xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision ce227ce3b38de1f8022b1497d7e1314903cf5674)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCContext.h"
34 #include "llvm/Support/DataTypes.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <algorithm>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "codegen"
42 
43 static cl::opt<bool> PrintSlotIndexes(
44     "print-slotindexes",
45     cl::desc("When printing machine IR, annotate instructions and blocks with "
46              "SlotIndexes when available"),
47     cl::init(true), cl::Hidden);
48 
49 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
50     : BB(B), Number(-1), xParent(&MF) {
51   Insts.Parent = this;
52   if (B)
53     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
54 }
55 
56 MachineBasicBlock::~MachineBasicBlock() {
57 }
58 
59 /// Return the MCSymbol for this basic block.
60 MCSymbol *MachineBasicBlock::getSymbol() const {
61   if (!CachedMCSymbol) {
62     const MachineFunction *MF = getParent();
63     MCContext &Ctx = MF->getContext();
64 
65     // We emit a non-temporary symbol -- with a descriptive name -- if it begins
66     // a section (with basic block sections). Otherwise we fall back to use temp
67     // label.
68     if (MF->hasBBSections() && isBeginSection()) {
69       SmallString<5> Suffix;
70       if (SectionID == MBBSectionID::ColdSectionID) {
71         Suffix += ".cold";
72       } else if (SectionID == MBBSectionID::ExceptionSectionID) {
73         Suffix += ".eh";
74       } else {
75         // For symbols that represent basic block sections, we add ".__part." to
76         // allow tools like symbolizers to know that this represents a part of
77         // the original function.
78         Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
79       }
80       CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
81     } else {
82       const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
83       CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
84                                              Twine(MF->getFunctionNumber()) +
85                                              "_" + Twine(getNumber()));
86     }
87   }
88   return CachedMCSymbol;
89 }
90 
91 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
92   if (!CachedEHCatchretMCSymbol) {
93     const MachineFunction *MF = getParent();
94     SmallString<128> SymbolName;
95     raw_svector_ostream(SymbolName)
96         << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
97     CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
98   }
99   return CachedEHCatchretMCSymbol;
100 }
101 
102 MCSymbol *MachineBasicBlock::getEndSymbol() const {
103   if (!CachedEndMCSymbol) {
104     const MachineFunction *MF = getParent();
105     MCContext &Ctx = MF->getContext();
106     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
107     CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
108                                               Twine(MF->getFunctionNumber()) +
109                                               "_" + Twine(getNumber()));
110   }
111   return CachedEndMCSymbol;
112 }
113 
114 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
115   MBB.print(OS);
116   return OS;
117 }
118 
119 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
120   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
121 }
122 
123 /// When an MBB is added to an MF, we need to update the parent pointer of the
124 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
125 /// operand list for registers.
126 ///
127 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
128 /// gets the next available unique MBB number. If it is removed from a
129 /// MachineFunction, it goes back to being #-1.
130 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
131     MachineBasicBlock *N) {
132   MachineFunction &MF = *N->getParent();
133   N->Number = MF.addToMBBNumbering(N);
134 
135   // Make sure the instructions have their operands in the reginfo lists.
136   MachineRegisterInfo &RegInfo = MF.getRegInfo();
137   for (MachineBasicBlock::instr_iterator
138          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
139     I->AddRegOperandsToUseLists(RegInfo);
140 }
141 
142 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
143     MachineBasicBlock *N) {
144   N->getParent()->removeFromMBBNumbering(N->Number);
145   N->Number = -1;
146 }
147 
148 /// When we add an instruction to a basic block list, we update its parent
149 /// pointer and add its operands from reg use/def lists if appropriate.
150 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
151   assert(!N->getParent() && "machine instruction already in a basic block");
152   N->setParent(Parent);
153 
154   // Add the instruction's register operands to their corresponding
155   // use/def lists.
156   MachineFunction *MF = Parent->getParent();
157   N->AddRegOperandsToUseLists(MF->getRegInfo());
158   MF->handleInsertion(*N);
159 }
160 
161 /// When we remove an instruction from a basic block list, we update its parent
162 /// pointer and remove its operands from reg use/def lists if appropriate.
163 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
164   assert(N->getParent() && "machine instruction not in a basic block");
165 
166   // Remove from the use/def lists.
167   if (MachineFunction *MF = N->getMF()) {
168     MF->handleRemoval(*N);
169     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
170   }
171 
172   N->setParent(nullptr);
173 }
174 
175 /// When moving a range of instructions from one MBB list to another, we need to
176 /// update the parent pointers and the use/def lists.
177 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
178                                                        instr_iterator First,
179                                                        instr_iterator Last) {
180   assert(Parent->getParent() == FromList.Parent->getParent() &&
181          "cannot transfer MachineInstrs between MachineFunctions");
182 
183   // If it's within the same BB, there's nothing to do.
184   if (this == &FromList)
185     return;
186 
187   assert(Parent != FromList.Parent && "Two lists have the same parent?");
188 
189   // If splicing between two blocks within the same function, just update the
190   // parent pointers.
191   for (; First != Last; ++First)
192     First->setParent(Parent);
193 }
194 
195 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
196   assert(!MI->getParent() && "MI is still in a block!");
197   Parent->getParent()->DeleteMachineInstr(MI);
198 }
199 
200 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
201   instr_iterator I = instr_begin(), E = instr_end();
202   while (I != E && I->isPHI())
203     ++I;
204   assert((I == E || !I->isInsideBundle()) &&
205          "First non-phi MI cannot be inside a bundle!");
206   return I;
207 }
208 
209 MachineBasicBlock::iterator
210 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
211   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
212 
213   iterator E = end();
214   while (I != E && (I->isPHI() || I->isPosition() ||
215                     TII->isBasicBlockPrologue(*I)))
216     ++I;
217   // FIXME: This needs to change if we wish to bundle labels
218   // inside the bundle.
219   assert((I == E || !I->isInsideBundle()) &&
220          "First non-phi / non-label instruction is inside a bundle!");
221   return I;
222 }
223 
224 MachineBasicBlock::iterator
225 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
226                                           bool SkipPseudoOp) {
227   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
228 
229   iterator E = end();
230   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
231                     (SkipPseudoOp && I->isPseudoProbe()) ||
232                     TII->isBasicBlockPrologue(*I)))
233     ++I;
234   // FIXME: This needs to change if we wish to bundle labels / dbg_values
235   // inside the bundle.
