xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision bfebb419844b1d9c63ad14d0cff51e19935a45a4)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/LiveVariables.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SlotIndexes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/LeakDetector.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include <algorithm>
36 using namespace llvm;
37 
38 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
39   : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
40     AddressTaken(false) {
41   Insts.Parent = this;
42 }
43 
44 MachineBasicBlock::~MachineBasicBlock() {
45   LeakDetector::removeGarbageObject(this);
46 }
47 
48 /// getSymbol - Return the MCSymbol for this basic block.
49 ///
50 MCSymbol *MachineBasicBlock::getSymbol() const {
51   const MachineFunction *MF = getParent();
52   MCContext &Ctx = MF->getContext();
53   const char *Prefix = Ctx.getAsmInfo().getPrivateGlobalPrefix();
54   return Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" +
55                                Twine(MF->getFunctionNumber()) + "_" +
56                                Twine(getNumber()));
57 }
58 
59 
60 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
61   MBB.print(OS);
62   return OS;
63 }
64 
65 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the
66 /// parent pointer of the MBB, the MBB numbering, and any instructions in the
67 /// MBB to be on the right operand list for registers.
68 ///
69 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
70 /// gets the next available unique MBB number. If it is removed from a
71 /// MachineFunction, it goes back to being #-1.
72 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
73   MachineFunction &MF = *N->getParent();
74   N->Number = MF.addToMBBNumbering(N);
75 
76   // Make sure the instructions have their operands in the reginfo lists.
77   MachineRegisterInfo &RegInfo = MF.getRegInfo();
78   for (MachineBasicBlock::instr_iterator
79          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
80     I->AddRegOperandsToUseLists(RegInfo);
81 
82   LeakDetector::removeGarbageObject(N);
83 }
84 
85 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
86   N->getParent()->removeFromMBBNumbering(N->Number);
87   N->Number = -1;
88   LeakDetector::addGarbageObject(N);
89 }
90 
91 
92 /// addNodeToList (MI) - When we add an instruction to a basic block
93 /// list, we update its parent pointer and add its operands from reg use/def
94 /// lists if appropriate.
95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
96   assert(N->getParent() == 0 && "machine instruction already in a basic block");
97   N->setParent(Parent);
98 
99   // Add the instruction's register operands to their corresponding
100   // use/def lists.
101   MachineFunction *MF = Parent->getParent();
102   N->AddRegOperandsToUseLists(MF->getRegInfo());
103 
104   LeakDetector::removeGarbageObject(N);
105 }
106 
107 /// removeNodeFromList (MI) - When we remove an instruction from a basic block
108 /// list, we update its parent pointer and remove its operands from reg use/def
109 /// lists if appropriate.
110 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
111   assert(N->getParent() != 0 && "machine instruction not in a basic block");
112 
113   // Remove from the use/def lists.
114   if (MachineFunction *MF = N->getParent()->getParent())
115     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
116 
117   N->setParent(0);
118 
119   LeakDetector::addGarbageObject(N);
120 }
121 
122 /// transferNodesFromList (MI) - When moving a range of instructions from one
123 /// MBB list to another, we need to update the parent pointers and the use/def
124 /// lists.
125 void ilist_traits<MachineInstr>::
126 transferNodesFromList(ilist_traits<MachineInstr> &fromList,
127                       ilist_iterator<MachineInstr> first,
128                       ilist_iterator<MachineInstr> last) {
129   assert(Parent->getParent() == fromList.Parent->getParent() &&
130         "MachineInstr parent mismatch!");
131 
132   // Splice within the same MBB -> no change.
133   if (Parent == fromList.Parent) return;
134 
135   // If splicing between two blocks within the same function, just update the
136   // parent pointers.
137   for (; first != last; ++first)
138     first->setParent(Parent);
139 }
140 
141 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
142   assert(!MI->getParent() && "MI is still in a block!");
143   Parent->getParent()->DeleteMachineInstr(MI);
144 }
145 
146 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
147   instr_iterator I = instr_begin(), E = instr_end();
148   while (I != E && I->isPHI())
149     ++I;
150   assert((I == E || !I->isInsideBundle()) &&
151          "First non-phi MI cannot be inside a bundle!");
152   return I;
153 }
154 
155 MachineBasicBlock::iterator
156 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
157   iterator E = end();
158   while (I != E && (I->isPHI() || I->isLabel() || I->isDebugValue()))
159     ++I;
160   // FIXME: This needs to change if we wish to bundle labels / dbg_values
161   // inside the bundle.
