1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb) 42 : BB(bb), Number(-1), xParent(&mf) { 43 Insts.Parent = this; 44 } 45 46 MachineBasicBlock::~MachineBasicBlock() { 47 } 48 49 /// Return the MCSymbol for this basic block. 50 MCSymbol *MachineBasicBlock::getSymbol() const { 51 if (!CachedMCSymbol) { 52 const MachineFunction *MF = getParent(); 53 MCContext &Ctx = MF->getContext(); 54 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 55 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 56 Twine(MF->getFunctionNumber()) + 57 "_" + Twine(getNumber())); 58 } 59 60 return CachedMCSymbol; 61 } 62 63 64 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 65 MBB.print(OS); 66 return OS; 67 } 68 69 /// When an MBB is added to an MF, we need to update the parent pointer of the 70 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 71 /// operand list for registers. 72 /// 73 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 74 /// gets the next available unique MBB number. If it is removed from a 75 /// MachineFunction, it goes back to being #-1. 76 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 77 MachineFunction &MF = *N->getParent(); 78 N->Number = MF.addToMBBNumbering(N); 79 80 // Make sure the instructions have their operands in the reginfo lists. 81 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 82 for (MachineBasicBlock::instr_iterator 83 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 84 I->AddRegOperandsToUseLists(RegInfo); 85 } 86 87 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 88 N->getParent()->removeFromMBBNumbering(N->Number); 89 N->Number = -1; 90 } 91 92 /// When we add an instruction to a basic block list, we update its parent 93 /// pointer and add its operands from reg use/def lists if appropriate. 94 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 95 assert(!N->getParent() && "machine instruction already in a basic block"); 96 N->setParent(Parent); 97 98 // Add the instruction's register operands to their corresponding 99 // use/def lists. 100 MachineFunction *MF = Parent->getParent(); 101 N->AddRegOperandsToUseLists(MF->getRegInfo()); 102 } 103 104 /// When we remove an instruction from a basic block list, we update its parent 105 /// pointer and remove its operands from reg use/def lists if appropriate. 106 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 107 assert(N->getParent() && "machine instruction not in a basic block"); 108 109 // Remove from the use/def lists. 110 if (MachineFunction *MF = N->getParent()->getParent()) 111 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 112 113 N->setParent(nullptr); 114 } 115 116 /// When moving a range of instructions from one MBB list to another, we need to 117 /// update the parent pointers and the use/def lists. 118 void ilist_traits<MachineInstr>:: 119 transferNodesFromList(ilist_traits<MachineInstr> &fromList, 120 ilist_iterator<MachineInstr> first, 121 ilist_iterator<MachineInstr> last) { 122 assert(Parent->getParent() == fromList.Parent->getParent() && 123 "MachineInstr parent mismatch!"); 124 125 // Splice within the same MBB -> no change. 126 if (Parent == fromList.Parent) return; 127 128 // If splicing between two blocks within the same function, just update the 129 // parent pointers. 130 for (; first != last; ++first) 131 first->setParent(Parent); 132 } 133 134 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 135 assert(!MI->getParent() && "MI is still in a block!"); 136 Parent->getParent()->DeleteMachineInstr(MI); 137 } 138 139 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 140 instr_iterator I = instr_begin(), E = instr_end(); 141 while (I != E && I->isPHI()) 142 ++I; 143 assert((I == E || !I->isInsideBundle()) && 144 "First non-phi MI cannot be inside a bundle!"); 145 return I; 146 } 147 148 MachineBasicBlock::iterator 149 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 150 iterator E = end(); 151 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 152 ++I; 153 // FIXME: This needs to change if we wish to bundle labels / dbg_values 154 // inside the bundle. 155 assert((I == E || !I->isInsideBundle()) && 156 "First non-phi / non-label instruction is inside a bundle!"); 157 return I; 158 } 159 160 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 161 iterator B = begin(), E = end(), I = E; 162 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 163 ; /*noop */ 164 while (I != E && !I->isTerminator()) 165 ++I; 166 return I; 167 } 168 169 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 170 instr_iterator B = instr_begin(), E = instr_end(), I = E; 171 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 172 ; /*noop */ 173 while (I != E && !I->isTerminator()) 174 ++I; 175 return I; 176 } 177 178 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 179 // Skip over begin-of-block dbg_value instructions. 180 iterator I = begin(), E = end(); 181 while (I != E && I->isDebugValue()) 182 ++I; 183 return I; 184 } 185 186 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 187 // Skip over end-of-block dbg_value instructions. 