236   assert((I == E || !I->isInsideBundle()) &&
237          "First non-phi / non-label / non-debug "
238          "instruction is inside a bundle!");
239   return I;
240 }
241 
242 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
243   iterator B = begin(), E = end(), I = E;
244   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
245     ; /*noop */
246   while (I != E && !I->isTerminator())
247     ++I;
248   return I;
249 }
250 
251 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
252   instr_iterator B = instr_begin(), E = instr_end(), I = E;
253   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
254     ; /*noop */
255   while (I != E && !I->isTerminator())
256     ++I;
257   return I;
258 }
259 
260 MachineBasicBlock::iterator
261 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
262   // Skip over begin-of-block dbg_value instructions.
263   return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
264 }
265 
266 MachineBasicBlock::iterator
267 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
268   // Skip over end-of-block dbg_value instructions.
269   instr_iterator B = instr_begin(), I = instr_end();
270   while (I != B) {
271     --I;
272     // Return instruction that starts a bundle.
273     if (I->isDebugInstr() || I->isInsideBundle())
274       continue;
275     if (SkipPseudoOp && I->isPseudoProbe())
276       continue;
277     return I;
278   }
279   // The block is all debug values.
280   return end();
281 }
282 
283 bool MachineBasicBlock::hasEHPadSuccessor() const {
284   for (const MachineBasicBlock *Succ : successors())
285     if (Succ->isEHPad())
286       return true;
287   return false;
288 }
289 
290 bool MachineBasicBlock::isEntryBlock() const {
291   return getParent()->begin() == getIterator();
292 }
293 
294 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
295 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
296   print(dbgs());
297 }
298 #endif
299 
300 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
301   for (const MachineBasicBlock *Succ : successors()) {
302     if (Succ->isInlineAsmBrIndirectTarget())
303       return true;
304   }
305   return false;
306 }
307 
308 bool MachineBasicBlock::isLegalToHoistInto() const {
309   if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
310     return false;
311   return true;
312 }
313 
314 StringRef MachineBasicBlock::getName() const {
315   if (const BasicBlock *LBB = getBasicBlock())
316     return LBB->getName();
317   else
318     return StringRef("", 0);
319 }
320 
321 /// Return a hopefully unique identifier for this block.
322 std::string MachineBasicBlock::getFullName() const {
323   std::string Name;
324   if (getParent())
325     Name = (getParent()->getName() + ":").str();
326   if (getBasicBlock())
327     Name += getBasicBlock()->getName();
328   else
329     Name += ("BB" + Twine(getNumber())).str();
330   return Name;
331 }
332 
333 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
334                               bool IsStandalone) const {
335   const MachineFunction *MF = getParent();
336   if (!MF) {
337     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
338        << " is null\n";
339     return;
340   }
341   const Function &F = MF->getFunction();
342   const Module *M = F.getParent();
343   ModuleSlotTracker MST(M);
344   MST.incorporateFunction(F);
345   print(OS, MST, Indexes, IsStandalone);
346 }
347 
348 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
349                               const SlotIndexes *Indexes,
350                               bool IsStandalone) const {
351   const MachineFunction *MF = getParent();
352   if (!MF) {
353     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
354        << " is null\n";
355     return;
356   }
357 
358   if (Indexes && PrintSlotIndexes)
359     OS << Indexes->getMBBStartIdx(this) << '\t';
360 
361   printName(OS, PrintNameIr | PrintNameAttributes, &MST);
362   OS << ":\n";
363 
364   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
365   const MachineRegisterInfo &MRI = MF->getRegInfo();
366   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
367   bool HasLineAttributes = false;
368 
369   // Print the preds of this block according to the CFG.
370   if (!pred_empty() && IsStandalone) {
371     if (Indexes) OS << '\t';
372     // Don't indent(2), align with previous line attributes.
373     OS << "; predecessors: ";
374     ListSeparator LS;
375     for (auto *Pred : predecessors())
376       OS << LS << printMBBReference(*Pred);
377     OS << '\n';
378     HasLineAttributes = true;
379   }
380 
381   if (!succ_empty()) {
382     if (Indexes) OS << '\t';
383     // Print the successors
384     OS.indent(2) << "successors: ";
385     ListSeparator LS;
386     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
387       OS << LS << printMBBReference(**I);
388       if (!Probs.empty())
389         OS << '('
390            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
391            << ')';
392     }
393     if (!Probs.empty() && IsStandalone) {
394       // Print human readable probabilities as comments.
395       OS << "; ";
396       ListSeparator LS;
397       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
398         const BranchProbability &BP = getSuccProbability(I);
399         OS << LS << printMBBReference(**I) << '('
400            << format("%.2f%%",
401                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
402                           100.0 * 100.0) /
403                          100.0)
404            << ')';
405       }
406     }
407 
408     OS << '\n';
409     HasLineAttributes = true;
410   }
411 
412   if (!livein_empty() && MRI.tracksLiveness()) {
413     if (Indexes) OS << '\t';
414     OS.indent(2) << "liveins: ";
415 
416     ListSeparator LS;
417     for (const auto &LI : liveins()) {
418       OS << LS << printReg(LI.PhysReg, TRI);
419       if (!LI.LaneMask.all())
420         OS << ":0x" << PrintLaneMask(LI.LaneMask);
421     }
422     HasLineAttributes = true;
423   }
424 
425   if (HasLineAttributes)
426     OS << '\n';
427 
428   bool IsInBundle = false;
429   for (const MachineInstr &MI : instrs()) {
430     if (Indexes && PrintSlotIndexes) {
431       if (Indexes->hasIndex(MI))
432         OS << Indexes->getInstructionIndex(MI);
433       OS << '\t';
434     }
435 
436     if (IsInBundle && !MI.isInsideBundle()) {
437       OS.indent(2) << "}\n";
438       IsInBundle = false;
439     }
440 
441     OS.indent(IsInBundle ? 4 : 2);
442     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
443              /*AddNewLine=*/false, &TII);
444 
445     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
446       OS << " {";
447       IsInBundle = true;
448     }
449     OS << '\n';
450   }
451 
452   if (IsInBundle)
453     OS.indent(2) << "}\n";
454 
455   if (IrrLoopHeaderWeight && IsStandalone) {
456     if (Indexes) OS << '\t';
457     OS.indent(2) << "; Irreducible loop header weight: "
458                  << IrrLoopHeaderWeight.getValue() << '\n';
459   }
460 }
461 
462 /// Print the basic block's name as:
463 ///
464 ///    bb.{number}[.{ir-name}] [(attributes...)]
