1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/CodeGen/LiveIntervals.h" 16 #include "llvm/CodeGen/LiveVariables.h" 17 #include "llvm/CodeGen/MachineDominators.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SlotIndexes.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/DataTypes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 static cl::opt<bool> PrintSlotIndexes( 43 "print-slotindexes", 44 cl::desc("When printing machine IR, annotate instructions and blocks with " 45 "SlotIndexes when available"), 46 cl::init(true), cl::Hidden); 47 48 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 49 : BB(B), Number(-1), xParent(&MF) { 50 Insts.Parent = this; 51 if (B) 52 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 53 } 54 55 MachineBasicBlock::~MachineBasicBlock() { 56 } 57 58 /// Return the MCSymbol for this basic block. 59 MCSymbol *MachineBasicBlock::getSymbol() const { 60 if (!CachedMCSymbol) { 61 const MachineFunction *MF = getParent(); 62 MCContext &Ctx = MF->getContext(); 63 64 // We emit a non-temporary symbol -- with a descriptive name -- if it begins 65 // a section (with basic block sections). Otherwise we fall back to use temp 66 // label. 67 if (MF->hasBBSections() && isBeginSection()) { 68 SmallString<5> Suffix; 69 if (SectionID == MBBSectionID::ColdSectionID) { 70 Suffix += ".cold"; 71 } else if (SectionID == MBBSectionID::ExceptionSectionID) { 72 Suffix += ".eh"; 73 } else { 74 // For symbols that represent basic block sections, we add ".__part." to 75 // allow tools like symbolizers to know that this represents a part of 76 // the original function. 77 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str(); 78 } 79 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix); 80 } else { 81 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 82 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 83 Twine(MF->getFunctionNumber()) + 84 "_" + Twine(getNumber())); 85 } 86 } 87 return CachedMCSymbol; 88 } 89 90 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const { 91 if (!CachedEHCatchretMCSymbol) { 92 const MachineFunction *MF = getParent(); 93 SmallString<128> SymbolName; 94 raw_svector_ostream(SymbolName) 95 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber(); 96 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName); 97 } 98 return CachedEHCatchretMCSymbol; 99 } 100 101 MCSymbol *MachineBasicBlock::getEndSymbol() const { 102 if (!CachedEndMCSymbol) { 103 const MachineFunction *MF = getParent(); 104 MCContext &Ctx = MF->getContext(); 105 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 106 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" + 107 Twine(MF->getFunctionNumber()) + 108 "_" + Twine(getNumber())); 109 } 110 return CachedEndMCSymbol; 111 } 112 113 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 114 MBB.print(OS); 115 return OS; 116 } 117 118 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 119 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 120 } 121 122 /// When an MBB is added to an MF, we need to update the parent pointer of the 123 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 124 /// operand list for registers. 125 /// 126 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 127 /// gets the next available unique MBB number. If it is removed from a 128 /// MachineFunction, it goes back to being #-1. 129 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 130 MachineBasicBlock *N) { 131 MachineFunction &MF = *N->getParent(); 132 N->Number = MF.addToMBBNumbering(N); 133 134 // Make sure the instructions have their operands in the reginfo lists. 135 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 136 for (MachineBasicBlock::instr_iterator 137 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 138 I->AddRegOperandsToUseLists(RegInfo); 139 } 140 141 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 142 MachineBasicBlock *N) { 143 N->getParent()->removeFromMBBNumbering(N->Number); 144 N->Number = -1; 145 } 146 147 /// When we add an instruction to a basic block list, we update its parent 148 /// pointer and add its operands from reg use/def lists if appropriate. 149 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 150 assert(!N->getParent() && "machine instruction already in a basic block"); 151 N->setParent(Parent); 152 153 // Add the instruction's register operands to their corresponding 154 // use/def lists. 155 MachineFunction *MF = Parent->getParent(); 156 N->AddRegOperandsToUseLists(MF->getRegInfo()); 157 MF->handleInsertion(*N); 158 } 159 160 /// When we remove an instruction from a basic block list, we update its parent 161 /// pointer and remove its operands from reg use/def lists if appropriate. 