188 instr_iterator B = instr_begin(), I = instr_end(); 189 while (I != B) { 190 --I; 191 // Return instruction that starts a bundle. 192 if (I->isDebugValue() || I->isInsideBundle()) 193 continue; 194 return I; 195 } 196 // The block is all debug values. 197 return end(); 198 } 199 200 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 201 // A block with a landing pad successor only has one other successor. 202 if (succ_size() > 2) 203 return nullptr; 204 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 205 if ((*I)->isEHPad()) 206 return *I; 207 return nullptr; 208 } 209 210 bool MachineBasicBlock::hasEHPadSuccessor() const { 211 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 212 if ((*I)->isEHPad()) 213 return true; 214 return false; 215 } 216 217 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 218 void MachineBasicBlock::dump() const { 219 print(dbgs()); 220 } 221 #endif 222 223 StringRef MachineBasicBlock::getName() const { 224 if (const BasicBlock *LBB = getBasicBlock()) 225 return LBB->getName(); 226 else 227 return "(null)"; 228 } 229 230 /// Return a hopefully unique identifier for this block. 231 std::string MachineBasicBlock::getFullName() const { 232 std::string Name; 233 if (getParent()) 234 Name = (getParent()->getName() + ":").str(); 235 if (getBasicBlock()) 236 Name += getBasicBlock()->getName(); 237 else 238 Name += ("BB" + Twine(getNumber())).str(); 239 return Name; 240 } 241 242 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 243 const MachineFunction *MF = getParent(); 244 if (!MF) { 245 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 246 << " is null\n"; 247 return; 248 } 249 const Function *F = MF->getFunction(); 250 const Module *M = F ? F->getParent() : nullptr; 251 ModuleSlotTracker MST(M); 252 print(OS, MST, Indexes); 253 } 254 255 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 256 SlotIndexes *Indexes) const { 257 const MachineFunction *MF = getParent(); 258 if (!MF) { 259 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 260 << " is null\n"; 261 return; 262 } 263 264 if (Indexes) 265 OS << Indexes->getMBBStartIdx(this) << '\t'; 266 267 OS << "BB#" << getNumber() << ": "; 268 269 const char *Comma = ""; 270 if (const BasicBlock *LBB = getBasicBlock()) { 271 OS << Comma << "derived from LLVM BB "; 272 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 273 Comma = ", "; 274 } 275 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 276 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 277 if (Alignment) 278 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 279 << " bytes)"; 280 281 OS << '\n'; 282 283 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 284 if (!livein_empty()) { 285 if (Indexes) OS << '\t'; 286 OS << " Live Ins:"; 287 for (const auto &LI : make_range(livein_begin(), livein_end())) { 288 OS << ' ' << PrintReg(LI.PhysReg, TRI); 289 if (LI.LaneMask != ~0u) 290 OS << ':' << PrintLaneMask(LI.LaneMask); 291 } 292 OS << '\n'; 293 } 294 // Print the preds of this block according to the CFG. 295 if (!pred_empty()) { 296 if (Indexes) OS << '\t'; 297 OS << " Predecessors according to CFG:"; 298 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 299 OS << " BB#" << (*PI)->getNumber(); 300 OS << '\n'; 301 } 302 303 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 304 if (Indexes) { 305 if (Indexes->hasIndex(I)) 306 OS << Indexes->getInstructionIndex(I); 307 OS << '\t'; 308 } 309 OS << '\t'; 310 if (I->isInsideBundle()) 311 OS << " * "; 312 I->print(OS, MST); 313 } 314 315 // Print the successors of this block according to the CFG. 316 if (!succ_empty()) { 317 if (Indexes) OS << '\t'; 318 OS << " Successors according to CFG:"; 319 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 320 OS << " BB#" << (*SI)->getNumber(); 321 if (!Weights.empty()) 322 OS << '(' << *getWeightIterator(SI) << ')'; 323 } 324 OS << '\n'; 325 } 326 } 327 328 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 329 bool /*PrintType*/) const { 330 OS << "BB#" << getNumber(); 331 } 332 333 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 334 LiveInVector::iterator I = std::find_if( 335 LiveIns.begin(), LiveIns.end(), 336 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 337 if (I == LiveIns.end()) 338 return; 339 340 I->LaneMask &= ~LaneMask; 341 if (I->LaneMask == 0) 342 LiveIns.erase(I); 343 } 344 345 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 346 livein_iterator I = std::find_if( 347 LiveIns.begin(), LiveIns.end(), 348 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 349 return I != livein_end() && (I->LaneMask & LaneMask) != 0; 350 } 351 352 void MachineBasicBlock::sortUniqueLiveIns() { 353 std::sort(LiveIns.begin(), LiveIns.end(), 354 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 355 return LI0.PhysReg < LI1.PhysReg; 356 }); 357 // Liveins are sorted by physreg now we can merge their lanemasks. 