162   assert((I == E || !I->isInsideBundle()) &&
163          "First non-phi / non-label instruction is inside a bundle!");
164   return I;
165 }
166 
167 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
168   iterator B = begin(), E = end(), I = E;
169   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
170     ; /*noop */
171   while (I != E && !I->isTerminator())
172     ++I;
173   return I;
174 }
175 
176 MachineBasicBlock::const_iterator
177 MachineBasicBlock::getFirstTerminator() const {
178   const_iterator B = begin(), E = end(), I = E;
179   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
180     ; /*noop */
181   while (I != E && !I->isTerminator())
182     ++I;
183   return I;
184 }
185 
186 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
187   instr_iterator B = instr_begin(), E = instr_end(), I = E;
188   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
189     ; /*noop */
190   while (I != E && !I->isTerminator())
191     ++I;
192   return I;
193 }
194 
195 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
196   // Skip over end-of-block dbg_value instructions.
197   instr_iterator B = instr_begin(), I = instr_end();
198   while (I != B) {
199     --I;
200     // Return instruction that starts a bundle.
201     if (I->isDebugValue() || I->isInsideBundle())
202       continue;
203     return I;
204   }
205   // The block is all debug values.
206   return end();
207 }
208 
209 MachineBasicBlock::const_iterator
210 MachineBasicBlock::getLastNonDebugInstr() const {
211   // Skip over end-of-block dbg_value instructions.
212   const_instr_iterator B = instr_begin(), I = instr_end();
213   while (I != B) {
214     --I;
215     // Return instruction that starts a bundle.
216     if (I->isDebugValue() || I->isInsideBundle())
217       continue;
218     return I;
219   }
220   // The block is all debug values.
221   return end();
222 }
223 
224 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
225   // A block with a landing pad successor only has one other successor.
226   if (succ_size() > 2)
227     return 0;
228   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
229     if ((*I)->isLandingPad())
230       return *I;
231   return 0;
232 }
233 
234 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
235 void MachineBasicBlock::dump() const {
236   print(dbgs());
237 }
238 #endif
239 
240 StringRef MachineBasicBlock::getName() const {
241   if (const BasicBlock *LBB = getBasicBlock())
242     return LBB->getName();
243   else
244     return "(null)";
245 }
246 
247 /// Return a hopefully unique identifier for this block.
248 std::string MachineBasicBlock::getFullName() const {
249   std::string Name;
250   if (getParent())
251     Name = (getParent()->getName() + ":").str();
252   if (getBasicBlock())
253     Name += getBasicBlock()->getName();
254   else
255     Name += (Twine("BB") + Twine(getNumber())).str();
256   return Name;
257 }
258 
259 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
260   const MachineFunction *MF = getParent();
261   if (!MF) {
262     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
263        << " is null\n";
264     return;
265   }
266 
267   if (Indexes)
268     OS << Indexes->getMBBStartIdx(this) << '\t';
269 
270   OS << "BB#" << getNumber() << ": ";
271 
272   const char *Comma = "";
273   if (const BasicBlock *LBB = getBasicBlock()) {
274     OS << Comma << "derived from LLVM BB ";
275     WriteAsOperand(OS, LBB, /*PrintType=*/false);
276     Comma = ", ";
277   }
278   if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
279   if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
280   if (Alignment)
281     OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
282        << " bytes)";
283 
284   OS << '\n';
285 
286   const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
287   if (!livein_empty()) {
288     if (Indexes) OS << '\t';
289     OS << "    Live Ins:";
290     for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
291       OS << ' ' << PrintReg(*I, TRI);
292     OS << '\n';
293   }
294   // Print the preds of this block according to the CFG.
295   if (!pred_empty()) {
296     if (Indexes) OS << '\t';
297     OS << "    Predecessors according to CFG:";
298     for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
299       OS << " BB#" << (*PI)->getNumber();
300     OS << '\n';
301   }
302 
303   for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
304     if (Indexes) {
305       if (Indexes->hasIndex(I))
306         OS << Indexes->getInstructionIndex(I);
307       OS << '\t';
308     }
309     OS << '\t';
310     if (I->isInsideBundle())
311       OS << "  * ";
312     I->print(OS, &getParent()->getTarget());
313   }
314 
315   // Print the successors of this block according to the CFG.
316   if (!succ_empty()) {
317     if (Indexes) OS << '\t';
318     OS << "    Successors according to CFG:";
319     for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
320       OS << " BB#" << (*SI)->getNumber();
321       if (!Weights.empty())
322         OS << '(' << *getWeightIterator(SI) << ')';
323     }
324     OS << '\n';
325   }
326 }
327 
328 void MachineBasicBlock::removeLiveIn(unsigned Reg) {
329   std::vector<unsigned>::iterator I =
330     std::find(LiveIns.begin(), LiveIns.end(), Reg);
331   if (I != LiveIns.end())
332     LiveIns.erase(I);
333 }
334 
335 bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
336   livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
337   return I != livein_end();
338 }
339 
340 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
341   getParent()->splice(NewAfter, this);
342 }
343 
344 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
345   MachineFunction::iterator BBI = NewBefore;
346   getParent()->splice(++BBI, this);
347 }
348 
349 void MachineBasicBlock::updateTerminator() {
350   const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
351   // A block with no successors has no concerns with fall-through edges.
