
653   getParent()->splice(++NewBefore->getIterator(), getIterator());
654 }
655 
656 void MachineBasicBlock::updateTerminator(
657     MachineBasicBlock *PreviousLayoutSuccessor) {
658   LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
659                     << "\n");
660 
661   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
662   // A block with no successors has no concerns with fall-through edges.
663   if (this->succ_empty())
664     return;
665 
666   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
667   SmallVector<MachineOperand, 4> Cond;
668   DebugLoc DL = findBranchDebugLoc();
669   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
670   (void) B;
671   assert(!B && "UpdateTerminators requires analyzable predecessors!");
672   if (Cond.empty()) {
673     if (TBB) {
674       // The block has an unconditional branch. If its successor is now its
675       // layout successor, delete the branch.
676       if (isLayoutSuccessor(TBB))
677         TII->removeBranch(*this);
678     } else {
679       // The block has an unconditional fallthrough, or the end of the block is
680       // unreachable.
681 
682       // Unfortunately, whether the end of the block is unreachable is not
683       // immediately obvious; we must fall back to checking the successor list,
684       // and assuming that if the passed in block is in the succesor list and
685       // not an EHPad, it must be the intended target.
686       if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
687           PreviousLayoutSuccessor->isEHPad())
688         return;
689 
690       // If the unconditional successor block is not the current layout
691       // successor, insert a branch to jump to it.
692       if (!isLayoutSuccessor(PreviousLayoutSuccessor))
693         TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
694     }
695     return;
696   }
697 
698   if (FBB) {
699     // The block has a non-fallthrough conditional branch. If one of its
700     // successors is its layout successor, rewrite it to a fallthrough
701     // conditional branch.
702     if (isLayoutSuccessor(TBB)) {
703       if (TII->reverseBranchCondition(Cond))
704         return;
705       TII->removeBranch(*this);
706       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
707     } else if (isLayoutSuccessor(FBB)) {
708       TII->removeBranch(*this);
709       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
710     }
711     return;
712   }
713 
714   // We now know we're going to fallthrough to PreviousLayoutSuccessor.
715   assert(PreviousLayoutSuccessor);
716   assert(!PreviousLayoutSuccessor->isEHPad());
717   assert(isSuccessor(PreviousLayoutSuccessor));
718 
719   if (PreviousLayoutSuccessor == TBB) {
720     // We had a fallthrough to the same basic block as the conditional jump
721     // targets.  Remove the conditional jump, leaving an unconditional
722     // fallthrough or an unconditional jump.
723     TII->removeBranch(*this);
724     if (!isLayoutSuccessor(TBB)) {
725       Cond.clear();
726       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
727     }
728     return;
729   }
730 
731   // The block has a fallthrough conditional branch.
732   if (isLayoutSuccessor(TBB)) {
733     if (TII->reverseBranchCondition(Cond)) {
734       // We can't reverse the condition, add an unconditional branch.
735       Cond.clear();
736       TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
737       return;
738     }
739     TII->removeBranch(*this);
740     TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
741   } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
742     TII->removeBranch(*this);
743     TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
744   }
745 }
746 
747 void MachineBasicBlock::validateSuccProbs() const {
748 #ifndef NDEBUG
749   int64_t Sum = 0;
750   for (auto Prob : Probs)
751     Sum += Prob.getNumerator();
752   // Due to precision issue, we assume that the sum of probabilities is one if
753   // the difference between the sum of their numerators and the denominator is
754   // no greater than the number of successors.
755   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
756              Probs.size() &&
757          "The sum of successors's probabilities exceeds one.");
758 #endif // NDEBUG
759 }
760 
761 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
762                                      BranchProbability Prob) {
763   // Probability list is either empty (if successor list isn't empty, this means
764   // disabled optimization) or has the same size as successor list.
765   if (!(Probs.empty() && !Successors.empty()))
766     Probs.push_back(Prob);
767   Successors.push_back(Succ);
768   Succ->addPredecessor(this);
769 }
770 
771 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
772   // We need to make sure probability list is either empty or has the same size
773   // of successor list. When this function is called, we can safely delete all
774   // probability in the list.