465 ///
466 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
467 /// (which is the default). If the IR block has no name, it is identified
468 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
469 ///
470 /// When the \ref PrintNameAttributes flag is passed, additional attributes
471 /// of the block are printed when set.
472 ///
473 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
474 ///                       the parts to print.
475 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
476 ///                          incorporate its own tracker when necessary to
477 ///                          determine the block's IR name.
478 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
479                                   ModuleSlotTracker *moduleSlotTracker) const {
480   os << "bb." << getNumber();
481   bool hasAttributes = false;
482 
483   if (printNameFlags & PrintNameIr) {
484     if (const auto *bb = getBasicBlock()) {
485       if (bb->hasName()) {
486         os << '.' << bb->getName();
487       } else {
488         hasAttributes = true;
489         os << " (";
490 
491         int slot = -1;
492 
493         if (moduleSlotTracker) {
494           slot = moduleSlotTracker->getLocalSlot(bb);
495         } else if (bb->getParent()) {
496           ModuleSlotTracker tmpTracker(bb->getModule(), false);
497           tmpTracker.incorporateFunction(*bb->getParent());
498           slot = tmpTracker.getLocalSlot(bb);
499         }
500 
501         if (slot == -1)
502           os << "<ir-block badref>";
503         else
504           os << (Twine("%ir-block.") + Twine(slot)).str();
505       }
506     }
507   }
508 
509   if (printNameFlags & PrintNameAttributes) {
510     if (hasAddressTaken()) {
511       os << (hasAttributes ? ", " : " (");
512       os << "address-taken";
513       hasAttributes = true;
514     }
515     if (isEHPad()) {
516       os << (hasAttributes ? ", " : " (");
517       os << "landing-pad";
518       hasAttributes = true;
519     }
520     if (isInlineAsmBrIndirectTarget()) {
521       os << (hasAttributes ? ", " : " (");
522       os << "inlineasm-br-indirect-target";
523       hasAttributes = true;
524     }
525     if (isEHFuncletEntry()) {
526       os << (hasAttributes ? ", " : " (");
527       os << "ehfunclet-entry";
528       hasAttributes = true;
529     }
530     if (getAlignment() != Align(1)) {
531       os << (hasAttributes ? ", " : " (");
532       os << "align " << getAlignment().value();
533       hasAttributes = true;
534     }
535     if (getSectionID() != MBBSectionID(0)) {
536       os << (hasAttributes ? ", " : " (");
537       os << "bbsections ";
538       switch (getSectionID().Type) {
539       case MBBSectionID::SectionType::Exception:
540         os << "Exception";
541         break;
542       case MBBSectionID::SectionType::Cold:
543         os << "Cold";
544         break;
545       default:
546         os << getSectionID().Number;
547       }
548       hasAttributes = true;
549     }
550   }
551 
552   if (hasAttributes)
553     os << ')';
554 }
555 
556 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
557                                        bool /*PrintType*/) const {
558   OS << '%';
559   printName(OS, 0);
560 }
561 
562 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
563   LiveInVector::iterator I = find_if(
564       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
565   if (I == LiveIns.end())
566     return;
567 
568   I->LaneMask &= ~LaneMask;
569   if (I->LaneMask.none())
570     LiveIns.erase(I);
571 }
572 
573 MachineBasicBlock::livein_iterator
574 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
575   // Get non-const version of iterator.
576   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
577   return LiveIns.erase(LI);
578 }
579 
580 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
581   livein_iterator I = find_if(
582       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
583   return I != livein_end() && (I->LaneMask & LaneMask).any();
584 }
585 
586 void MachineBasicBlock::sortUniqueLiveIns() {
587   llvm::sort(LiveIns,
588              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
589                return LI0.PhysReg < LI1.PhysReg;
590              });
591   // Liveins are sorted by physreg now we can merge their lanemasks.
592   LiveInVector::const_iterator I = LiveIns.begin();
593   LiveInVector::const_iterator J;
594   LiveInVector::iterator Out = LiveIns.begin();
595   for (; I != LiveIns.end(); ++Out, I = J) {
596     MCRegister PhysReg = I->PhysReg;
597     LaneBitmask LaneMask = I->LaneMask;
598     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
599       LaneMask |= J->LaneMask;
600     Out->PhysReg = PhysReg;
601     Out->LaneMask = LaneMask;
602   }
603   LiveIns.erase(Out, LiveIns.end());
604 }
605 
606 Register
607 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
608   assert(getParent() && "MBB must be inserted in function");
609   assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
610   assert(RC && "Register class is required");
611   assert((isEHPad() || this == &getParent()->front()) &&
612          "Only the entry block and landing pads can have physreg live ins");
613 
614   bool LiveIn = isLiveIn(PhysReg);
615   iterator I = SkipPHIsAndLabels(begin()), E = end();
616   MachineRegisterInfo &MRI = getParent()->getRegInfo();
617   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
618 
619   // Look for an existing copy.
620   if (LiveIn)
621     for (;I != E && I->isCopy(); ++I)
622       if (I->getOperand(1).getReg() == PhysReg) {
623         Register VirtReg = I->getOperand(0).getReg();
624         if (!MRI.constrainRegClass(VirtReg, RC))
625           llvm_unreachable("Incompatible live-in register class.");
626         return VirtReg;
627       }
628 
629   // No luck, create a virtual register.
630   Register VirtReg = MRI.createVirtualRegister(RC);
631   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
632     .addReg(PhysReg, RegState::Kill);
633   if (!LiveIn)
634     addLiveIn(PhysReg);
635   return VirtReg;
636 }
637 
638 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
639   getParent()->splice(NewAfter->getIterator(), getIterator());
640 }
641 
642 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
643   getParent()->splice(++NewBefore->getIterator(), getIterator());
644 }
645 
646 void MachineBasicBlock::updateTerminator(
647     MachineBasicBlock *PreviousLayoutSuccessor) {
648   LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
649                     << "\n");
650 
651   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
652   // A block with no successors has no concerns with fall-through edges.