352   if (this->succ_empty()) return;
353 
354   MachineBasicBlock *TBB = 0, *FBB = 0;
355   SmallVector<MachineOperand, 4> Cond;
356   DebugLoc dl;  // FIXME: this is nowhere
357   bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
358   (void) B;
359   assert(!B && "UpdateTerminators requires analyzable predecessors!");
360   if (Cond.empty()) {
361     if (TBB) {
362       // The block has an unconditional branch. If its successor is now
363       // its layout successor, delete the branch.
364       if (isLayoutSuccessor(TBB))
365         TII->RemoveBranch(*this);
366     } else {
367       // The block has an unconditional fallthrough. If its successor is not
368       // its layout successor, insert a branch. First we have to locate the
369       // only non-landing-pad successor, as that is the fallthrough block.
370       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
371         if ((*SI)->isLandingPad())
372           continue;
373         assert(!TBB && "Found more than one non-landing-pad successor!");
374         TBB = *SI;
375       }
376 
377       // If there is no non-landing-pad successor, the block has no
378       // fall-through edges to be concerned with.
379       if (!TBB)
380         return;
381 
382       // Finally update the unconditional successor to be reached via a branch
383       // if it would not be reached by fallthrough.
384       if (!isLayoutSuccessor(TBB))
385         TII->InsertBranch(*this, TBB, 0, Cond, dl);
386     }
387   } else {
388     if (FBB) {
389       // The block has a non-fallthrough conditional branch. If one of its
390       // successors is its layout successor, rewrite it to a fallthrough
391       // conditional branch.
392       if (isLayoutSuccessor(TBB)) {
393         if (TII->ReverseBranchCondition(Cond))
394           return;
395         TII->RemoveBranch(*this);
396         TII->InsertBranch(*this, FBB, 0, Cond, dl);
397       } else if (isLayoutSuccessor(FBB)) {
398         TII->RemoveBranch(*this);
399         TII->InsertBranch(*this, TBB, 0, Cond, dl);
400       }
401     } else {
402       // Walk through the successors and find the successor which is not
403       // a landing pad and is not the conditional branch destination (in TBB)
404       // as the fallthrough successor.
405       MachineBasicBlock *FallthroughBB = 0;
406       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
407         if ((*SI)->isLandingPad() || *SI == TBB)
408           continue;
409         assert(!FallthroughBB && "Found more than one fallthrough successor.");
410         FallthroughBB = *SI;
411       }
412       if (!FallthroughBB && canFallThrough()) {
413         // We fallthrough to the same basic block as the conditional jump
414         // targets. Remove the conditional jump, leaving unconditional
415         // fallthrough.
416         // FIXME: This does not seem like a reasonable pattern to support, but it
417         // has been seen in the wild coming out of degenerate ARM test cases.
418         TII->RemoveBranch(*this);
419 
420         // Finally update the unconditional successor to be reached via a branch
421         // if it would not be reached by fallthrough.
422         if (!isLayoutSuccessor(TBB))
423           TII->InsertBranch(*this, TBB, 0, Cond, dl);
424         return;
425       }
426 
427       // The block has a fallthrough conditional branch.
428       if (isLayoutSuccessor(TBB)) {
429         if (TII->ReverseBranchCondition(Cond)) {
430           // We can't reverse the condition, add an unconditional branch.
431           Cond.clear();
432           TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
433           return;
434         }
435         TII->RemoveBranch(*this);
436         TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
437       } else if (!isLayoutSuccessor(FallthroughBB)) {
438         TII->RemoveBranch(*this);
439         TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl);
440       }
441     }
442   }
443 }
444 
445 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) {
446 
447   // If we see non-zero value for the first time it means we actually use Weight
448   // list, so we fill all Weights with 0's.
449   if (weight != 0 && Weights.empty())
450     Weights.resize(Successors.size());
451 
452   if (weight != 0 || !Weights.empty())
453     Weights.push_back(weight);
454 
455    Successors.push_back(succ);
456    succ->addPredecessor(this);
457  }
458 
459 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
460   succ->removePredecessor(this);
461   succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
462   assert(I != Successors.end() && "Not a current successor!");
463 
464   // If Weight list is empty it means we don't use it (disabled optimization).
465   if (!Weights.empty()) {
466     weight_iterator WI = getWeightIterator(I);
467     Weights.erase(WI);
468   }
469 
470   Successors.erase(I);
471 }
472 
473 MachineBasicBlock::succ_iterator
474 MachineBasicBlock::removeSuccessor(succ_iterator I) {
475   assert(I != Successors.end() && "Not a current successor!");
476 
477   // If Weight list is empty it means we don't use it (disabled optimization).