162 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 163 assert(N->getParent() && "machine instruction not in a basic block"); 164 165 // Remove from the use/def lists. 166 if (MachineFunction *MF = N->getMF()) { 167 MF->handleRemoval(*N); 168 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 169 } 170 171 N->setParent(nullptr); 172 } 173 174 /// When moving a range of instructions from one MBB list to another, we need to 175 /// update the parent pointers and the use/def lists. 176 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 177 instr_iterator First, 178 instr_iterator Last) { 179 assert(Parent->getParent() == FromList.Parent->getParent() && 180 "cannot transfer MachineInstrs between MachineFunctions"); 181 182 // If it's within the same BB, there's nothing to do. 183 if (this == &FromList) 184 return; 185 186 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 187 188 // If splicing between two blocks within the same function, just update the 189 // parent pointers. 190 for (; First != Last; ++First) 191 First->setParent(Parent); 192 } 193 194 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 195 assert(!MI->getParent() && "MI is still in a block!"); 196 Parent->getParent()->DeleteMachineInstr(MI); 197 } 198 199 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 200 instr_iterator I = instr_begin(), E = instr_end(); 201 while (I != E && I->isPHI()) 202 ++I; 203 assert((I == E || !I->isInsideBundle()) && 204 "First non-phi MI cannot be inside a bundle!"); 205 return I; 206 } 207 208 MachineBasicBlock::iterator 209 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 210 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 211 212 iterator E = end(); 213 while (I != E && (I->isPHI() || I->isPosition() || 214 TII->isBasicBlockPrologue(*I))) 215 ++I; 216 // FIXME: This needs to change if we wish to bundle labels 217 // inside the bundle. 218 assert((I == E || !I->isInsideBundle()) && 219 "First non-phi / non-label instruction is inside a bundle!"); 220 return I; 221 } 222 223 MachineBasicBlock::iterator 224 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I, 225 bool SkipPseudoOp) { 226 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 227 228 iterator E = end(); 229 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 230 (SkipPseudoOp && I->isPseudoProbe()) || 231 TII->isBasicBlockPrologue(*I))) 232 ++I; 233 // FIXME: This needs to change if we wish to bundle labels / dbg_values 234 // inside the bundle. 235 assert((I == E || !I->isInsideBundle()) && 236 "First non-phi / non-label / non-debug " 237 "instruction is inside a bundle!"); 238 return I; 239 } 240 241 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 242 iterator B = begin(), E = end(), I = E; 243 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 244 ; /*noop */ 245 while (I != E && !I->isTerminator()) 246 ++I; 247 return I; 248 } 249 250 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 251 instr_iterator B = instr_begin(), E = instr_end(), I = E; 252 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 253 ; /*noop */ 254 while (I != E && !I->isTerminator()) 255 ++I; 256 return I; 257 } 258 259 MachineBasicBlock::iterator 260 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) { 261 // Skip over begin-of-block dbg_value instructions. 262 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp); 263 } 264 265 MachineBasicBlock::iterator 266 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) { 267 // Skip over end-of-block dbg_value instructions. 268 instr_iterator B = instr_begin(), I = instr_end(); 269 while (I != B) { 270 --I; 271 // Return instruction that starts a bundle. 272 if (I->isDebugInstr() || I->isInsideBundle()) 273 continue; 274 if (SkipPseudoOp && I->isPseudoProbe()) 275 continue; 276 return I; 277 } 278 // The block is all debug values. 279 return end(); 280 } 281 282 bool MachineBasicBlock::hasEHPadSuccessor() const { 283 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 284 if ((*I)->isEHPad()) 285 return true; 286 return false; 287 } 288 289 bool MachineBasicBlock::isEntryBlock() const { 290 return getParent()->begin() == getIterator(); 291 } 292 293 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 294 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 295 print(dbgs()); 296 } 297 #endif 298 299 bool MachineBasicBlock::mayHaveInlineAsmBr() const { 300 for (const MachineBasicBlock *Succ : successors()) { 301 if (Succ->isInlineAsmBrIndirectTarget()) 302 return true; 303 } 304 return false; 305 } 306 307 bool MachineBasicBlock::isLegalToHoistInto() const { 308 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr()) 309 return false; 310 return true; 311 } 312 313 StringRef MachineBasicBlock::getName() const { 314 if (const BasicBlock *LBB = getBasicBlock()) 315 return LBB->getName(); 316 else 317 return StringRef("", 0); 318 } 319 320 /// Return a hopefully unique identifier for this block. 