653   if (this->succ_empty())
654     return;
655 
656   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
657   SmallVector<MachineOperand, 4> Cond;
658   DebugLoc DL = findBranchDebugLoc();
659   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
660   (void) B;
661   assert(!B && "UpdateTerminators requires analyzable predecessors!");
662   if (Cond.empty()) {
663     if (TBB) {
664       // The block has an unconditional branch. If its successor is now its
665       // layout successor, delete the branch.
666       if (isLayoutSuccessor(TBB))
667         TII->removeBranch(*this);
668     } else {
669       // The block has an unconditional fallthrough, or the end of the block is
670       // unreachable.
671 
672       // Unfortunately, whether the end of the block is unreachable is not
673       // immediately obvious; we must fall back to checking the successor list,
674       // and assuming that if the passed in block is in the succesor list and
675       // not an EHPad, it must be the intended target.
676       if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
677           PreviousLayoutSuccessor->isEHPad())
678         return;
679 
680       // If the unconditional successor block is not the current layout
681       // successor, insert a branch to jump to it.
682       if (!isLayoutSuccessor(PreviousLayoutSuccessor))
683         TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
684     }
685     return;
686   }
687 
688   if (FBB) {
689     // The block has a non-fallthrough conditional branch. If one of its
690     // successors is its layout successor, rewrite it to a fallthrough
691     // conditional branch.
692     if (isLayoutSuccessor(TBB)) {
693       if (TII->reverseBranchCondition(Cond))
694         return;
695       TII->removeBranch(*this);
696       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
697     } else if (isLayoutSuccessor(FBB)) {
698       TII->removeBranch(*this);
699       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
700     }
701     return;
702   }
703 
704   // We now know we're going to fallthrough to PreviousLayoutSuccessor.
705   assert(PreviousLayoutSuccessor);
706   assert(!PreviousLayoutSuccessor->isEHPad());
707   assert(isSuccessor(PreviousLayoutSuccessor));
708 
709   if (PreviousLayoutSuccessor == TBB) {
710     // We had a fallthrough to the same basic block as the conditional jump
711     // targets.  Remove the conditional jump, leaving an unconditional
712     // fallthrough or an unconditional jump.
713     TII->removeBranch(*this);
714     if (!isLayoutSuccessor(TBB)) {
715       Cond.clear();
716       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
717     }
718     return;
719   }
720 
721   // The block has a fallthrough conditional branch.
722   if (isLayoutSuccessor(TBB)) {
723     if (TII->reverseBranchCondition(Cond)) {
724       // We can't reverse the condition, add an unconditional branch.
725       Cond.clear();
726       TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
727       return;
728     }
729     TII->removeBranch(*this);
730     TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
731   } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
732     TII->removeBranch(*this);
733     TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
734   }
735 }
736 
737 void MachineBasicBlock::validateSuccProbs() const {
738 #ifndef NDEBUG
739   int64_t Sum = 0;
740   for (auto Prob : Probs)
741     Sum += Prob.getNumerator();
742   // Due to precision issue, we assume that the sum of probabilities is one if
743   // the difference between the sum of their numerators and the denominator is
744   // no greater than the number of successors.
745   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
746              Probs.size() &&
747          "The sum of successors's probabilities exceeds one.");
748 #endif // NDEBUG
749 }
750 
751 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
752                                      BranchProbability Prob) {
753   // Probability list is either empty (if successor list isn't empty, this means
754   // disabled optimization) or has the same size as successor list.
755   if (!(Probs.empty() && !Successors.empty()))
756     Probs.push_back(Prob);
757   Successors.push_back(Succ);
758   Succ->addPredecessor(this);
759 }
760 
761 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
762   // We need to make sure probability list is either empty or has the same size
763   // of successor list. When this function is called, we can safely delete all
764   // probability in the list.
765   Probs.clear();
766   Successors.push_back(Succ);
767   Succ->addPredecessor(this);
768 }
769 
770 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
771                                        MachineBasicBlock *New,
772                                        bool NormalizeSuccProbs) {
773   succ_iterator OldI = llvm::find(successors(), Old);
774   assert(OldI != succ_end() && "Old is not a successor of this block!");
775   assert(!llvm::is_contained(successors(), New) &&
776          "New is already a successor of this block!");
777 
778   // Add a new successor with equal probability as the original one. Note
779   // that we directly copy the probability using the iterator rather than
780   // getting a potentially synthetic probability computed when unknown. This
781   // preserves the probabilities as-is and then we can renormalize them and
782   // query them effectively afterward.
783   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
784                                   : *getProbabilityIterator(OldI));
785   if (NormalizeSuccProbs)
786     normalizeSuccProbs();
787 }
788 
789 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
790                                         bool NormalizeSuccProbs) {
791   succ_iterator I = find(Successors, Succ);
792   removeSuccessor(I, NormalizeSuccProbs);
793 }
794 
795 MachineBasicBlock::succ_iterator
796 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
797   assert(I != Successors.end() && "Not a current successor!");
798 
799   // If probability list is empty it means we don't use it (disabled
800   // optimization).
801   if (!Probs.empty()) {
802     probability_iterator WI = getProbabilityIterator(I);
803     Probs.erase(WI);
804     if (NormalizeSuccProbs)
805       normalizeSuccProbs();
806   }
807 
808   (*I)->removePredecessor(this);
809   return Successors.erase(I);
810 }
811 
812 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
813                                          MachineBasicBlock *New) {
814   if (Old == New)
815     return;
816 
817   succ_iterator E = succ_end();
818   succ_iterator NewI = E;
819   succ_iterator OldI = E;
820   for (succ_iterator I = succ_begin(); I != E; ++I) {
821     if (*I == Old) {
822       OldI = I;
823       if (NewI != E)
824         break;
825     }
826     if (*I == New) {
827       NewI = I;
828       if (OldI != E)
829         break;
830     }
831   }
832   assert(OldI != E && "Old is not a successor of this block");
833 
834   // If New isn't already a successor, let it take Old's place.
835   if (NewI == E) {
836     Old->removePredecessor(this);
837     New->addPredecessor(this);
838     *OldI = New;
839     return;
840   }
841 
842   // New is already a successor.
843   // Update its probability instead of adding a duplicate edge.