358 LiveInVector::const_iterator I = LiveIns.begin(); 359 LiveInVector::const_iterator J; 360 LiveInVector::iterator Out = LiveIns.begin(); 361 for (; I != LiveIns.end(); ++Out, I = J) { 362 unsigned PhysReg = I->PhysReg; 363 LaneBitmask LaneMask = I->LaneMask; 364 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 365 LaneMask |= J->LaneMask; 366 Out->PhysReg = PhysReg; 367 Out->LaneMask = LaneMask; 368 } 369 LiveIns.erase(Out, LiveIns.end()); 370 } 371 372 unsigned 373 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 374 assert(getParent() && "MBB must be inserted in function"); 375 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 376 assert(RC && "Register class is required"); 377 assert((isEHPad() || this == &getParent()->front()) && 378 "Only the entry block and landing pads can have physreg live ins"); 379 380 bool LiveIn = isLiveIn(PhysReg); 381 iterator I = SkipPHIsAndLabels(begin()), E = end(); 382 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 383 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 384 385 // Look for an existing copy. 386 if (LiveIn) 387 for (;I != E && I->isCopy(); ++I) 388 if (I->getOperand(1).getReg() == PhysReg) { 389 unsigned VirtReg = I->getOperand(0).getReg(); 390 if (!MRI.constrainRegClass(VirtReg, RC)) 391 llvm_unreachable("Incompatible live-in register class."); 392 return VirtReg; 393 } 394 395 // No luck, create a virtual register. 396 unsigned VirtReg = MRI.createVirtualRegister(RC); 397 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 398 .addReg(PhysReg, RegState::Kill); 399 if (!LiveIn) 400 addLiveIn(PhysReg); 401 return VirtReg; 402 } 403 404 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 405 getParent()->splice(NewAfter, this); 406 } 407 408 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 409 MachineFunction::iterator BBI = NewBefore; 410 getParent()->splice(++BBI, this); 411 } 412 413 void MachineBasicBlock::updateTerminator() { 414 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 415 // A block with no successors has no concerns with fall-through edges. 416 if (this->succ_empty()) return; 417 418 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 419 SmallVector<MachineOperand, 4> Cond; 420 DebugLoc dl; // FIXME: this is nowhere 421 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 422 (void) B; 423 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 424 if (Cond.empty()) { 425 if (TBB) { 426 // The block has an unconditional branch. If its successor is now 427 // its layout successor, delete the branch. 428 if (isLayoutSuccessor(TBB)) 429 TII->RemoveBranch(*this); 430 } else { 431 // The block has an unconditional fallthrough. If its successor is not 432 // its layout successor, insert a branch. First we have to locate the 433 // only non-landing-pad successor, as that is the fallthrough block. 434 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 435 if ((*SI)->isEHPad()) 436 continue; 437 assert(!TBB && "Found more than one non-landing-pad successor!"); 438 TBB = *SI; 439 } 440 441 // If there is no non-landing-pad successor, the block has no 442 // fall-through edges to be concerned with. 443 if (!TBB) 444 return; 445 446 // Finally update the unconditional successor to be reached via a branch 447 // if it would not be reached by fallthrough. 448 if (!isLayoutSuccessor(TBB)) 449 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 450 } 451 } else { 452 if (FBB) { 453 // The block has a non-fallthrough conditional branch. If one of its 454 // successors is its layout successor, rewrite it to a fallthrough 455 // conditional branch. 456 if (isLayoutSuccessor(TBB)) { 457 if (TII->ReverseBranchCondition(Cond)) 458 return; 459 TII->RemoveBranch(*this); 460 TII->InsertBranch(*this, FBB, nullptr, Cond, dl); 461 } else if (isLayoutSuccessor(FBB)) { 462 TII->RemoveBranch(*this); 463 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 464 } 465 } else { 466 // Walk through the successors and find the successor which is not 467 // a landing pad and is not the conditional branch destination (in TBB) 468 // as the fallthrough successor. 469 MachineBasicBlock *FallthroughBB = nullptr; 470 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 471 if ((*SI)->isEHPad() || *SI == TBB) 472 continue; 473 assert(!FallthroughBB && "Found more than one fallthrough successor."); 474 FallthroughBB = *SI; 475 } 476 if (!FallthroughBB && canFallThrough()) { 477 // We fallthrough to the same basic block as the conditional jump 478 // targets. Remove the conditional jump, leaving unconditional 479 // fallthrough. 480 // FIXME: This does not seem like a reasonable pattern to support, but 481 // it has been seen in the wild coming out of degenerate ARM test cases. 482 TII->RemoveBranch(*this); 483 484 // Finally update the unconditional successor to be reached via a branch 485 // if it would not be reached by fallthrough. 486 if (!isLayoutSuccessor(TBB)) 487 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 488 return; 489 } 490 491 // The block has a fallthrough conditional branch. 492 if (isLayoutSuccessor(TBB)) { 493 if (TII->ReverseBranchCondition(Cond)) { 494 // We can't reverse the condition, add an unconditional branch. 