775   Probs.clear();
776   Successors.push_back(Succ);
777   Succ->addPredecessor(this);
778 }
779 
780 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
781                                        MachineBasicBlock *New,
782                                        bool NormalizeSuccProbs) {
783   succ_iterator OldI = llvm::find(successors(), Old);
784   assert(OldI != succ_end() && "Old is not a successor of this block!");
785   assert(!llvm::is_contained(successors(), New) &&
786          "New is already a successor of this block!");
787 
788   // Add a new successor with equal probability as the original one. Note
789   // that we directly copy the probability using the iterator rather than
790   // getting a potentially synthetic probability computed when unknown. This
791   // preserves the probabilities as-is and then we can renormalize them and
792   // query them effectively afterward.
793   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
794                                   : *getProbabilityIterator(OldI));
795   if (NormalizeSuccProbs)
796     normalizeSuccProbs();
797 }
798 
799 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
800                                         bool NormalizeSuccProbs) {
801   succ_iterator I = find(Successors, Succ);
802   removeSuccessor(I, NormalizeSuccProbs);
803 }
804 
805 MachineBasicBlock::succ_iterator
806 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
807   assert(I != Successors.end() && "Not a current successor!");
808 
809   // If probability list is empty it means we don't use it (disabled
810   // optimization).
811   if (!Probs.empty()) {
812     probability_iterator WI = getProbabilityIterator(I);
813     Probs.erase(WI);
814     if (NormalizeSuccProbs)
815       normalizeSuccProbs();
816   }
817 
818   (*I)->removePredecessor(this);
819   return Successors.erase(I);
820 }
821 
822 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
823                                          MachineBasicBlock *New) {
824   if (Old == New)
825     return;
826 
827   succ_iterator E = succ_end();
828   succ_iterator NewI = E;
829   succ_iterator OldI = E;
830   for (succ_iterator I = succ_begin(); I != E; ++I) {
831     if (*I == Old) {
832       OldI = I;
833       if (NewI != E)
834         break;
835     }
836     if (*I == New) {
837       NewI = I;
838       if (OldI != E)
839         break;
840     }
841   }
842   assert(OldI != E && "Old is not a successor of this block");
843 
844   // If New isn't already a successor, let it take Old's place.
845   if (NewI == E) {
846     Old->removePredecessor(this);
847     New->addPredecessor(this);
848     *OldI = New;
849     return;
850   }
851 
852   // New is already a successor.
853   // Update its probability instead of adding a duplicate edge.
854   if (!Probs.empty()) {
855     auto ProbIter = getProbabilityIterator(NewI);
856     if (!ProbIter->isUnknown())
857       *ProbIter += *getProbabilityIterator(OldI);
858   }
859   removeSuccessor(OldI);
860 }
861 
862 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
863                                       succ_iterator I) {
864   if (!Orig->Probs.empty())
865     addSuccessor(*I, Orig->getSuccProbability(I));
866   else
867     addSuccessorWithoutProb(*I);
868 }
869 
870 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
871   Predecessors.push_back(Pred);
872 }
873 
874 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
875   pred_iterator I = find(Predecessors, Pred);
876   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
877   Predecessors.erase(I);
878 }
879 
880 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
881   if (this == FromMBB)
882     return;
883 
884   while (!FromMBB->succ_empty()) {
885     MachineBasicBlock *Succ = *FromMBB->succ_begin();
886 
887     // If probability list is empty it means we don't use it (disabled
888     // optimization).
889     if (!FromMBB->Probs.empty()) {
890       auto Prob = *FromMBB->Probs.begin();
891       addSuccessor(Succ, Prob);
892     } else
893       addSuccessorWithoutProb(Succ);
894 
895     FromMBB->removeSuccessor(Succ);
896   }
897 }
898 
899 void
900 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
901   if (this == FromMBB)
902     return;
903 
904   while (!FromMBB->succ_empty()) {
905     MachineBasicBlock *Succ = *FromMBB->succ_begin();
906     if (!FromMBB->Probs.empty()) {
907       auto Prob = *FromMBB->Probs.begin();
908       addSuccessor(Succ, Prob);
909     } else
910       addSuccessorWithoutProb(Succ);
911     FromMBB->removeSuccessor(Succ);
912 
913     // Fix up any PHI nodes in the successor.