478   if (!Weights.empty()) {
479     weight_iterator WI = getWeightIterator(I);
480     Weights.erase(WI);
481   }
482 
483   (*I)->removePredecessor(this);
484   return Successors.erase(I);
485 }
486 
487 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
488                                          MachineBasicBlock *New) {
489   if (Old == New)
490     return;
491 
492   succ_iterator E = succ_end();
493   succ_iterator NewI = E;
494   succ_iterator OldI = E;
495   for (succ_iterator I = succ_begin(); I != E; ++I) {
496     if (*I == Old) {
497       OldI = I;
498       if (NewI != E)
499         break;
500     }
501     if (*I == New) {
502       NewI = I;
503       if (OldI != E)
504         break;
505     }
506   }
507   assert(OldI != E && "Old is not a successor of this block");
508   Old->removePredecessor(this);
509 
510   // If New isn't already a successor, let it take Old's place.
511   if (NewI == E) {
512     New->addPredecessor(this);
513     *OldI = New;
514     return;
515   }
516 
517   // New is already a successor.
518   // Update its weight instead of adding a duplicate edge.
519   if (!Weights.empty()) {
520     weight_iterator OldWI = getWeightIterator(OldI);
521     *getWeightIterator(NewI) += *OldWI;
522     Weights.erase(OldWI);
523   }
524   Successors.erase(OldI);
525 }
526 
527 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
528   Predecessors.push_back(pred);
529 }
530 
531 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
532   pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred);
533   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
534   Predecessors.erase(I);
535 }
536 
537 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
538   if (this == fromMBB)
539     return;
540 
541   while (!fromMBB->succ_empty()) {
542     MachineBasicBlock *Succ = *fromMBB->succ_begin();
543     uint32_t Weight = 0;
544 
545     // If Weight list is empty it means we don't use it (disabled optimization).
546     if (!fromMBB->Weights.empty())
547       Weight = *fromMBB->Weights.begin();
548 
549     addSuccessor(Succ, Weight);
550     fromMBB->removeSuccessor(Succ);
551   }
552 }
553 
554 void
555 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
556   if (this == fromMBB)
557     return;
558 
559   while (!fromMBB->succ_empty()) {
560     MachineBasicBlock *Succ = *fromMBB->succ_begin();
561     uint32_t Weight = 0;
562     if (!fromMBB->Weights.empty())
563       Weight = *fromMBB->Weights.begin();
564     addSuccessor(Succ, Weight);
565     fromMBB->removeSuccessor(Succ);
566 
567     // Fix up any PHI nodes in the successor.
568     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
569            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
570       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
571         MachineOperand &MO = MI->getOperand(i);
572         if (MO.getMBB() == fromMBB)
573           MO.setMBB(this);
574       }
575   }
576 }
577 
578 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
579   return std::find(pred_begin(), pred_end(), MBB) != pred_end();
580 }
581 
582 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
583   return std::find(succ_begin(), succ_end(), MBB) != succ_end();
584 }
585 
586 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
587   MachineFunction::const_iterator I(this);
588   return llvm::next(I) == MachineFunction::const_iterator(MBB);
589 }
590 
591 bool MachineBasicBlock::canFallThrough() {
592   MachineFunction::iterator Fallthrough = this;
593   ++Fallthrough;
594   // If FallthroughBlock is off the end of the function, it can't fall through.
595   if (Fallthrough == getParent()->end())
596     return false;
597 
598   // If FallthroughBlock isn't a successor, no fallthrough is possible.
599   if (!isSuccessor(Fallthrough))
600     return false;
601 
602   // Analyze the branches, if any, at the end of the block.
603   MachineBasicBlock *TBB = 0, *FBB = 0;
604   SmallVector<MachineOperand, 4> Cond;
605   const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
606   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
607     // If we couldn't analyze the branch, examine the last instruction.
608     // If the block doesn't end in a known control barrier, assume fallthrough
609     // is possible. The isPredicated check is needed because this code can be
610     // called during IfConversion, where an instruction which is normally a
611     // Barrier is predicated and thus no longer an actual control barrier.
612     return empty() || !back().isBarrier() || TII->isPredicated(&back());
613   }
614 
615   // If there is no branch, control always falls through.
616   if (TBB == 0) return true;
617 
618   // If there is some explicit branch to the fallthrough block, it can obviously
619   // reach, even though the branch should get folded to fall through implicitly.
620   if (MachineFunction::iterator(TBB) == Fallthrough ||
621       MachineFunction::iterator(FBB) == Fallthrough)
622     return true;
623 
624   // If it's an unconditional branch to some block not the fall through, it
625   // doesn't fall through.
626   if (Cond.empty()) return false;
627 
628   // Otherwise, if it is conditional and has no explicit false block, it falls
629   // through.
630   return FBB == 0;
631 }
632 
633 MachineBasicBlock *
634 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
635   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
636   // it in this generic function.