495 Cond.clear(); 496 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 497 return; 498 } 499 TII->RemoveBranch(*this); 500 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 501 } else if (!isLayoutSuccessor(FallthroughBB)) { 502 TII->RemoveBranch(*this); 503 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl); 504 } 505 } 506 } 507 } 508 509 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) { 510 511 // If we see non-zero value for the first time it means we actually use Weight 512 // list, so we fill all Weights with 0's. 513 if (weight != 0 && Weights.empty()) 514 Weights.resize(Successors.size()); 515 516 if (weight != 0 || !Weights.empty()) 517 Weights.push_back(weight); 518 519 Successors.push_back(succ); 520 succ->addPredecessor(this); 521 } 522 523 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) { 524 succ->removePredecessor(this); 525 succ_iterator I = std::find(Successors.begin(), Successors.end(), succ); 526 assert(I != Successors.end() && "Not a current successor!"); 527 528 // If Weight list is empty it means we don't use it (disabled optimization). 529 if (!Weights.empty()) { 530 weight_iterator WI = getWeightIterator(I); 531 Weights.erase(WI); 532 } 533 534 Successors.erase(I); 535 } 536 537 MachineBasicBlock::succ_iterator 538 MachineBasicBlock::removeSuccessor(succ_iterator I) { 539 assert(I != Successors.end() && "Not a current successor!"); 540 541 // If Weight list is empty it means we don't use it (disabled optimization). 542 if (!Weights.empty()) { 543 weight_iterator WI = getWeightIterator(I); 544 Weights.erase(WI); 545 } 546 547 (*I)->removePredecessor(this); 548 return Successors.erase(I); 549 } 550 551 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 552 MachineBasicBlock *New) { 553 if (Old == New) 554 return; 555 556 succ_iterator E = succ_end(); 557 succ_iterator NewI = E; 558 succ_iterator OldI = E; 559 for (succ_iterator I = succ_begin(); I != E; ++I) { 560 if (*I == Old) { 561 OldI = I; 562 if (NewI != E) 563 break; 564 } 565 if (*I == New) { 566 NewI = I; 567 if (OldI != E) 568 break; 569 } 570 } 571 assert(OldI != E && "Old is not a successor of this block"); 572 Old->removePredecessor(this); 573 574 // If New isn't already a successor, let it take Old's place. 575 if (NewI == E) { 576 New->addPredecessor(this); 577 *OldI = New; 578 return; 579 } 580 581 // New is already a successor. 582 // Update its weight instead of adding a duplicate edge. 583 if (!Weights.empty()) { 584 weight_iterator OldWI = getWeightIterator(OldI); 585 *getWeightIterator(NewI) += *OldWI; 586 Weights.erase(OldWI); 587 } 588 Successors.erase(OldI); 589 } 590 591 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) { 592 Predecessors.push_back(pred); 593 } 594 595 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) { 596 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred); 597 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 598 Predecessors.erase(I); 599 } 600 601 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) { 602 if (this == fromMBB) 603 return; 604 605 while (!fromMBB->succ_empty()) { 606 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 607 uint32_t Weight = 0; 608 609 // If Weight list is empty it means we don't use it (disabled optimization). 610 if (!fromMBB->Weights.empty()) 611 Weight = *fromMBB->Weights.begin(); 612 613 addSuccessor(Succ, Weight); 614 fromMBB->removeSuccessor(Succ); 615 } 616 } 617 618 void 619 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) { 620 if (this == fromMBB) 621 return; 622 623 while (!fromMBB->succ_empty()) { 624 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 625 uint32_t Weight = 0; 626 if (!fromMBB->Weights.empty()) 627 Weight = *fromMBB->Weights.begin(); 628 addSuccessor(Succ, Weight); 629 fromMBB->removeSuccessor(Succ); 630 631 // Fix up any PHI nodes in the successor. 632 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 633 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 634 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 635 MachineOperand &MO = MI->getOperand(i); 636 if (MO.getMBB() == fromMBB) 637 MO.setMBB(this); 638 } 639 } 640 } 641 642 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 643 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 644 } 645 646 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 647 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 648 } 649 650 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 651 MachineFunction::const_iterator I(this); 652 return std::next(I) == MachineFunction::const_iterator(MBB); 653 } 654 655 bool MachineBasicBlock::canFallThrough() { 656 MachineFunction::iterator Fallthrough = this; 657 ++Fallthrough; 658 // If FallthroughBlock is off the end of the function, it can't fall through. 659 if (Fallthrough == getParent()->end()) 660 return false; 661 662 // If FallthroughBlock isn't a successor, no fallthrough is possible. 663 if (!isSuccessor(Fallthrough)) 664 return false; 665 666 // Analyze the branches, if any, at the end of the block. 