914     Succ->replacePhiUsesWith(FromMBB, this);
915   }
916   normalizeSuccProbs();
917 }
918 
919 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
920   return is_contained(predecessors(), MBB);
921 }
922 
923 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
924   return is_contained(successors(), MBB);
925 }
926 
927 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
928   MachineFunction::const_iterator I(this);
929   return std::next(I) == MachineFunction::const_iterator(MBB);
930 }
931 
932 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const {
933   return Successors.size() == 1 ? Successors[0] : nullptr;
934 }
935 
936 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
937   MachineFunction::iterator Fallthrough = getIterator();
938   ++Fallthrough;
939   // If FallthroughBlock is off the end of the function, it can't fall through.
940   if (Fallthrough == getParent()->end())
941     return nullptr;
942 
943   // If FallthroughBlock isn't a successor, no fallthrough is possible.
944   if (!isSuccessor(&*Fallthrough))
945     return nullptr;
946 
947   // Analyze the branches, if any, at the end of the block.
948   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
949   SmallVector<MachineOperand, 4> Cond;
950   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
951   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
952     // If we couldn't analyze the branch, examine the last instruction.
953     // If the block doesn't end in a known control barrier, assume fallthrough
954     // is possible. The isPredicated check is needed because this code can be
955     // called during IfConversion, where an instruction which is normally a
956     // Barrier is predicated and thus no longer an actual control barrier.
957     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
958                ? &*Fallthrough
959                : nullptr;
960   }
961 
962   // If there is no branch, control always falls through.
963   if (!TBB) return &*Fallthrough;
964 
965   // If there is some explicit branch to the fallthrough block, it can obviously
966   // reach, even though the branch should get folded to fall through implicitly.
967   if (MachineFunction::iterator(TBB) == Fallthrough ||
968       MachineFunction::iterator(FBB) == Fallthrough)
969     return &*Fallthrough;
970 
971   // If it's an unconditional branch to some block not the fall through, it
972   // doesn't fall through.
973   if (Cond.empty()) return nullptr;
974 
975   // Otherwise, if it is conditional and has no explicit false block, it falls
976   // through.
977   return (FBB == nullptr) ? &*Fallthrough : nullptr;
978 }
979 
980 bool MachineBasicBlock::canFallThrough() {
981   return getFallThrough() != nullptr;
982 }
983 
984 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
985                                               bool UpdateLiveIns,
986                                               LiveIntervals *LIS) {
987   MachineBasicBlock::iterator SplitPoint(&MI);
988   ++SplitPoint;
989 
990   if (SplitPoint == end()) {
991     // Don't bother with a new block.
992     return this;
993   }
994 
995   MachineFunction *MF = getParent();
996 
997   LivePhysRegs LiveRegs;
998   if (UpdateLiveIns) {
999     // Make sure we add any physregs we define in the block as liveins to the
1000     // new block.
1001     MachineBasicBlock::iterator Prev(&MI);
1002     LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
1003     LiveRegs.addLiveOuts(*this);
1004     for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
1005       LiveRegs.stepBackward(*I);
1006   }
1007 
1008   MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
1009 
1010   MF->insert(++MachineFunction::iterator(this), SplitBB);
1011   SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
1012 
1013   SplitBB->transferSuccessorsAndUpdatePHIs(this);
1014   addSuccessor(SplitBB);
1015 
1016   if (UpdateLiveIns)
1017     addLiveIns(*SplitBB, LiveRegs);
1018 
1019   if (LIS)
1020     LIS->insertMBBInMaps(SplitBB);
1021 
1022   return SplitBB;
1023 }
1024 
1025 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1026     MachineBasicBlock *Succ, Pass &P,
1027     std::vector<SparseBitVector<>> *LiveInSets) {
1028   if (!canSplitCriticalEdge(Succ))
1029     return nullptr;
1030 
1031   MachineFunction *MF = getParent();
1032   MachineBasicBlock *PrevFallthrough = getNextNode();
1033   DebugLoc DL;  // FIXME: this is nowhere
1034 
1035   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1036   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1037   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1038                     << " -- " << printMBBReference(*NMBB) << " -- "
1039                     << printMBBReference(*Succ) << '\n');
1040 
1041   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1042   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1043   if (LIS)
1044     LIS->insertMBBInMaps(NMBB);
1045   else if (Indexes)
1046     Indexes->insertMBBInMaps(NMBB);
1047 
1048   // On some targets like Mips, branches may kill virtual registers. Make sure
1049   // that LiveVariables is properly updated after updateTerminator replaces the
1050   // terminators.