637   if (Succ->isLandingPad())
638     return NULL;
639 
640   MachineFunction *MF = getParent();
641   DebugLoc dl;  // FIXME: this is nowhere
642 
643   // We may need to update this's terminator, but we can't do that if
644   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
645   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
646   MachineBasicBlock *TBB = 0, *FBB = 0;
647   SmallVector<MachineOperand, 4> Cond;
648   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
649     return NULL;
650 
651   // Avoid bugpoint weirdness: A block may end with a conditional branch but
652   // jumps to the same MBB is either case. We have duplicate CFG edges in that
653   // case that we can't handle. Since this never happens in properly optimized
654   // code, just skip those edges.
655   if (TBB && TBB == FBB) {
656     DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
657                  << getNumber() << '\n');
658     return NULL;
659   }
660 
661   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
662   MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB);
663   DEBUG(dbgs() << "Splitting critical edge:"
664         " BB#" << getNumber()
665         << " -- BB#" << NMBB->getNumber()
666         << " -- BB#" << Succ->getNumber() << '\n');
667 
668   LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
669   SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
670   if (LIS)
671     LIS->insertMBBInMaps(NMBB);
672   else if (Indexes)
673     Indexes->insertMBBInMaps(NMBB);
674 
675   // On some targets like Mips, branches may kill virtual registers. Make sure
676   // that LiveVariables is properly updated after updateTerminator replaces the
677   // terminators.
678   LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
679 
680   // Collect a list of virtual registers killed by the terminators.
681   SmallVector<unsigned, 4> KilledRegs;
682   if (LV)
683     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
684          I != E; ++I) {
685       MachineInstr *MI = I;
686       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
687            OE = MI->operands_end(); OI != OE; ++OI) {
688         if (!OI->isReg() || OI->getReg() == 0 ||
689             !OI->isUse() || !OI->isKill() || OI->isUndef())
690           continue;
691         unsigned Reg = OI->getReg();
692         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
693             LV->getVarInfo(Reg).removeKill(MI)) {
694           KilledRegs.push_back(Reg);
695           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
696           OI->setIsKill(false);
697         }
698       }
699     }
700 
701   SmallVector<unsigned, 4> UsedRegs;
702   if (LIS) {
703     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
704          I != E; ++I) {
705       MachineInstr *MI = I;
706 
707       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
708            OE = MI->operands_end(); OI != OE; ++OI) {
709         if (!OI->isReg() || OI->getReg() == 0)
710           continue;
711 
712         unsigned Reg = OI->getReg();
713         if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
714           UsedRegs.push_back(Reg);
715       }
716     }
717   }
718 
719   ReplaceUsesOfBlockWith(Succ, NMBB);
720 
721   // If updateTerminator() removes instructions, we need to remove them from
722   // SlotIndexes.
723   SmallVector<MachineInstr*, 4> Terminators;
724   if (Indexes) {
725     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
726          I != E; ++I)
727       Terminators.push_back(I);
728   }
729 
730   updateTerminator();
731 
732   if (Indexes) {
733     SmallVector<MachineInstr*, 4> NewTerminators;
734     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
735          I != E; ++I)
736       NewTerminators.push_back(I);
737 
738     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
739         E = Terminators.end(); I != E; ++I) {
740       if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
741           NewTerminators.end())
742        Indexes->removeMachineInstrFromMaps(*I);
743     }
744   }
745 
746   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
747   NMBB->addSuccessor(Succ);
748   if (!NMBB->isLayoutSuccessor(Succ)) {
749     Cond.clear();
750     MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl);
751 
752     if (Indexes) {
753       for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
754            I != E; ++I) {
755         // Some instructions may have been moved to NMBB by updateTerminator(),
756         // so we first remove any instruction that already has an index.
757         if (Indexes->hasIndex(I))
758           Indexes->removeMachineInstrFromMaps(I);
759         Indexes->insertMachineInstrInMaps(I);
760       }
761     }
762   }
763 
764   // Fix PHI nodes in Succ so they refer to NMBB instead of this
765   for (MachineBasicBlock::instr_iterator
766          i = Succ->instr_begin(),e = Succ->instr_end();
767        i != e && i->isPHI(); ++i)
768     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
769       if (i->getOperand(ni+1).getMBB() == this)
770         i->getOperand(ni+1).setMBB(NMBB);
771 
772   // Inherit live-ins from the successor
773   for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
774          E = Succ->livein_end(); I != E; ++I)
775     NMBB->addLiveIn(*I);
776 
777   // Update LiveVariables.
778   const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
779   if (LV) {
780     // Restore kills of virtual registers that were killed by the terminators.