321 std::string MachineBasicBlock::getFullName() const { 322 std::string Name; 323 if (getParent()) 324 Name = (getParent()->getName() + ":").str(); 325 if (getBasicBlock()) 326 Name += getBasicBlock()->getName(); 327 else 328 Name += ("BB" + Twine(getNumber())).str(); 329 return Name; 330 } 331 332 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 333 bool IsStandalone) const { 334 const MachineFunction *MF = getParent(); 335 if (!MF) { 336 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 337 << " is null\n"; 338 return; 339 } 340 const Function &F = MF->getFunction(); 341 const Module *M = F.getParent(); 342 ModuleSlotTracker MST(M); 343 MST.incorporateFunction(F); 344 print(OS, MST, Indexes, IsStandalone); 345 } 346 347 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 348 const SlotIndexes *Indexes, 349 bool IsStandalone) const { 350 const MachineFunction *MF = getParent(); 351 if (!MF) { 352 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 353 << " is null\n"; 354 return; 355 } 356 357 if (Indexes && PrintSlotIndexes) 358 OS << Indexes->getMBBStartIdx(this) << '\t'; 359 360 printName(OS, PrintNameIr | PrintNameAttributes, &MST); 361 OS << ":\n"; 362 363 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 364 const MachineRegisterInfo &MRI = MF->getRegInfo(); 365 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 366 bool HasLineAttributes = false; 367 368 // Print the preds of this block according to the CFG. 369 if (!pred_empty() && IsStandalone) { 370 if (Indexes) OS << '\t'; 371 // Don't indent(2), align with previous line attributes. 372 OS << "; predecessors: "; 373 ListSeparator LS; 374 for (auto *Pred : predecessors()) 375 OS << LS << printMBBReference(*Pred); 376 OS << '\n'; 377 HasLineAttributes = true; 378 } 379 380 if (!succ_empty()) { 381 if (Indexes) OS << '\t'; 382 // Print the successors 383 OS.indent(2) << "successors: "; 384 ListSeparator LS; 385 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 386 OS << LS << printMBBReference(**I); 387 if (!Probs.empty()) 388 OS << '(' 389 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 390 << ')'; 391 } 392 if (!Probs.empty() && IsStandalone) { 393 // Print human readable probabilities as comments. 394 OS << "; "; 395 ListSeparator LS; 396 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 397 const BranchProbability &BP = getSuccProbability(I); 398 OS << LS << printMBBReference(**I) << '(' 399 << format("%.2f%%", 400 rint(((double)BP.getNumerator() / BP.getDenominator()) * 401 100.0 * 100.0) / 402 100.0) 403 << ')'; 404 } 405 } 406 407 OS << '\n'; 408 HasLineAttributes = true; 409 } 410 411 if (!livein_empty() && MRI.tracksLiveness()) { 412 if (Indexes) OS << '\t'; 413 OS.indent(2) << "liveins: "; 414 415 ListSeparator LS; 416 for (const auto &LI : liveins()) { 417 OS << LS << printReg(LI.PhysReg, TRI); 418 if (!LI.LaneMask.all()) 419 OS << ":0x" << PrintLaneMask(LI.LaneMask); 420 } 421 HasLineAttributes = true; 422 } 423 424 if (HasLineAttributes) 425 OS << '\n'; 426 427 bool IsInBundle = false; 428 for (const MachineInstr &MI : instrs()) { 429 if (Indexes && PrintSlotIndexes) { 430 if (Indexes->hasIndex(MI)) 431 OS << Indexes->getInstructionIndex(MI); 432 OS << '\t'; 433 } 434 435 if (IsInBundle && !MI.isInsideBundle()) { 436 OS.indent(2) << "}\n"; 437 IsInBundle = false; 438 } 439 440 OS.indent(IsInBundle ? 4 : 2); 441 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 442 /*AddNewLine=*/false, &TII); 443 444 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 445 OS << " {"; 446 IsInBundle = true; 447 } 448 OS << '\n'; 449 } 450 451 if (IsInBundle) 452 OS.indent(2) << "}\n"; 453 454 if (IrrLoopHeaderWeight && IsStandalone) { 455 if (Indexes) OS << '\t'; 456 OS.indent(2) << "; Irreducible loop header weight: " 457 << IrrLoopHeaderWeight.getValue() << '\n'; 458 } 459 } 460 461 /// Print the basic block's name as: 462 /// 463 /// bb.{number}[.{ir-name}] [(attributes...)] 464 /// 465 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed 466 /// (which is the default). If the IR block has no name, it is identified 467 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})". 