1051   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1052 
1053   // Collect a list of virtual registers killed by the terminators.
1054   SmallVector<Register, 4> KilledRegs;
1055   if (LV)
1056     for (MachineInstr &MI :
1057          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1058       for (MachineOperand &MO : MI.operands()) {
1059         if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse() || !MO.isKill() ||
1060             MO.isUndef())
1061           continue;
1062         Register Reg = MO.getReg();
1063         if (Register::isPhysicalRegister(Reg) ||
1064             LV->getVarInfo(Reg).removeKill(MI)) {
1065           KilledRegs.push_back(Reg);
1066           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1067           MO.setIsKill(false);
1068         }
1069       }
1070     }
1071 
1072   SmallVector<Register, 4> UsedRegs;
1073   if (LIS) {
1074     for (MachineInstr &MI :
1075          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1076       for (const MachineOperand &MO : MI.operands()) {
1077         if (!MO.isReg() || MO.getReg() == 0)
1078           continue;
1079 
1080         Register Reg = MO.getReg();
1081         if (!is_contained(UsedRegs, Reg))
1082           UsedRegs.push_back(Reg);
1083       }
1084     }
1085   }
1086 
1087   ReplaceUsesOfBlockWith(Succ, NMBB);
1088 
1089   // If updateTerminator() removes instructions, we need to remove them from
1090   // SlotIndexes.
1091   SmallVector<MachineInstr*, 4> Terminators;
1092   if (Indexes) {
1093     for (MachineInstr &MI :
1094          llvm::make_range(getFirstInstrTerminator(), instr_end()))
1095       Terminators.push_back(&MI);
1096   }
1097 
1098   // Since we replaced all uses of Succ with NMBB, that should also be treated
1099   // as the fallthrough successor
1100   if (Succ == PrevFallthrough)
1101     PrevFallthrough = NMBB;
1102   updateTerminator(PrevFallthrough);
1103 
1104   if (Indexes) {
1105     SmallVector<MachineInstr*, 4> NewTerminators;
1106     for (MachineInstr &MI :
1107          llvm::make_range(getFirstInstrTerminator(), instr_end()))
1108       NewTerminators.push_back(&MI);
1109 
1110     for (MachineInstr *Terminator : Terminators) {
1111       if (!is_contained(NewTerminators, Terminator))
1112         Indexes->removeMachineInstrFromMaps(*Terminator);
1113     }
1114   }
1115 
1116   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1117   NMBB->addSuccessor(Succ);
1118   if (!NMBB->isLayoutSuccessor(Succ)) {
1119     SmallVector<MachineOperand, 4> Cond;
1120     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1121     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1122 
1123     if (Indexes) {
1124       for (MachineInstr &MI : NMBB->instrs()) {
1125         // Some instructions may have been moved to NMBB by updateTerminator(),
1126         // so we first remove any instruction that already has an index.
1127         if (Indexes->hasIndex(MI))
1128           Indexes->removeMachineInstrFromMaps(MI);
1129         Indexes->insertMachineInstrInMaps(MI);
1130       }
1131     }
1132   }
1133 
1134   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1135   Succ->replacePhiUsesWith(this, NMBB);
1136 
1137   // Inherit live-ins from the successor
1138   for (const auto &LI : Succ->liveins())
1139     NMBB->addLiveIn(LI);
1140 
1141   // Update LiveVariables.
1142   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1143   if (LV) {
1144     // Restore kills of virtual registers that were killed by the terminators.