844   if (!Probs.empty()) {
845     auto ProbIter = getProbabilityIterator(NewI);
846     if (!ProbIter->isUnknown())
847       *ProbIter += *getProbabilityIterator(OldI);
848   }
849   removeSuccessor(OldI);
850 }
851 
852 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
853                                       succ_iterator I) {
854   if (!Orig->Probs.empty())
855     addSuccessor(*I, Orig->getSuccProbability(I));
856   else
857     addSuccessorWithoutProb(*I);
858 }
859 
860 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
861   Predecessors.push_back(Pred);
862 }
863 
864 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
865   pred_iterator I = find(Predecessors, Pred);
866   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
867   Predecessors.erase(I);
868 }
869 
870 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
871   if (this == FromMBB)
872     return;
873 
874   while (!FromMBB->succ_empty()) {
875     MachineBasicBlock *Succ = *FromMBB->succ_begin();
876 
877     // If probability list is empty it means we don't use it (disabled
878     // optimization).
879     if (!FromMBB->Probs.empty()) {
880       auto Prob = *FromMBB->Probs.begin();
881       addSuccessor(Succ, Prob);
882     } else
883       addSuccessorWithoutProb(Succ);
884 
885     FromMBB->removeSuccessor(Succ);
886   }
887 }
888 
889 void
890 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
891   if (this == FromMBB)
892     return;
893 
894   while (!FromMBB->succ_empty()) {
895     MachineBasicBlock *Succ = *FromMBB->succ_begin();
896     if (!FromMBB->Probs.empty()) {
897       auto Prob = *FromMBB->Probs.begin();
898       addSuccessor(Succ, Prob);
899     } else
900       addSuccessorWithoutProb(Succ);
901     FromMBB->removeSuccessor(Succ);
902 
903     // Fix up any PHI nodes in the successor.
904     Succ->replacePhiUsesWith(FromMBB, this);
905   }
906   normalizeSuccProbs();
907 }
908 
909 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
910   return is_contained(predecessors(), MBB);
911 }
912 
913 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
914   return is_contained(successors(), MBB);
915 }
916 
917 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
918   MachineFunction::const_iterator I(this);
919   return std::next(I) == MachineFunction::const_iterator(MBB);
920 }
921 
922 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
923   MachineFunction::iterator Fallthrough = getIterator();
924   ++Fallthrough;
925   // If FallthroughBlock is off the end of the function, it can't fall through.
926   if (Fallthrough == getParent()->end())
927     return nullptr;
928 
929   // If FallthroughBlock isn't a successor, no fallthrough is possible.
930   if (!isSuccessor(&*Fallthrough))
931     return nullptr;
932 
933   // Analyze the branches, if any, at the end of the block.
934   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
935   SmallVector<MachineOperand, 4> Cond;
936   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
937   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
938     // If we couldn't analyze the branch, examine the last instruction.
939     // If the block doesn't end in a known control barrier, assume fallthrough
940     // is possible. The isPredicated check is needed because this code can be
941     // called during IfConversion, where an instruction which is normally a
942     // Barrier is predicated and thus no longer an actual control barrier.
943     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
944                ? &*Fallthrough
945                : nullptr;
946   }
947 
948   // If there is no branch, control always falls through.
949   if (!TBB) return &*Fallthrough;
950 
951   // If there is some explicit branch to the fallthrough block, it can obviously
952   // reach, even though the branch should get folded to fall through implicitly.
953   if (MachineFunction::iterator(TBB) == Fallthrough ||
954       MachineFunction::iterator(FBB) == Fallthrough)
955     return &*Fallthrough;
956 
957   // If it's an unconditional branch to some block not the fall through, it
958   // doesn't fall through.
959   if (Cond.empty()) return nullptr;
960 
961   // Otherwise, if it is conditional and has no explicit false block, it falls
962   // through.
963   return (FBB == nullptr) ? &*Fallthrough : nullptr;
964 }
965 
966 bool MachineBasicBlock::canFallThrough() {
967   return getFallThrough() != nullptr;
968 }
969 
970 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
971                                               bool UpdateLiveIns,
972                                               LiveIntervals *LIS) {
973   MachineBasicBlock::iterator SplitPoint(&MI);
974   ++SplitPoint;
975 
976   if (SplitPoint == end()) {
977     // Don't bother with a new block.
978     return this;
979   }
980 
981   MachineFunction *MF = getParent();
982 
983   LivePhysRegs LiveRegs;
984   if (UpdateLiveIns) {
985     // Make sure we add any physregs we define in the block as liveins to the
986     // new block.
987     MachineBasicBlock::iterator Prev(&MI);
988     LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
989     LiveRegs.addLiveOuts(*this);
990     for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
991       LiveRegs.stepBackward(*I);
992   }
993 
994   MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
995 
996   MF->insert(++MachineFunction::iterator(this), SplitBB);
997   SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
998 
999   SplitBB->transferSuccessorsAndUpdatePHIs(this);
1000   addSuccessor(SplitBB);
1001 
1002   if (UpdateLiveIns)
1003     addLiveIns(*SplitBB, LiveRegs);
1004 
1005   if (LIS)
1006     LIS->insertMBBInMaps(SplitBB);
1007 
1008   return SplitBB;
1009 }
1010 
1011 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1012     MachineBasicBlock *Succ, Pass &P,
1013     std::vector<SparseBitVector<>> *LiveInSets) {
1014   if (!canSplitCriticalEdge(Succ))
1015     return nullptr;
1016 
1017   MachineFunction *MF = getParent();
1018   MachineBasicBlock *PrevFallthrough = getNextNode();
1019   DebugLoc DL;  // FIXME: this is nowhere
1020 
1021   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1022   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1023   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1024                     << " -- " << printMBBReference(*NMBB) << " -- "
1025                     << printMBBReference(*Succ) << '\n');
1026 
1027   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1028   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1029   if (LIS)
1030     LIS->insertMBBInMaps(NMBB);
1031   else if (Indexes)
1032     Indexes->insertMBBInMaps(NMBB);
1033 
1034   // On some targets like Mips, branches may kill virtual registers. Make sure
1035   // that LiveVariables is properly updated after updateTerminator replaces the
1036   // terminators.
1037   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1038 
1039   // Collect a list of virtual registers killed by the terminators.