781     while (!KilledRegs.empty()) {
782       unsigned Reg = KilledRegs.pop_back_val();
783       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
784         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
785           continue;
786         if (TargetRegisterInfo::isVirtualRegister(Reg))
787           LV->getVarInfo(Reg).Kills.push_back(I);
788         DEBUG(dbgs() << "Restored terminator kill: " << *I);
789         break;
790       }
791     }
792     // Update relevant live-through information.
793     LV->addNewBlock(NMBB, this, Succ);
794   }
795 
796   if (LIS) {
797     // After splitting the edge and updating SlotIndexes, live intervals may be
798     // in one of two situations, depending on whether this block was the last in
799     // the function. If the original block was the last in the function, all live
800     // intervals will end prior to the beginning of the new split block. If the
801     // original block was not at the end of the function, all live intervals will
802     // extend to the end of the new split block.
803 
804     bool isLastMBB =
805       llvm::next(MachineFunction::iterator(NMBB)) == getParent()->end();
806 
807     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
808     SlotIndex PrevIndex = StartIndex.getPrevSlot();
809     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
810 
811     // Find the registers used from NMBB in PHIs in Succ.
812     SmallSet<unsigned, 8> PHISrcRegs;
813     for (MachineBasicBlock::instr_iterator
814          I = Succ->instr_begin(), E = Succ->instr_end();
815          I != E && I->isPHI(); ++I) {
816       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
817         if (I->getOperand(ni+1).getMBB() == NMBB) {
818           MachineOperand &MO = I->getOperand(ni);
819           unsigned Reg = MO.getReg();
820           PHISrcRegs.insert(Reg);
821           if (MO.isUndef())
822             continue;
823 
824           LiveInterval &LI = LIS->getInterval(Reg);
825           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
826           assert(VNI && "PHI sources should be live out of their predecessors.");
827           LI.addRange(LiveRange(StartIndex, EndIndex, VNI));
828         }
829       }
830     }
831 
832     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
833     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
834       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
835       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
836         continue;
837 
838       LiveInterval &LI = LIS->getInterval(Reg);
839       if (!LI.liveAt(PrevIndex))
840         continue;
841 
842       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
843       if (isLiveOut && isLastMBB) {
844         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
845         assert(VNI && "LiveInterval should have VNInfo where it is live.");
846         LI.addRange(LiveRange(StartIndex, EndIndex, VNI));
847       } else if (!isLiveOut && !isLastMBB) {
848         LI.removeRange(StartIndex, EndIndex);
849       }
850     }
851 
852     // Update all intervals for registers whose uses may have been modified by
853     // updateTerminator().
854     iterator FirstTerminator = getFirstTerminator();
855     MachineInstr *FirstTerminatorMI = FirstTerminator;
856     if (FirstTerminatorMI->isBundled())
857       FirstTerminatorMI = getBundleStart(FirstTerminatorMI);
858     reverse_iterator PreTerminators =
859       (FirstTerminator == begin()) ? rend()
860                                    : reverse_iterator(FirstTerminatorMI);
861     LIS->repairIntervalsInRange(this, rbegin(), PreTerminators, UsedRegs);
862   }
863 
864   if (MachineDominatorTree *MDT =
865       P->getAnalysisIfAvailable<MachineDominatorTree>()) {
866     // Update dominator information.
867     MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);
868 
869     bool IsNewIDom = true;
870     for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
871          PI != E; ++PI) {
872       MachineBasicBlock *PredBB = *PI;
873       if (PredBB == NMBB)
874         continue;
875       if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
876         IsNewIDom = false;
877         break;
878       }
879     }
880 
881     // We know "this" dominates the newly created basic block.
882     MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);
883 
884     // If all the other predecessors of "Succ" are dominated by "Succ" itself
885     // then the new block is the new immediate dominator of "Succ". Otherwise,
886     // the new block doesn't dominate anything.
887     if (IsNewIDom)
888       MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
889   }
890 
891   if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
892     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
893       // If one or the other blocks were not in a loop, the new block is not
894       // either, and thus LI doesn't need to be updated.
895       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
896         if (TIL == DestLoop) {
897           // Both in the same loop, the NMBB joins loop.
898           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
899         } else if (TIL->contains(DestLoop)) {
900           // Edge from an outer loop to an inner loop.  Add to the outer loop.
901           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
902         } else if (DestLoop->contains(TIL)) {
903           // Edge from an inner loop to an outer loop.  Add to the outer loop.
904           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
905         } else {
906           // Edge from two loops with no containment relation.  Because these
907           // are natural loops, we know that the destination block must be the
908           // header of its loop (adding a branch into a loop elsewhere would
909           // create an irreducible loop).
910           assert(DestLoop->getHeader() == Succ &&
911                  "Should not create irreducible loops!");
912           if (MachineLoop *P = DestLoop->getParentLoop())
913             P->addBasicBlockToLoop(NMBB, MLI->getBase());
914         }
915       }
916     }
917 
918   return NMBB;
919 }
920 
921 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
922 /// neighboring instructions so the bundle won't be broken by removing MI.