468 /// 469 /// When the \ref PrintNameAttributes flag is passed, additional attributes 470 /// of the block are printed when set. 471 /// 472 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating 473 /// the parts to print. 474 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will 475 /// incorporate its own tracker when necessary to 476 /// determine the block's IR name. 477 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags, 478 ModuleSlotTracker *moduleSlotTracker) const { 479 os << "bb." << getNumber(); 480 bool hasAttributes = false; 481 482 if (printNameFlags & PrintNameIr) { 483 if (const auto *bb = getBasicBlock()) { 484 if (bb->hasName()) { 485 os << '.' << bb->getName(); 486 } else { 487 hasAttributes = true; 488 os << " ("; 489 490 int slot = -1; 491 492 if (moduleSlotTracker) { 493 slot = moduleSlotTracker->getLocalSlot(bb); 494 } else if (bb->getParent()) { 495 ModuleSlotTracker tmpTracker(bb->getModule(), false); 496 tmpTracker.incorporateFunction(*bb->getParent()); 497 slot = tmpTracker.getLocalSlot(bb); 498 } 499 500 if (slot == -1) 501 os << "<ir-block badref>"; 502 else 503 os << (Twine("%ir-block.") + Twine(slot)).str(); 504 } 505 } 506 } 507 508 if (printNameFlags & PrintNameAttributes) { 509 if (hasAddressTaken()) { 510 os << (hasAttributes ? ", " : " ("); 511 os << "address-taken"; 512 hasAttributes = true; 513 } 514 if (isEHPad()) { 515 os << (hasAttributes ? ", " : " ("); 516 os << "landing-pad"; 517 hasAttributes = true; 518 } 519 if (isEHFuncletEntry()) { 520 os << (hasAttributes ? ", " : " ("); 521 os << "ehfunclet-entry"; 522 hasAttributes = true; 523 } 524 if (getAlignment() != Align(1)) { 525 os << (hasAttributes ? ", " : " ("); 526 os << "align " << getAlignment().value(); 527 hasAttributes = true; 528 } 529 if (getSectionID() != MBBSectionID(0)) { 530 os << (hasAttributes ? ", " : " ("); 531 os << "bbsections "; 532 switch (getSectionID().Type) { 533 case MBBSectionID::SectionType::Exception: 534 os << "Exception"; 535 break; 536 case MBBSectionID::SectionType::Cold: 537 os << "Cold"; 538 break; 539 default: 540 os << getSectionID().Number; 541 } 542 hasAttributes = true; 543 } 544 } 545 546 if (hasAttributes) 547 os << ')'; 548 } 549 550 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 551 bool /*PrintType*/) const { 552 OS << '%'; 553 printName(OS, 0); 554 } 555 556 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 557 LiveInVector::iterator I = find_if( 558 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 559 if (I == LiveIns.end()) 560 return; 561 562 I->LaneMask &= ~LaneMask; 563 if (I->LaneMask.none()) 564 LiveIns.erase(I); 565 } 566 567 MachineBasicBlock::livein_iterator 568 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 569 // Get non-const version of iterator. 570 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 571 return LiveIns.erase(LI); 572 } 573 574 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 575 livein_iterator I = find_if( 576 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 577 return I != livein_end() && (I->LaneMask & LaneMask).any(); 578 } 579 580 void MachineBasicBlock::sortUniqueLiveIns() { 581 llvm::sort(LiveIns, 582 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 583 return LI0.PhysReg < LI1.PhysReg; 584 }); 585 // Liveins are sorted by physreg now we can merge their lanemasks. 586 LiveInVector::const_iterator I = LiveIns.begin(); 587 LiveInVector::const_iterator J; 588 LiveInVector::iterator Out = LiveIns.begin(); 589 for (; I != LiveIns.end(); ++Out, I = J) { 590 MCRegister PhysReg = I->PhysReg; 591 LaneBitmask LaneMask = I->LaneMask; 592 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 593 LaneMask |= J->LaneMask; 594 Out->PhysReg = PhysReg; 595 Out->LaneMask = LaneMask; 596 } 597 LiveIns.erase(Out, LiveIns.end()); 598 } 599 600 Register 601 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 602 assert(getParent() && "MBB must be inserted in function"); 603 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg"); 604 assert(RC && "Register class is required"); 605 assert((isEHPad() || this == &getParent()->front()) && 606 "Only the entry block and landing pads can have physreg live ins"); 607 608 bool LiveIn = isLiveIn(PhysReg); 609 iterator I = SkipPHIsAndLabels(begin()), E = end(); 610 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 611 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 612 613 // Look for an existing copy. 614 if (LiveIn) 615 for (;I != E && I->isCopy(); ++I) 616 if (I->getOperand(1).getReg() == PhysReg) { 617 Register VirtReg = I->getOperand(0).getReg(); 618 if (!MRI.constrainRegClass(VirtReg, RC)) 619 llvm_unreachable("Incompatible live-in register class."); 620 return VirtReg; 621 } 622 623 // No luck, create a virtual register. 