1040   SmallVector<Register, 4> KilledRegs;
1041   if (LV)
1042     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1043          I != E; ++I) {
1044       MachineInstr *MI = &*I;
1045       for (MachineOperand &MO : MI->operands()) {
1046         if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse() || !MO.isKill() ||
1047             MO.isUndef())
1048           continue;
1049         Register Reg = MO.getReg();
1050         if (Register::isPhysicalRegister(Reg) ||
1051             LV->getVarInfo(Reg).removeKill(*MI)) {
1052           KilledRegs.push_back(Reg);
1053           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1054           MO.setIsKill(false);
1055         }
1056       }
1057     }
1058 
1059   SmallVector<Register, 4> UsedRegs;
1060   if (LIS) {
1061     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1062          I != E; ++I) {
1063       MachineInstr *MI = &*I;
1064 
1065       for (const MachineOperand &MO : MI->operands()) {
1066         if (!MO.isReg() || MO.getReg() == 0)
1067           continue;
1068 
1069         Register Reg = MO.getReg();
1070         if (!is_contained(UsedRegs, Reg))
1071           UsedRegs.push_back(Reg);
1072       }
1073     }
1074   }
1075 
1076   ReplaceUsesOfBlockWith(Succ, NMBB);
1077 
1078   // If updateTerminator() removes instructions, we need to remove them from
1079   // SlotIndexes.
1080   SmallVector<MachineInstr*, 4> Terminators;
1081   if (Indexes) {
1082     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1083          I != E; ++I)
1084       Terminators.push_back(&*I);
1085   }
1086 
1087   // Since we replaced all uses of Succ with NMBB, that should also be treated
1088   // as the fallthrough successor
1089   if (Succ == PrevFallthrough)
1090     PrevFallthrough = NMBB;
1091   updateTerminator(PrevFallthrough);
1092 
1093   if (Indexes) {
1094     SmallVector<MachineInstr*, 4> NewTerminators;
1095     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1096          I != E; ++I)
1097       NewTerminators.push_back(&*I);
1098 
1099     for (MachineInstr *Terminator : Terminators) {
1100       if (!is_contained(NewTerminators, Terminator))
1101         Indexes->removeMachineInstrFromMaps(*Terminator);
1102     }
1103   }
1104 
1105   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1106   NMBB->addSuccessor(Succ);
1107   if (!NMBB->isLayoutSuccessor(Succ)) {
1108     SmallVector<MachineOperand, 4> Cond;
1109     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1110     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1111 
1112     if (Indexes) {
1113       for (MachineInstr &MI : NMBB->instrs()) {
1114         // Some instructions may have been moved to NMBB by updateTerminator(),
1115         // so we first remove any instruction that already has an index.
1116         if (Indexes->hasIndex(MI))
1117           Indexes->removeMachineInstrFromMaps(MI);
1118         Indexes->insertMachineInstrInMaps(MI);
1119       }
1120     }
1121   }
1122 
1123   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1124   Succ->replacePhiUsesWith(this, NMBB);
1125 
1126   // Inherit live-ins from the successor
1127   for (const auto &LI : Succ->liveins())
1128     NMBB->addLiveIn(LI);
1129 
1130   // Update LiveVariables.
1131   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1132   if (LV) {
1133     // Restore kills of virtual registers that were killed by the terminators.
1134     while (!KilledRegs.empty()) {
1135       Register Reg = KilledRegs.pop_back_val();
1136       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1137         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1138           continue;
1139         if (Register::isVirtualRegister(Reg))
1140           LV->getVarInfo(Reg).Kills.push_back(&*I);
1141         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1142         break;
1143       }
1144     }
1145     // Update relevant live-through information.
1146     if (LiveInSets != nullptr)
1147       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1148     else
1149       LV->addNewBlock(NMBB, this, Succ);
1150   }
1151 
1152   if (LIS) {
1153     // After splitting the edge and updating SlotIndexes, live intervals may be
1154     // in one of two situations, depending on whether this block was the last in
1155     // the function. If the original block was the last in the function, all
1156     // live intervals will end prior to the beginning of the new split block. If
1157     // the original block was not at the end of the function, all live intervals
1158     // will extend to the end of the new split block.
1159 
1160     bool isLastMBB =
1161       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1162 
1163     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1164     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1165     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1166 
1167     // Find the registers used from NMBB in PHIs in Succ.
1168     SmallSet<Register, 8> PHISrcRegs;
1169     for (MachineBasicBlock::instr_iterator
1170          I = Succ->instr_begin(), E = Succ->instr_end();
1171          I != E && I->isPHI(); ++I) {
1172       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1173         if (I->getOperand(ni+1).getMBB() == NMBB) {
1174           MachineOperand &MO = I->getOperand(ni);
1175           Register Reg = MO.getReg();
1176           PHISrcRegs.insert(Reg);
1177           if (MO.isUndef())
1178             continue;
1179 
1180           LiveInterval &LI = LIS->getInterval(Reg);
1181           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1182           assert(VNI &&
1183                  "PHI sources should be live out of their predecessors.");
1184           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1185         }
1186       }
1187     }
1188 
1189     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1190     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1191       Register Reg = Register::index2VirtReg(i);
1192       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1193         continue;
1194 
1195       LiveInterval &LI = LIS->getInterval(Reg);
1196       if (!LI.liveAt(PrevIndex))
1197         continue;
1198 
1199       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1200       if (isLiveOut && isLastMBB) {
1201         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1202         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1203         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1204       } else if (!isLiveOut && !isLastMBB) {
1205         LI.removeSegment(StartIndex, EndIndex);
1206       }
1207     }
1208 
1209     // Update all intervals for registers whose uses may have been modified by
1210     // updateTerminator().
1211     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1212   }
1213 
1214   if (MachineDominatorTree *MDT =
1215           P.getAnalysisIfAvailable<MachineDominatorTree>())
1216     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1217 
1218   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1219     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1220       // If one or the other blocks were not in a loop, the new block is not
1221       // either, and thus LI doesn't need to be updated.
1222       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1223         if (TIL == DestLoop) {
1224           // Both in the same loop, the NMBB joins loop.
1225           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1226         } else if (TIL->contains(DestLoop)) {
1227           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1228           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1229         } else if (DestLoop->contains(TIL)) {
1230           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1231           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1232         } else {
1233           // Edge from two loops with no containment relation.  Because these
1234           // are natural loops, we know that the destination block must be the
1235           // header of its loop (adding a branch into a loop elsewhere would
1236           // create an irreducible loop).