667 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 668 SmallVector<MachineOperand, 4> Cond; 669 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 670 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 671 // If we couldn't analyze the branch, examine the last instruction. 672 // If the block doesn't end in a known control barrier, assume fallthrough 673 // is possible. The isPredicated check is needed because this code can be 674 // called during IfConversion, where an instruction which is normally a 675 // Barrier is predicated and thus no longer an actual control barrier. 676 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 677 } 678 679 // If there is no branch, control always falls through. 680 if (!TBB) return true; 681 682 // If there is some explicit branch to the fallthrough block, it can obviously 683 // reach, even though the branch should get folded to fall through implicitly. 684 if (MachineFunction::iterator(TBB) == Fallthrough || 685 MachineFunction::iterator(FBB) == Fallthrough) 686 return true; 687 688 // If it's an unconditional branch to some block not the fall through, it 689 // doesn't fall through. 690 if (Cond.empty()) return false; 691 692 // Otherwise, if it is conditional and has no explicit false block, it falls 693 // through. 694 return FBB == nullptr; 695 } 696 697 MachineBasicBlock * 698 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 699 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 700 // it in this generic function. 701 if (Succ->isEHPad()) 702 return nullptr; 703 704 MachineFunction *MF = getParent(); 705 DebugLoc dl; // FIXME: this is nowhere 706 707 // Performance might be harmed on HW that implements branching using exec mask 708 // where both sides of the branches are always executed. 709 if (MF->getTarget().requiresStructuredCFG()) 710 return nullptr; 711 712 // We may need to update this's terminator, but we can't do that if 713 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 714 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 715 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 716 SmallVector<MachineOperand, 4> Cond; 717 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 718 return nullptr; 719 720 // Avoid bugpoint weirdness: A block may end with a conditional branch but 721 // jumps to the same MBB is either case. We have duplicate CFG edges in that 722 // case that we can't handle. Since this never happens in properly optimized 723 // code, just skip those edges. 724 if (TBB && TBB == FBB) { 725 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 726 << getNumber() << '\n'); 727 return nullptr; 728 } 729 730 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 731 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 732 DEBUG(dbgs() << "Splitting critical edge:" 733 " BB#" << getNumber() 734 << " -- BB#" << NMBB->getNumber() 735 << " -- BB#" << Succ->getNumber() << '\n'); 736 737 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 738 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 739 if (LIS) 740 LIS->insertMBBInMaps(NMBB); 741 else if (Indexes) 742 Indexes->insertMBBInMaps(NMBB); 743 744 // On some targets like Mips, branches may kill virtual registers. Make sure 745 // that LiveVariables is properly updated after updateTerminator replaces the 746 // terminators. 747 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 748 749 // Collect a list of virtual registers killed by the terminators. 750 SmallVector<unsigned, 4> KilledRegs; 751 if (LV) 752 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 753 I != E; ++I) { 754 MachineInstr *MI = I; 755 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 756 OE = MI->operands_end(); OI != OE; ++OI) { 757 if (!OI->isReg() || OI->getReg() == 0 || 758 !OI->isUse() || !OI->isKill() || OI->isUndef()) 759 continue; 760 unsigned Reg = OI->getReg(); 761 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 762 LV->getVarInfo(Reg).removeKill(MI)) { 763 KilledRegs.push_back(Reg); 764 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 765 OI->setIsKill(false); 766 } 767 } 768 } 769 770 SmallVector<unsigned, 4> UsedRegs; 771 if (LIS) { 772 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 773 I != E; ++I) { 774 MachineInstr *MI = I; 775 776 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 777 OE = MI->operands_end(); OI != OE; ++OI) { 778 if (!OI->isReg() || OI->getReg() == 0) 779 continue; 780 781 unsigned Reg = OI->getReg(); 782 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 783 UsedRegs.push_back(Reg); 784 } 785 } 786 } 787 788 ReplaceUsesOfBlockWith(Succ, NMBB); 789 790 // If updateTerminator() removes instructions, we need to remove them from 791 // SlotIndexes. 