923 static void unbundleSingleMI(MachineInstr *MI) {
924   // Removing the first instruction in a bundle.
925   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
926     MI->unbundleFromSucc();
927   // Removing the last instruction in a bundle.
928   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
929     MI->unbundleFromPred();
930   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
931   // are already fine.
932 }
933 
934 MachineBasicBlock::instr_iterator
935 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
936   unbundleSingleMI(I);
937   return Insts.erase(I);
938 }
939 
940 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
941   unbundleSingleMI(MI);
942   MI->clearFlag(MachineInstr::BundledPred);
943   MI->clearFlag(MachineInstr::BundledSucc);
944   return Insts.remove(MI);
945 }
946 
947 MachineBasicBlock::instr_iterator
948 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
949   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
950          "Cannot insert instruction with bundle flags");
951   // Set the bundle flags when inserting inside a bundle.
952   if (I != instr_end() && I->isBundledWithPred()) {
953     MI->setFlag(MachineInstr::BundledPred);
954     MI->setFlag(MachineInstr::BundledSucc);
955   }
956   return Insts.insert(I, MI);
957 }
958 
959 /// removeFromParent - This method unlinks 'this' from the containing function,
960 /// and returns it, but does not delete it.
961 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
962   assert(getParent() && "Not embedded in a function!");
963   getParent()->remove(this);
964   return this;
965 }
966 
967 
968 /// eraseFromParent - This method unlinks 'this' from the containing function,
969 /// and deletes it.
970 void MachineBasicBlock::eraseFromParent() {
971   assert(getParent() && "Not embedded in a function!");
972   getParent()->erase(this);
973 }
974 
975 
976 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
977 /// 'Old', change the code and CFG so that it branches to 'New' instead.
978 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
979                                                MachineBasicBlock *New) {
980   assert(Old != New && "Cannot replace self with self!");
981 
982   MachineBasicBlock::instr_iterator I = instr_end();
983   while (I != instr_begin()) {
984     --I;
985     if (!I->isTerminator()) break;
986 
987     // Scan the operands of this machine instruction, replacing any uses of Old
988     // with New.
989     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
990       if (I->getOperand(i).isMBB() &&
991           I->getOperand(i).getMBB() == Old)
992         I->getOperand(i).setMBB(New);
993   }
994 
995   // Update the successor information.
996   replaceSuccessor(Old, New);
997 }
998 
999 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
1000 /// CFG to be inserted.  If we have proven that MBB can only branch to DestA and
1001 /// DestB, remove any other MBB successors from the CFG.  DestA and DestB can be
1002 /// null.
1003 ///
1004 /// Besides DestA and DestB, retain other edges leading to LandingPads
1005 /// (currently there can be only one; we don't check or require that here).
1006 /// Note it is possible that DestA and/or DestB are LandingPads.
1007 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1008                                              MachineBasicBlock *DestB,
1009                                              bool isCond) {
1010   // The values of DestA and DestB frequently come from a call to the
1011   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1012   // values from there.
1013   //
1014   // 1. If both DestA and DestB are null, then the block ends with no branches
1015   //    (it falls through to its successor).
1016   // 2. If DestA is set, DestB is null, and isCond is false, then the block ends
1017   //    with only an unconditional branch.
1018   // 3. If DestA is set, DestB is null, and isCond is true, then the block ends
1019   //    with a conditional branch that falls through to a successor (DestB).
1020   // 4. If DestA and DestB is set and isCond is true, then the block ends with a
1021   //    conditional branch followed by an unconditional branch. DestA is the
1022   //    'true' destination and DestB is the 'false' destination.
1023 
1024   bool Changed = false;
1025 
1026   MachineFunction::iterator FallThru =
1027     llvm::next(MachineFunction::iterator(this));
1028 
1029   if (DestA == 0 && DestB == 0) {
1030     // Block falls through to successor.
1031     DestA = FallThru;
1032     DestB = FallThru;
1033   } else if (DestA != 0 && DestB == 0) {
1034     if (isCond)
1035       // Block ends in conditional jump that falls through to successor.
1036       DestB = FallThru;
1037   } else {
1038     assert(DestA && DestB && isCond &&
1039            "CFG in a bad state. Cannot correct CFG edges");
1040   }
1041 
1042   // Remove superfluous edges. I.e., those which aren't destinations of this
1043   // basic block, duplicate edges, or landing pads.
1044   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1045   MachineBasicBlock::succ_iterator SI = succ_begin();
1046   while (SI != succ_end()) {
1047     const MachineBasicBlock *MBB = *SI;
1048     if (!SeenMBBs.insert(MBB) ||
1049         (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
1050       // This is a superfluous edge, remove it.