1237           assert(DestLoop->getHeader() == Succ &&
1238                  "Should not create irreducible loops!");
1239           if (MachineLoop *P = DestLoop->getParentLoop())
1240             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1241         }
1242       }
1243     }
1244 
1245   return NMBB;
1246 }
1247 
1248 bool MachineBasicBlock::canSplitCriticalEdge(
1249     const MachineBasicBlock *Succ) const {
1250   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1251   // it in this generic function.
1252   if (Succ->isEHPad())
1253     return false;
1254 
1255   // Splitting the critical edge to a callbr's indirect block isn't advised.
1256   // Don't do it in this generic function.
1257   if (Succ->isInlineAsmBrIndirectTarget())
1258     return false;
1259 
1260   const MachineFunction *MF = getParent();
1261   // Performance might be harmed on HW that implements branching using exec mask
1262   // where both sides of the branches are always executed.
1263   if (MF->getTarget().requiresStructuredCFG())
1264     return false;
1265 
1266   // We may need to update this's terminator, but we can't do that if
1267   // analyzeBranch fails. If this uses a jump table, we won't touch it.
1268   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1269   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1270   SmallVector<MachineOperand, 4> Cond;
1271   // AnalyzeBanch should modify this, since we did not allow modification.
1272   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1273                          /*AllowModify*/ false))
1274     return false;
1275 
1276   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1277   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1278   // case that we can't handle. Since this never happens in properly optimized
1279   // code, just skip those edges.
1280   if (TBB && TBB == FBB) {
1281     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1282                       << printMBBReference(*this) << '\n');
1283     return false;
1284   }
1285   return true;
1286 }
1287 
1288 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1289 /// neighboring instructions so the bundle won't be broken by removing MI.
1290 static void unbundleSingleMI(MachineInstr *MI) {
1291   // Removing the first instruction in a bundle.
1292   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1293     MI->unbundleFromSucc();
1294   // Removing the last instruction in a bundle.
1295   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1296     MI->unbundleFromPred();
1297   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1298   // are already fine.
1299 }
1300 
1301 MachineBasicBlock::instr_iterator
1302 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1303   unbundleSingleMI(&*I);
1304   return Insts.erase(I);
1305 }
1306 
1307 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1308   unbundleSingleMI(MI);
1309   MI->clearFlag(MachineInstr::BundledPred);
1310   MI->clearFlag(MachineInstr::BundledSucc);
1311   return Insts.remove(MI);
1312 }
1313 
1314 MachineBasicBlock::instr_iterator
1315 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1316   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1317          "Cannot insert instruction with bundle flags");
1318   // Set the bundle flags when inserting inside a bundle.
1319   if (I != instr_end() && I->isBundledWithPred()) {
1320     MI->setFlag(MachineInstr::BundledPred);
1321     MI->setFlag(MachineInstr::BundledSucc);
1322   }
1323   return Insts.insert(I, MI);
1324 }
1325 
1326 /// This method unlinks 'this' from the containing function, and returns it, but
1327 /// does not delete it.
1328 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1329   assert(getParent() && "Not embedded in a function!");
1330   getParent()->remove(this);
1331   return this;
1332 }
1333 
1334 /// This method unlinks 'this' from the containing function, and deletes it.
1335 void MachineBasicBlock::eraseFromParent() {
1336   assert(getParent() && "Not embedded in a function!");
1337   getParent()->erase(this);
1338 }
1339 
1340 /// Given a machine basic block that branched to 'Old', change the code and CFG
1341 /// so that it branches to 'New' instead.
1342 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1343                                                MachineBasicBlock *New) {
1344   assert(Old != New && "Cannot replace self with self!");
1345 
1346   MachineBasicBlock::instr_iterator I = instr_end();
1347   while (I != instr_begin()) {
1348     --I;
1349     if (!I->isTerminator()) break;
1350 
1351     // Scan the operands of this machine instruction, replacing any uses of Old
1352     // with New.
1353     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1354       if (I->getOperand(i).isMBB() &&
1355           I->getOperand(i).getMBB() == Old)
1356         I->getOperand(i).setMBB(New);
1357   }
1358 
1359   // Update the successor information.
1360   replaceSuccessor(Old, New);
1361 }
1362 
1363 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1364                                            MachineBasicBlock *New) {
1365   for (MachineInstr &MI : phis())
1366     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1367       MachineOperand &MO = MI.getOperand(i);
1368       if (MO.getMBB() == Old)
1369         MO.setMBB(New);
1370     }
1371 }
1372 
1373 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1374 /// instructions.  Return UnknownLoc if there is none.
1375 DebugLoc
1376 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1377   // Skip debug declarations, we don't want a DebugLoc from them.
1378   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1379   if (MBBI != instr_end())
1380     return MBBI->getDebugLoc();
1381   return {};
1382 }
1383 
1384 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1385   // Skip debug declarations, we don't want a DebugLoc from them.
1386   MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1387   if (!MBBI->isDebugInstr())
1388     return MBBI->getDebugLoc();
1389   return {};
1390 }
1391 
1392 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1393 /// instructions.  Return UnknownLoc if there is none.
1394 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1395   if (MBBI == instr_begin()) return {};
1396   // Skip debug instructions, we don't want a DebugLoc from them.
1397   MBBI = prev_nodbg(MBBI, instr_begin());
1398   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1399   return {};
1400 }
1401 
1402 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1403   if (MBBI == instr_rend())
1404     return {};
1405   // Skip debug declarations, we don't want a DebugLoc from them.
1406   MBBI = next_nodbg(MBBI, instr_rend());
1407   if (MBBI != instr_rend())
1408     return MBBI->getDebugLoc();
1409   return {};
1410 }
1411 
1412 /// Find and return the merged DebugLoc of the branch instructions of the block.
1413 /// Return UnknownLoc if there is none.
1414 DebugLoc
1415 MachineBasicBlock::findBranchDebugLoc() {
1416   DebugLoc DL;
1417   auto TI = getFirstTerminator();
1418   while (TI != end() && !TI->isBranch())
1419     ++TI;
1420 
1421   if (TI != end()) {
1422     DL = TI->getDebugLoc();
1423     for (++TI ; TI != end() ; ++TI)
1424       if (TI->isBranch())
1425         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1426   }
1427   return DL;
1428 }
1429 
1430 /// Return probability of the edge from this block to MBB.