624 Register VirtReg = MRI.createVirtualRegister(RC); 625 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 626 .addReg(PhysReg, RegState::Kill); 627 if (!LiveIn) 628 addLiveIn(PhysReg); 629 return VirtReg; 630 } 631 632 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 633 getParent()->splice(NewAfter->getIterator(), getIterator()); 634 } 635 636 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 637 getParent()->splice(++NewBefore->getIterator(), getIterator()); 638 } 639 640 void MachineBasicBlock::updateTerminator( 641 MachineBasicBlock *PreviousLayoutSuccessor) { 642 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this) 643 << "\n"); 644 645 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 646 // A block with no successors has no concerns with fall-through edges. 647 if (this->succ_empty()) 648 return; 649 650 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 651 SmallVector<MachineOperand, 4> Cond; 652 DebugLoc DL = findBranchDebugLoc(); 653 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 654 (void) B; 655 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 656 if (Cond.empty()) { 657 if (TBB) { 658 // The block has an unconditional branch. If its successor is now its 659 // layout successor, delete the branch. 660 if (isLayoutSuccessor(TBB)) 661 TII->removeBranch(*this); 662 } else { 663 // The block has an unconditional fallthrough, or the end of the block is 664 // unreachable. 665 666 // Unfortunately, whether the end of the block is unreachable is not 667 // immediately obvious; we must fall back to checking the successor list, 668 // and assuming that if the passed in block is in the succesor list and 669 // not an EHPad, it must be the intended target. 670 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) || 671 PreviousLayoutSuccessor->isEHPad()) 672 return; 673 674 // If the unconditional successor block is not the current layout 675 // successor, insert a branch to jump to it. 676 if (!isLayoutSuccessor(PreviousLayoutSuccessor)) 677 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 678 } 679 return; 680 } 681 682 if (FBB) { 683 // The block has a non-fallthrough conditional branch. If one of its 684 // successors is its layout successor, rewrite it to a fallthrough 685 // conditional branch. 686 if (isLayoutSuccessor(TBB)) { 687 if (TII->reverseBranchCondition(Cond)) 688 return; 689 TII->removeBranch(*this); 690 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 691 } else if (isLayoutSuccessor(FBB)) { 692 TII->removeBranch(*this); 693 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 694 } 695 return; 696 } 697 698 // We now know we're going to fallthrough to PreviousLayoutSuccessor. 699 assert(PreviousLayoutSuccessor); 700 assert(!PreviousLayoutSuccessor->isEHPad()); 701 assert(isSuccessor(PreviousLayoutSuccessor)); 702 703 if (PreviousLayoutSuccessor == TBB) { 704 // We had a fallthrough to the same basic block as the conditional jump 705 // targets. Remove the conditional jump, leaving an unconditional 706 // fallthrough or an unconditional jump. 707 TII->removeBranch(*this); 708 if (!isLayoutSuccessor(TBB)) { 709 Cond.clear(); 710 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 711 } 712 return; 713 } 714 715 // The block has a fallthrough conditional branch. 716 if (isLayoutSuccessor(TBB)) { 717 if (TII->reverseBranchCondition(Cond)) { 718 // We can't reverse the condition, add an unconditional branch. 719 Cond.clear(); 720 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 721 return; 722 } 723 TII->removeBranch(*this); 724 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 725 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) { 726 TII->removeBranch(*this); 727 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL); 728 } 729 } 730 731 void MachineBasicBlock::validateSuccProbs() const { 732 #ifndef NDEBUG 733 int64_t Sum = 0; 734 for (auto Prob : Probs) 735 Sum += Prob.getNumerator(); 736 // Due to precision issue, we assume that the sum of probabilities is one if 737 // the difference between the sum of their numerators and the denominator is 738 // no greater than the number of successors. 739 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 740 Probs.size() && 741 "The sum of successors's probabilities exceeds one."); 742 #endif // NDEBUG 743 } 744 745 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 746 BranchProbability Prob) { 747 // Probability list is either empty (if successor list isn't empty, this means 748 // disabled optimization) or has the same size as successor list. 749 if (!