792 SmallVector<MachineInstr*, 4> Terminators; 793 if (Indexes) { 794 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 795 I != E; ++I) 796 Terminators.push_back(I); 797 } 798 799 updateTerminator(); 800 801 if (Indexes) { 802 SmallVector<MachineInstr*, 4> NewTerminators; 803 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 804 I != E; ++I) 805 NewTerminators.push_back(I); 806 807 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 808 E = Terminators.end(); I != E; ++I) { 809 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 810 NewTerminators.end()) 811 Indexes->removeMachineInstrFromMaps(*I); 812 } 813 } 814 815 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 816 NMBB->addSuccessor(Succ); 817 if (!NMBB->isLayoutSuccessor(Succ)) { 818 Cond.clear(); 819 TII->InsertBranch(*NMBB, Succ, nullptr, Cond, dl); 820 821 if (Indexes) { 822 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 823 I != E; ++I) { 824 // Some instructions may have been moved to NMBB by updateTerminator(), 825 // so we first remove any instruction that already has an index. 826 if (Indexes->hasIndex(I)) 827 Indexes->removeMachineInstrFromMaps(I); 828 Indexes->insertMachineInstrInMaps(I); 829 } 830 } 831 } 832 833 // Fix PHI nodes in Succ so they refer to NMBB instead of this 834 for (MachineBasicBlock::instr_iterator 835 i = Succ->instr_begin(),e = Succ->instr_end(); 836 i != e && i->isPHI(); ++i) 837 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 838 if (i->getOperand(ni+1).getMBB() == this) 839 i->getOperand(ni+1).setMBB(NMBB); 840 841 // Inherit live-ins from the successor 842 for (const auto &LI : Succ->liveins()) 843 NMBB->addLiveIn(LI); 844 845 // Update LiveVariables. 846 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 847 if (LV) { 848 // Restore kills of virtual registers that were killed by the terminators. 849 while (!KilledRegs.empty()) { 850 unsigned Reg = KilledRegs.pop_back_val(); 851 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 852 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 853 continue; 854 if (TargetRegisterInfo::isVirtualRegister(Reg)) 855 LV->getVarInfo(Reg).Kills.push_back(I); 856 DEBUG(dbgs() << "Restored terminator kill: " << *I); 857 break; 858 } 859 } 860 // Update relevant live-through information. 861 LV->addNewBlock(NMBB, this, Succ); 862 } 863 864 if (LIS) { 865 // After splitting the edge and updating SlotIndexes, live intervals may be 866 // in one of two situations, depending on whether this block was the last in 867 // the function. If the original block was the last in the function, all 868 // live intervals will end prior to the beginning of the new split block. If 869 // the original block was not at the end of the function, all live intervals 870 // will extend to the end of the new split block. 871 872 bool isLastMBB = 873 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 874 875 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 876 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 877 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 878 879 // Find the registers used from NMBB in PHIs in Succ. 880 SmallSet<unsigned, 8> PHISrcRegs; 881 for (MachineBasicBlock::instr_iterator 882 I = Succ->instr_begin(), E = Succ->instr_end(); 883 I != E && I->isPHI(); ++I) { 884 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 885 if (I->getOperand(ni+1).getMBB() == NMBB) { 886 MachineOperand &MO = I->getOperand(ni); 887 unsigned Reg = MO.getReg(); 888 PHISrcRegs.insert(Reg); 889 if (MO.isUndef()) 890 continue; 891 892 LiveInterval &LI = LIS->getInterval(Reg); 893 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 894 assert(VNI && 895 "PHI sources should be live out of their predecessors."); 896 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 897 } 898 } 899 } 900 901 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 902 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 903 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 904 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 905 continue; 906 907 LiveInterval &LI = LIS->getInterval(Reg); 908 if (!LI.liveAt(PrevIndex)) 909 continue; 910 911 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 912 if (isLiveOut && isLastMBB) { 913 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 914 assert(VNI && "LiveInterval should have VNInfo where it is live."); 915 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 916 } else if (!isLiveOut && !isLastMBB) { 917 LI.removeSegment(StartIndex, EndIndex); 918 } 919 } 920 921 // Update all intervals for registers whose uses may have been modified by 922 // updateTerminator(). 923 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 924 } 925 926 if (MachineDominatorTree *MDT = 927 P->getAnalysisIfAvailable<MachineDominatorTree>()) 928 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 929 930 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 931 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 932 // If one or the other blocks were not in a loop, the new block is not 933 // either, and thus LI doesn't need to be updated. 934 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 935 if (TIL == DestLoop) { 936 // Both in the same loop, the NMBB joins loop. 937 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 938 } else if (TIL->contains(DestLoop)) { 939 // Edge from an outer loop to an inner loop. Add to the outer loop. 940 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 941 } else if (DestLoop->contains(TIL)) { 942 // Edge from an inner loop to an outer loop. Add to the outer loop. 943 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 944 } else { 945 // Edge from two loops with no containment relation. Because these 946 // are natural loops, we know that the destination block must be the 947 // header of its loop (adding a branch into a loop elsewhere would 948 // create an irreducible loop). 