1431 BranchProbability
1432 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1433   if (Probs.empty())
1434     return BranchProbability(1, succ_size());
1435 
1436   const auto &Prob = *getProbabilityIterator(Succ);
1437   if (Prob.isUnknown()) {
1438     // For unknown probabilities, collect the sum of all known ones, and evenly
1439     // ditribute the complemental of the sum to each unknown probability.
1440     unsigned KnownProbNum = 0;
1441     auto Sum = BranchProbability::getZero();
1442     for (auto &P : Probs) {
1443       if (!P.isUnknown()) {
1444         Sum += P;
1445         KnownProbNum++;
1446       }
1447     }
1448     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1449   } else
1450     return Prob;
1451 }
1452 
1453 /// Set successor probability of a given iterator.
1454 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1455                                            BranchProbability Prob) {
1456   assert(!Prob.isUnknown());
1457   if (Probs.empty())
1458     return;
1459   *getProbabilityIterator(I) = Prob;
1460 }
1461 
1462 /// Return probability iterator corresonding to the I successor iterator
1463 MachineBasicBlock::const_probability_iterator
1464 MachineBasicBlock::getProbabilityIterator(
1465     MachineBasicBlock::const_succ_iterator I) const {
1466   assert(Probs.size() == Successors.size() && "Async probability list!");
1467   const size_t index = std::distance(Successors.begin(), I);
1468   assert(index < Probs.size() && "Not a current successor!");
1469   return Probs.begin() + index;
1470 }
1471 
1472 /// Return probability iterator corresonding to the I successor iterator.
1473 MachineBasicBlock::probability_iterator
1474 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1475   assert(Probs.size() == Successors.size() && "Async probability list!");
1476   const size_t index = std::distance(Successors.begin(), I);
1477   assert(index < Probs.size() && "Not a current successor!");
1478   return Probs.begin() + index;
1479 }
1480 
1481 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1482 /// as of just before "MI".
1483 ///
1484 /// Search is localised to a neighborhood of
1485 /// Neighborhood instructions before (searching for defs or kills) and N
1486 /// instructions after (searching just for defs) MI.
1487 MachineBasicBlock::LivenessQueryResult
1488 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1489                                            MCRegister Reg, const_iterator Before,
1490                                            unsigned Neighborhood) const {
1491   unsigned N = Neighborhood;
1492 
1493   // Try searching forwards from Before, looking for reads or defs.
1494   const_iterator I(Before);
1495   for (; I != end() && N > 0; ++I) {
1496     if (I->isDebugOrPseudoInstr())
1497       continue;
1498 
1499     --N;
1500 
1501     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1502 
1503     // Register is live when we read it here.
1504     if (Info.Read)
1505       return LQR_Live;
1506     // Register is dead if we can fully overwrite or clobber it here.
1507     if (Info.FullyDefined || Info.Clobbered)
1508       return LQR_Dead;
1509   }
1510 
1511   // If we reached the end, it is safe to clobber Reg at the end of a block of
1512   // no successor has it live in.
1513   if (I == end()) {
1514     for (MachineBasicBlock *S : successors()) {
1515       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1516         if (TRI->regsOverlap(LI.PhysReg, Reg))
1517           return LQR_Live;
1518       }
1519     }
1520 
1521     return LQR_Dead;
1522   }
1523 
1524 
1525   N = Neighborhood;
1526 
1527   // Start by searching backwards from Before, looking for kills, reads or defs.
1528   I = const_iterator(Before);
1529   // If this is the first insn in the block, don't search backwards.
1530   if (I != begin()) {
1531     do {
1532       --I;
1533 
1534       if (I->isDebugOrPseudoInstr())
1535         continue;
1536 
1537       --N;
1538 
1539       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1540 
1541       // Defs happen after uses so they take precedence if both are present.
1542 
1543       // Register is dead after a dead def of the full register.
1544       if (Info.DeadDef)
1545         return LQR_Dead;
1546       // Register is (at least partially) live after a def.
1547       if (Info.Defined) {
1548         if (!Info.PartialDeadDef)
1549           return LQR_Live;
1550         // As soon as we saw a partial definition (dead or not),
1551         // we cannot tell if the value is partial live without
1552         // tracking the lanemasks. We are not going to do this,
1553         // so fall back on the remaining of the analysis.
1554         break;
1555       }
1556       // Register is dead after a full kill or clobber and no def.
1557       if (Info.Killed || Info.Clobbered)
1558         return LQR_Dead;
1559       // Register must be live if we read it.
1560       if (Info.Read)
1561         return LQR_Live;
1562 
1563     } while (I != begin() && N > 0);
1564   }
1565 
1566   // If all the instructions before this in the block are debug instructions,
1567   // skip over them.
1568   while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1569     --I;
1570 
1571   // Did we get to the start of the block?
1572   if (I == begin()) {
1573     // If so, the register's state is definitely defined by the live-in state.
1574     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1575       if (TRI->regsOverlap(LI.PhysReg, Reg))
1576         return LQR_Live;
1577 
1578     return LQR_Dead;
1579   }
1580 
1581   // At this point we have no idea of the liveness of the register.
1582   return LQR_Unknown;
1583 }
1584 
1585 const uint32_t *
1586 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1587   // EH funclet entry does not preserve any registers.
1588   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1589 }
1590 
1591 const uint32_t *
1592 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1593   // If we see a return block with successors, this must be a funclet return,
1594   // which does not preserve any registers. If there are no successors, we don't
1595   // care what kind of return it is, putting a mask after it is a no-op.
1596   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1597 }
1598 
1599 void MachineBasicBlock::clearLiveIns() {
1600   LiveIns.clear();
1601 }
1602 
1603 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1604   assert(getParent()->getProperties().hasProperty(
1605       MachineFunctionProperties::Property::TracksLiveness) &&
1606       "Liveness information is accurate");
1607   return LiveIns.begin();
1608 }
1609 
1610 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1611   const MachineFunction &MF = *getParent();
1612   assert(MF.getProperties().hasProperty(
1613       MachineFunctionProperties::Property::TracksLiveness) &&
1614       "Liveness information is accurate");
1615 
1616   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1617   MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1618   if (MF.getFunction().hasPersonalityFn()) {
1619     auto PersonalityFn = MF.getFunction().getPersonalityFn();
1620     ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1621     ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1622   }
1623 
1624   return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1625 }
1626 
1627 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1628 const MBBSectionID
1629     MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1630