1145     while (!KilledRegs.empty()) {
1146       Register Reg = KilledRegs.pop_back_val();
1147       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1148         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1149           continue;
1150         if (Register::isVirtualRegister(Reg))
1151           LV->getVarInfo(Reg).Kills.push_back(&*I);
1152         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1153         break;
1154       }
1155     }
1156     // Update relevant live-through information.
1157     if (LiveInSets != nullptr)
1158       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1159     else
1160       LV->addNewBlock(NMBB, this, Succ);
1161   }
1162 
1163   if (LIS) {
1164     // After splitting the edge and updating SlotIndexes, live intervals may be
1165     // in one of two situations, depending on whether this block was the last in
1166     // the function. If the original block was the last in the function, all
1167     // live intervals will end prior to the beginning of the new split block. If
1168     // the original block was not at the end of the function, all live intervals
1169     // will extend to the end of the new split block.
1170 
1171     bool isLastMBB =
1172       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1173 
1174     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1175     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1176     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1177 
1178     // Find the registers used from NMBB in PHIs in Succ.
1179     SmallSet<Register, 8> PHISrcRegs;
1180     for (MachineBasicBlock::instr_iterator
1181          I = Succ->instr_begin(), E = Succ->instr_end();
1182          I != E && I->isPHI(); ++I) {
1183       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1184         if (I->getOperand(ni+1).getMBB() == NMBB) {
1185           MachineOperand &MO = I->getOperand(ni);
1186           Register Reg = MO.getReg();
1187           PHISrcRegs.insert(Reg);
1188           if (MO.isUndef())
1189             continue;
1190 
1191           LiveInterval &LI = LIS->getInterval(Reg);
1192           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1193           assert(VNI &&
1194                  "PHI sources should be live out of their predecessors.");
1195           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1196         }
1197       }
1198     }
1199 
1200     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1201     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1202       Register Reg = Register::index2VirtReg(i);
1203       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1204         continue;
1205 
1206       LiveInterval &LI = LIS->getInterval(Reg);
1207       if (!LI.liveAt(PrevIndex))
1208         continue;
1209 
1210       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1211       if (isLiveOut && isLastMBB) {
1212         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1213         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1214         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1215       } else if (!isLiveOut && !isLastMBB) {
1216         LI.removeSegment(StartIndex, EndIndex);
1217       }
1218     }
1219 
1220     // Update all intervals for registers whose uses may have been modified by
1221     // updateTerminator().
1222     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1223   }
1224 
1225   if (MachineDominatorTree *MDT =
1226           P.getAnalysisIfAvailable<MachineDominatorTree>())
1227     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1228 
1229   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1230     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1231       // If one or the other blocks were not in a loop, the new block is not
1232       // either, and thus LI doesn't need to be updated.
1233       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1234         if (TIL == DestLoop) {
1235           // Both in the same loop, the NMBB joins loop.
1236           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1237         } else if (TIL->contains(DestLoop)) {
1238           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1239           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1240         } else if (DestLoop->contains(TIL)) {
1241           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1242           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1243         } else {
1244           // Edge from two loops with no containment relation.  Because these
1245           // are natural loops, we know that the destination block must be the
1246           // header of its loop (adding a branch into a loop elsewhere would
1247           // create an irreducible loop).
1248           assert(DestLoop->getHeader() == Succ &&
1249                  "Should not create irreducible loops!");
1250           if (MachineLoop *P = DestLoop->getParentLoop())
1251             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1252         }
1253       }
1254     }
1255 
1256   return NMBB;
1257 }
1258 
1259 bool MachineBasicBlock::canSplitCriticalEdge(
1260     const MachineBasicBlock *Succ) const {
1261   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1262   // it in this generic function.
1263   if (Succ->isEHPad())
1264     return false;
1265 
1266   // Splitting the critical edge to a callbr's indirect block isn't advised.
1267   // Don't do it in this generic function.
1268   if (Succ->isInlineAsmBrIndirectTarget())
1269     return false;
1270 
1271   const MachineFunction *MF = getParent();
1272   // Performance might be harmed on HW that implements branching using exec mask
1273   // where both sides of the branches are always executed.