949 assert(DestLoop->getHeader() == Succ && 950 "Should not create irreducible loops!"); 951 if (MachineLoop *P = DestLoop->getParentLoop()) 952 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 953 } 954 } 955 } 956 957 return NMBB; 958 } 959 960 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 961 /// neighboring instructions so the bundle won't be broken by removing MI. 962 static void unbundleSingleMI(MachineInstr *MI) { 963 // Removing the first instruction in a bundle. 964 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 965 MI->unbundleFromSucc(); 966 // Removing the last instruction in a bundle. 967 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 968 MI->unbundleFromPred(); 969 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 970 // are already fine. 971 } 972 973 MachineBasicBlock::instr_iterator 974 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 975 unbundleSingleMI(I); 976 return Insts.erase(I); 977 } 978 979 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 980 unbundleSingleMI(MI); 981 MI->clearFlag(MachineInstr::BundledPred); 982 MI->clearFlag(MachineInstr::BundledSucc); 983 return Insts.remove(MI); 984 } 985 986 MachineBasicBlock::instr_iterator 987 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 988 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 989 "Cannot insert instruction with bundle flags"); 990 // Set the bundle flags when inserting inside a bundle. 991 if (I != instr_end() && I->isBundledWithPred()) { 992 MI->setFlag(MachineInstr::BundledPred); 993 MI->setFlag(MachineInstr::BundledSucc); 994 } 995 return Insts.insert(I, MI); 996 } 997 998 /// This method unlinks 'this' from the containing function, and returns it, but 999 /// does not delete it. 1000 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1001 assert(getParent() && "Not embedded in a function!"); 1002 getParent()->remove(this); 1003 return this; 1004 } 1005 1006 /// This method unlinks 'this' from the containing function, and deletes it. 1007 void MachineBasicBlock::eraseFromParent() { 1008 assert(getParent() && "Not embedded in a function!"); 1009 getParent()->erase(this); 1010 } 1011 1012 /// Given a machine basic block that branched to 'Old', change the code and CFG 1013 /// so that it branches to 'New' instead. 1014 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1015 MachineBasicBlock *New) { 1016 assert(Old != New && "Cannot replace self with self!"); 1017 1018 MachineBasicBlock::instr_iterator I = instr_end(); 1019 while (I != instr_begin()) { 1020 --I; 1021 if (!I->isTerminator()) break; 1022 1023 // Scan the operands of this machine instruction, replacing any uses of Old 1024 // with New. 1025 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1026 if (I->getOperand(i).isMBB() && 1027 I->getOperand(i).getMBB() == Old) 1028 I->getOperand(i).setMBB(New); 1029 } 1030 1031 // Update the successor information. 1032 replaceSuccessor(Old, New); 1033 } 1034 1035 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1036 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1037 /// MBB successors from the CFG. DestA and DestB can be null. 1038 /// 1039 /// Besides DestA and DestB, retain other edges leading to LandingPads 1040 /// (currently there can be only one; we don't check or require that here). 1041 /// Note it is possible that DestA and/or DestB are LandingPads. 1042 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1043 MachineBasicBlock *DestB, 1044 bool isCond) { 1045 // The values of DestA and DestB frequently come from a call to the 1046 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1047 // values from there. 1048 // 1049 // 1. If both DestA and DestB are null, then the block ends with no branches 1050 // (it falls through to its successor). 1051 // 2. If DestA is set, DestB is null, and isCond is false, then the block ends 1052 // with only an unconditional branch. 1053 // 3. If DestA is set, DestB is null, and isCond is true, then the block ends 1054 // with a conditional branch that falls through to a successor (DestB). 1055 // 4. If DestA and DestB is set and isCond is true, then the block ends with a 1056 // conditional branch followed by an unconditional branch. DestA is the 1057 // 'true' destination and DestB is the 'false' destination. 1058 1059 bool Changed = false; 1060 1061 MachineFunction::iterator FallThru = 1062 std::next(MachineFunction::iterator(this)); 1063 1064 if (!DestA && !DestB) { 1065 // Block falls through to successor. 1066 DestA = FallThru; 1067 DestB = FallThru; 1068 } else if (DestA && !DestB) { 1069 if (isCond) 1070 // Block ends in conditional jump that falls through to successor. 