1051       SI = removeSuccessor(SI);
1052       Changed = true;
1053     } else {
1054       ++SI;
1055     }
1056   }
1057 
1058   return Changed;
1059 }
1060 
1061 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
1062 /// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
1063 DebugLoc
1064 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1065   DebugLoc DL;
1066   instr_iterator E = instr_end();
1067   if (MBBI == E)
1068     return DL;
1069 
1070   // Skip debug declarations, we don't want a DebugLoc from them.
1071   while (MBBI != E && MBBI->isDebugValue())
1072     MBBI++;
1073   if (MBBI != E)
1074     DL = MBBI->getDebugLoc();
1075   return DL;
1076 }
1077 
1078 /// getSuccWeight - Return weight of the edge from this block to MBB.
1079 ///
1080 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const {
1081   if (Weights.empty())
1082     return 0;
1083 
1084   return *getWeightIterator(Succ);
1085 }
1086 
1087 /// getWeightIterator - Return wight iterator corresonding to the I successor
1088 /// iterator
1089 MachineBasicBlock::weight_iterator MachineBasicBlock::
1090 getWeightIterator(MachineBasicBlock::succ_iterator I) {
1091   assert(Weights.size() == Successors.size() && "Async weight list!");
1092   size_t index = std::distance(Successors.begin(), I);
1093   assert(index < Weights.size() && "Not a current successor!");
1094   return Weights.begin() + index;
1095 }
1096 
1097 /// getWeightIterator - Return wight iterator corresonding to the I successor
1098 /// iterator
1099 MachineBasicBlock::const_weight_iterator MachineBasicBlock::
1100 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const {
1101   assert(Weights.size() == Successors.size() && "Async weight list!");
1102   const size_t index = std::distance(Successors.begin(), I);
1103   assert(index < Weights.size() && "Not a current successor!");
1104   return Weights.begin() + index;
1105 }
1106 
1107 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1108 /// as of just before "MI".
1109 ///
1110 /// Search is localised to a neighborhood of
1111 /// Neighborhood instructions before (searching for defs or kills) and N
1112 /// instructions after (searching just for defs) MI.
1113 MachineBasicBlock::LivenessQueryResult
1114 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1115                                            unsigned Reg, MachineInstr *MI,
1116                                            unsigned Neighborhood) {
1117   unsigned N = Neighborhood;
1118   MachineBasicBlock *MBB = MI->getParent();
1119 
1120   // Start by searching backwards from MI, looking for kills, reads or defs.
1121 
1122   MachineBasicBlock::iterator I(MI);
1123   // If this is the first insn in the block, don't search backwards.
1124   if (I != MBB->begin()) {
1125     do {
1126       --I;
1127 
1128       MachineOperandIteratorBase::PhysRegInfo Analysis =
1129         MIOperands(I).analyzePhysReg(Reg, TRI);
1130 
1131       if (Analysis.Defines)
1132         // Outputs happen after inputs so they take precedence if both are
1133         // present.
1134         return Analysis.DefinesDead ? LQR_Dead : LQR_Live;
1135 
1136       if (Analysis.Kills || Analysis.Clobbers)
1137         // Register killed, so isn't live.
1138         return LQR_Dead;
1139 
1140       else if (Analysis.ReadsOverlap)
1141         // Defined or read without a previous kill - live.
1142         return Analysis.Reads ? LQR_Live : LQR_OverlappingLive;
1143 
1144     } while (I != MBB->begin() && --N > 0);
1145   }
1146 
1147   // Did we get to the start of the block?
1148   if (I == MBB->begin()) {
1149     // If so, the register's state is definitely defined by the live-in state.
1150     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true);
1151          RAI.isValid(); ++RAI) {
1152       if (MBB->isLiveIn(*RAI))
1153         return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive;
1154     }
1155 
1156     return LQR_Dead;
1157   }
1158 
1159   N = Neighborhood;
1160 
1161   // Try searching forwards from MI, looking for reads or defs.
1162   I = MachineBasicBlock::iterator(MI);
1163   // If this is the last insn in the block, don't search forwards.
1164   if (I != MBB->end()) {
1165     for (++I; I != MBB->end() && N > 0; ++I, --N) {
1166       MachineOperandIteratorBase::PhysRegInfo Analysis =
1167         MIOperands(I).analyzePhysReg(Reg, TRI);
1168 
1169       if (Analysis.ReadsOverlap)
1170         // Used, therefore must have been live.
1171         return (Analysis.Reads) ?
1172           LQR_Live : LQR_OverlappingLive;
1173 
1174       else if (Analysis.Clobbers || Analysis.Defines)
1175         // Defined (but not read) therefore cannot have been live.
1176         return LQR_Dead;
1177     }
1178   }
1179 
1180   // At this point we have no idea of the liveness of the register.
1181   return LQR_Unknown;
1182 }
1183 
1184 void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB,
1185                           bool t) {
1186   OS << "BB#" << MBB->getNumber();
1187 }
1188 
1189