1274   if (MF->getTarget().requiresStructuredCFG())
1275     return false;
1276 
1277   // We may need to update this's terminator, but we can't do that if
1278   // analyzeBranch fails. If this uses a jump table, we won't touch it.
1279   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1280   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1281   SmallVector<MachineOperand, 4> Cond;
1282   // AnalyzeBanch should modify this, since we did not allow modification.
1283   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1284                          /*AllowModify*/ false))
1285     return false;
1286 
1287   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1288   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1289   // case that we can't handle. Since this never happens in properly optimized
1290   // code, just skip those edges.
1291   if (TBB && TBB == FBB) {
1292     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1293                       << printMBBReference(*this) << '\n');
1294     return false;
1295   }
1296   return true;
1297 }
1298 
1299 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1300 /// neighboring instructions so the bundle won't be broken by removing MI.
1301 static void unbundleSingleMI(MachineInstr *MI) {
1302   // Removing the first instruction in a bundle.
1303   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1304     MI->unbundleFromSucc();
1305   // Removing the last instruction in a bundle.
1306   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1307     MI->unbundleFromPred();
1308   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1309   // are already fine.
1310 }
1311 
1312 MachineBasicBlock::instr_iterator
1313 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1314   unbundleSingleMI(&*I);
1315   return Insts.erase(I);
1316 }
1317 
1318 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1319   unbundleSingleMI(MI);
1320   MI->clearFlag(MachineInstr::BundledPred);
1321   MI->clearFlag(MachineInstr::BundledSucc);
1322   return Insts.remove(MI);
1323 }
1324 
1325 MachineBasicBlock::instr_iterator
1326 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1327   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1328          "Cannot insert instruction with bundle flags");
1329   // Set the bundle flags when inserting inside a bundle.
1330   if (I != instr_end() && I->isBundledWithPred()) {
1331     MI->setFlag(MachineInstr::BundledPred);
1332     MI->setFlag(MachineInstr::BundledSucc);
1333   }
1334   return Insts.insert(I, MI);
1335 }
1336 
1337 /// This method unlinks 'this' from the containing function, and returns it, but
1338 /// does not delete it.
1339 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1340   assert(getParent() && "Not embedded in a function!");
1341   getParent()->remove(this);
1342   return this;
1343 }
1344 
1345 /// This method unlinks 'this' from the containing function, and deletes it.
1346 void MachineBasicBlock::eraseFromParent() {
1347   assert(getParent() && "Not embedded in a function!");
1348   getParent()->erase(this);
1349 }
1350 
1351 /// Given a machine basic block that branched to 'Old', change the code and CFG
1352 /// so that it branches to 'New' instead.
1353 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1354                                                MachineBasicBlock *New) {
1355   assert(Old != New && "Cannot replace self with self!");
1356 
1357   MachineBasicBlock::instr_iterator I = instr_end();
1358   while (I != instr_begin()) {
1359     --I;
1360     if (!I->isTerminator()) break;
1361 
1362     // Scan the operands of this machine instruction, replacing any uses of Old
1363     // with New.
1364     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1365       if (I->getOperand(i).isMBB() &&
1366           I->getOperand(i).getMBB() == Old)
1367         I->getOperand(i).setMBB(New);
1368   }
1369 
1370   // Update the successor information.
1371   replaceSuccessor(Old, New);
1372 }
1373 
1374 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1375                                            MachineBasicBlock *New) {
1376   for (MachineInstr &MI : phis())
1377     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1378       MachineOperand &MO = MI.getOperand(i);
1379       if (MO.getMBB() == Old)
1380         MO.setMBB(New);
1381     }
1382 }
1383 
1384 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1385 /// instructions.  Return UnknownLoc if there is none.
1386 DebugLoc
1387 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1388   // Skip debug declarations, we don't want a DebugLoc from them.
1389   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1390   if (MBBI != instr_end())
1391     return MBBI->getDebugLoc();
1392   return {};
1393 }
1394 
1395 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1396   // Skip debug declarations, we don't want a DebugLoc from them.