1071 DestB = FallThru; 1072 } else { 1073 assert(DestA && DestB && isCond && 1074 "CFG in a bad state. Cannot correct CFG edges"); 1075 } 1076 1077 // Remove superfluous edges. I.e., those which aren't destinations of this 1078 // basic block, duplicate edges, or landing pads. 1079 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1080 MachineBasicBlock::succ_iterator SI = succ_begin(); 1081 while (SI != succ_end()) { 1082 const MachineBasicBlock *MBB = *SI; 1083 if (!SeenMBBs.insert(MBB).second || 1084 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1085 // This is a superfluous edge, remove it. 1086 SI = removeSuccessor(SI); 1087 Changed = true; 1088 } else { 1089 ++SI; 1090 } 1091 } 1092 1093 return Changed; 1094 } 1095 1096 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1097 /// instructions. Return UnknownLoc if there is none. 1098 DebugLoc 1099 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1100 DebugLoc DL; 1101 instr_iterator E = instr_end(); 1102 if (MBBI == E) 1103 return DL; 1104 1105 // Skip debug declarations, we don't want a DebugLoc from them. 1106 while (MBBI != E && MBBI->isDebugValue()) 1107 MBBI++; 1108 if (MBBI != E) 1109 DL = MBBI->getDebugLoc(); 1110 return DL; 1111 } 1112 1113 /// Return weight of the edge from this block to MBB. 1114 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { 1115 if (Weights.empty()) 1116 return 0; 1117 1118 return *getWeightIterator(Succ); 1119 } 1120 1121 /// Set successor weight of a given iterator. 1122 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t weight) { 1123 if (Weights.empty()) 1124 return; 1125 *getWeightIterator(I) = weight; 1126 } 1127 1128 /// Return wight iterator corresonding to the I successor iterator. 1129 MachineBasicBlock::weight_iterator MachineBasicBlock:: 1130 getWeightIterator(MachineBasicBlock::succ_iterator I) { 1131 assert(Weights.size() == Successors.size() && "Async weight list!"); 1132 size_t index = std::distance(Successors.begin(), I); 1133 assert(index < Weights.size() && "Not a current successor!"); 1134 return Weights.begin() + index; 1135 } 1136 1137 /// Return wight iterator corresonding to the I successor iterator. 1138 MachineBasicBlock::const_weight_iterator MachineBasicBlock:: 1139 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { 1140 assert(Weights.size() == Successors.size() && "Async weight list!"); 1141 const size_t index = std::distance(Successors.begin(), I); 1142 assert(index < Weights.size() && "Not a current successor!"); 1143 return Weights.begin() + index; 1144 } 1145 1146 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1147 /// as of just before "MI". 1148 /// 1149 /// Search is localised to a neighborhood of 1150 /// Neighborhood instructions before (searching for defs or kills) and N 1151 /// instructions after (searching just for defs) MI. 1152 MachineBasicBlock::LivenessQueryResult 1153 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1154 unsigned Reg, const_iterator Before, 1155 unsigned Neighborhood) const { 1156 unsigned N = Neighborhood; 1157 1158 // Start by searching backwards from Before, looking for kills, reads or defs. 1159 const_iterator I(Before); 1160 // If this is the first insn in the block, don't search backwards. 1161 if (I != begin()) { 1162 do { 1163 --I; 1164 1165 MachineOperandIteratorBase::PhysRegInfo Analysis = 1166 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1167 1168 if (Analysis.Defines) 1169 // Outputs happen after inputs so they take precedence if both are 1170 // present. 1171 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 1172 1173 if (Analysis.Kills || Analysis.Clobbers) 1174 // Register killed, so isn't live. 1175 return LQR_Dead; 1176 1177 else if (Analysis.ReadsOverlap) 1178 // Defined or read without a previous kill - live. 1179 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 1180 1181 } while (I != begin() && --N > 0); 1182 } 1183 1184 // Did we get to the start of the block? 1185 if (I == begin()) { 1186 // If so, the register's state is definitely defined by the live-in state. 1187 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 1188 RAI.isValid(); ++RAI) { 1189 if (isLiveIn(*RAI)) 1190 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 1191 } 1192 1193 return LQR_Dead; 1194 } 1195 1196 N = Neighborhood; 1197 1198 // Try searching forwards from Before, looking for reads or defs. 1199 I = const_iterator(Before); 1200 // If this is the last insn in the block, don't search forwards. 1201 if (I != end()) { 1202 for (++I; I != end() && N > 0; ++I, --N) { 1203 MachineOperandIteratorBase::PhysRegInfo Analysis = 1204 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1205 1206 if (Analysis.ReadsOverlap) 1207 // Used, therefore must have been live. 1208 return (Analysis.Reads) ? 1209 LQR_Live : LQR_OverlappingLive; 1210 1211 else if (Analysis.Clobbers || Analysis.Defines) 1212 // Defined (but not read) therefore cannot have been live. 1213 return LQR_Dead; 1214 } 1215 } 1216 1217 // At this point we have no idea of the liveness of the register. 1218 return LQR_Unknown; 1219 } 1220