1397   MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1398   if (!MBBI->isDebugInstr())
1399     return MBBI->getDebugLoc();
1400   return {};
1401 }
1402 
1403 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1404 /// instructions.  Return UnknownLoc if there is none.
1405 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1406   if (MBBI == instr_begin()) return {};
1407   // Skip debug instructions, we don't want a DebugLoc from them.
1408   MBBI = prev_nodbg(MBBI, instr_begin());
1409   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1410   return {};
1411 }
1412 
1413 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1414   if (MBBI == instr_rend())
1415     return {};
1416   // Skip debug declarations, we don't want a DebugLoc from them.
1417   MBBI = next_nodbg(MBBI, instr_rend());
1418   if (MBBI != instr_rend())
1419     return MBBI->getDebugLoc();
1420   return {};
1421 }
1422 
1423 /// Find and return the merged DebugLoc of the branch instructions of the block.
1424 /// Return UnknownLoc if there is none.
1425 DebugLoc
1426 MachineBasicBlock::findBranchDebugLoc() {
1427   DebugLoc DL;
1428   auto TI = getFirstTerminator();
1429   while (TI != end() && !TI->isBranch())
1430     ++TI;
1431 
1432   if (TI != end()) {
1433     DL = TI->getDebugLoc();
1434     for (++TI ; TI != end() ; ++TI)
1435       if (TI->isBranch())
1436         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1437   }
1438   return DL;
1439 }
1440 
1441 /// Return probability of the edge from this block to MBB.
1442 BranchProbability
1443 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1444   if (Probs.empty())
1445     return BranchProbability(1, succ_size());
1446 
1447   const auto &Prob = *getProbabilityIterator(Succ);
1448   if (Prob.isUnknown()) {
1449     // For unknown probabilities, collect the sum of all known ones, and evenly
1450     // ditribute the complemental of the sum to each unknown probability.
1451     unsigned KnownProbNum = 0;
1452     auto Sum = BranchProbability::getZero();
1453     for (const auto &P : Probs) {
1454       if (!P.isUnknown()) {
1455         Sum += P;
1456         KnownProbNum++;
1457       }
1458     }
1459     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1460   } else
1461     return Prob;
1462 }
1463 
1464 /// Set successor probability of a given iterator.
1465 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1466                                            BranchProbability Prob) {
1467   assert(!Prob.isUnknown());
1468   if (Probs.empty())
1469     return;
1470   *getProbabilityIterator(I) = Prob;
1471 }
1472 
1473 /// Return probability iterator corresonding to the I successor iterator
1474 MachineBasicBlock::const_probability_iterator
1475 MachineBasicBlock::getProbabilityIterator(
1476     MachineBasicBlock::const_succ_iterator I) const {
1477   assert(Probs.size() == Successors.size() && "Async probability list!");
1478   const size_t index = std::distance(Successors.begin(), I);
1479   assert(index < Probs.size() && "Not a current successor!");
1480   return Probs.begin() + index;
1481 }
1482 
1483 /// Return probability iterator corresonding to the I successor iterator.
1484 MachineBasicBlock::probability_iterator
1485 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1486   assert(Probs.size() == Successors.size() && "Async probability list!");
1487   const size_t index = std::distance(Successors.begin(), I);
1488   assert(index < Probs.size() && "Not a current successor!");
1489   return Probs.begin() + index;
1490 }
1491 
1492 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1493 /// as of just before "MI".
1494 ///
1495 /// Search is localised to a neighborhood of
1496 /// Neighborhood instructions before (searching for defs or kills) and N
1497 /// instructions after (searching just for defs) MI.
1498 MachineBasicBlock::LivenessQueryResult
1499 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1500                                            MCRegister Reg, const_iterator Before,
1501                                            unsigned Neighborhood) const {
1502   unsigned N = Neighborhood;
1503 
1504   // Try searching forwards from Before, looking for reads or defs.
1505   const_iterator I(Before);
1506   for (; I != end() && N > 0; ++I) {
1507     if (I->isDebugOrPseudoInstr())
1508       continue;
1509 
1510     --N;
1511 
1512     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1513 
1514     // Register is live when we read it here.
1515     if (Info.Read)
1516       return LQR_Live;
1517     // Register is dead if we can fully overwrite or clobber it here.
1518     if (Info.FullyDefined || Info.Clobbered)
1519       return LQR_Dead;
1520   }
1521 
1522   // If we reached the end, it is safe to clobber Reg at the end of a block of
1523   // no successor has it live in.
1524   if (I == end()) {
1525     for (MachineBasicBlock *S : successors()) {
1526       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1527         if (TRI->regsOverlap(LI.PhysReg, Reg))
1528           return LQR_Live;
1529       }
1530     }
1531 
1532     return LQR_Dead;
1533   }
1534 
1535 
1536   N = Neighborhood;
1537 
1538   // Start by searching backwards from Before, looking for kills, reads or defs.
1539   I = const_iterator(Before);
1540   // If this is the first insn in the block, don't search backwards.
1541   if (I != begin()) {
1542     do {
1543       --I;
1544 
1545       if (I->isDebugOrPseudoInstr())
1546         continue;
1547 
1548       --N;
1549 
1550       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1551 
1552       // Defs happen after uses so they take precedence if both are present.
1553 
1554       // Register is dead after a dead def of the full register.
1555       if (Info.DeadDef)
1556         return LQR_Dead;
1557       // Register is (at least partially) live after a def.
1558       if (Info.Defined) {
1559         if (!Info.PartialDeadDef)
1560           return LQR_Live;
1561         // As soon as we saw a partial definition (dead or not),
1562         // we cannot tell if the value is partial live without
1563         // tracking the lanemasks. We are not going to do this,
1564         // so fall back on the remaining of the analysis.
1565         break;
1566       }
1567       // Register is dead after a full kill or clobber and no def.
1568       if (Info.Killed || Info.Clobbered)
1569         return LQR_Dead;
1570       // Register must be live if we read it.
1571       if (Info.Read)
1572         return LQR_Live;
1573 
1574     } while (I != begin() && N > 0);
1575   }
1576 
1577   // If all the instructions before this in the block are debug instructions,
1578   // skip over them.
1579   while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1580     --I;
1581 
1582   // Did we get to the start of the block?
1583   if (I == begin()) {
1584     // If so, the register's state is definitely defined by the live-in state.
1585     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1586       if (TRI->regsOverlap(LI.PhysReg, Reg))
1587         return LQR_Live;
1588 
1589     return LQR_Dead;
1590   }
1591 
1592   // At this point we have no idea of the liveness of the register.
1593   return LQR_Unknown;
1594 }
1595 
1596 const uint32_t *
1597 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1598   // EH funclet entry does not preserve any registers.
1599   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1600 }
1601 
1602 const uint32_t *
1603 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1604   // If we see a return block with successors, this must be a funclet return,
1605   // which does not preserve any registers. If there are no successors, we don't
1606   // care what kind of return it is, putting a mask after it is a no-op.
1607   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1608 }
1609 
1610 void MachineBasicBlock::clearLiveIns() {
1611   LiveIns.clear();
1612 }
1613 
1614 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1615   assert(getParent()->getProperties().hasProperty(
1616       MachineFunctionProperties::Property::TracksLiveness) &&
1617       "Liveness information is accurate");
1618   return LiveIns.begin();
1619 }
1620 
1621 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1622   const MachineFunction &MF = *getParent();
1623   assert(MF.getProperties().hasProperty(
1624       MachineFunctionProperties::Property::TracksLiveness) &&
1625       "Liveness information is accurate");
1626 
1627   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1628   MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1629   if (MF.getFunction().hasPersonalityFn()) {
1630     auto PersonalityFn = MF.getFunction().getPersonalityFn();
1631     ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1632     ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1633   }
1634 
1635   return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1636 }
1637 
1638 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const {
1639   unsigned Cntr = 0;
1640   auto R = instructionsWithoutDebug(begin(), end());
1641   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1642     if (++Cntr > Limit)
1643       return true;
1644   }
1645   return false;
1646 }
1647 
1648 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1649 const MBBSectionID
1650     MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1651