(Probs.empty() && !Successors.empty())) 750 Probs.push_back(Prob); 751 Successors.push_back(Succ); 752 Succ->addPredecessor(this); 753 } 754 755 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 756 // We need to make sure probability list is either empty or has the same size 757 // of successor list. When this function is called, we can safely delete all 758 // probability in the list. 759 Probs.clear(); 760 Successors.push_back(Succ); 761 Succ->addPredecessor(this); 762 } 763 764 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 765 MachineBasicBlock *New, 766 bool NormalizeSuccProbs) { 767 succ_iterator OldI = llvm::find(successors(), Old); 768 assert(OldI != succ_end() && "Old is not a successor of this block!"); 769 assert(!llvm::is_contained(successors(), New) && 770 "New is already a successor of this block!"); 771 772 // Add a new successor with equal probability as the original one. Note 773 // that we directly copy the probability using the iterator rather than 774 // getting a potentially synthetic probability computed when unknown. This 775 // preserves the probabilities as-is and then we can renormalize them and 776 // query them effectively afterward. 777 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 778 : *getProbabilityIterator(OldI)); 779 if (NormalizeSuccProbs) 780 normalizeSuccProbs(); 781 } 782 783 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 784 bool NormalizeSuccProbs) { 785 succ_iterator I = find(Successors, Succ); 786 removeSuccessor(I, NormalizeSuccProbs); 787 } 788 789 MachineBasicBlock::succ_iterator 790 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 791 assert(I != Successors.end() && "Not a current successor!"); 792 793 // If probability list is empty it means we don't use it (disabled 794 // optimization). 795 if (!Probs.empty()) { 796 probability_iterator WI = getProbabilityIterator(I); 797 Probs.erase(WI); 798 if (NormalizeSuccProbs) 799 normalizeSuccProbs(); 800 } 801 802 (*I)->removePredecessor(this); 803 return Successors.erase(I); 804 } 805 806 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 807 MachineBasicBlock *New) { 808 if (Old == New) 809 return; 810 811 succ_iterator E = succ_end(); 812 succ_iterator NewI = E; 813 succ_iterator OldI = E; 814 for (succ_iterator I = succ_begin(); I != E; ++I) { 815 if (*I == Old) { 816 OldI = I; 817 if (NewI != E) 818 break; 819 } 820 if (*I == New) { 821 NewI = I; 822 if (OldI != E) 823 break; 824 } 825 } 826 assert(OldI != E && "Old is not a successor of this block"); 827 828 // If New isn't already a successor, let it take Old's place. 829 if (NewI == E) { 830 Old->removePredecessor(this); 831 New->addPredecessor(this); 832 *OldI = New; 833 return; 834 } 835 836 // New is already a successor. 837 // Update its probability instead of adding a duplicate edge. 838 if (!Probs.empty()) { 839 auto ProbIter = getProbabilityIterator(NewI); 840 if (!ProbIter->isUnknown()) 841 *ProbIter += *getProbabilityIterator(OldI); 842 } 843 removeSuccessor(OldI); 844 } 845 846 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 847 succ_iterator I) { 848 if (!Orig->Probs.empty()) 849 addSuccessor(*I, Orig->getSuccProbability(I)); 850 else 851 addSuccessorWithoutProb(*I); 852 } 853 854 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 855 Predecessors.push_back(Pred); 856 } 857 858 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 859 pred_iterator I = find(Predecessors, Pred); 860 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 861 Predecessors.erase(I); 862 } 863 864 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 865 if (this == FromMBB) 866 return; 867 868 while (!FromMBB->succ_empty()) { 869 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 870 871 // If probability list is empty it means we don't use it (disabled 872 // optimization). 873 if (!FromMBB->Probs.empty()) { 874 auto Prob = *FromMBB->Probs.begin(); 875 addSuccessor(Succ, Prob); 876 } else 877 addSuccessorWithoutProb(Succ); 878 879 FromMBB->removeSuccessor(Succ); 880 } 881 } 882 883 void 884 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 885 if (this == FromMBB) 886 return; 887 888 while (!FromMBB->succ_empty()) { 889 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 890 if (!FromMBB->Probs.empty()) { 891 auto Prob = *FromMBB->Probs.begin(); 892 addSuccessor(Succ, Prob); 893 } else 894 addSuccessorWithoutProb(Succ); 895 FromMBB->removeSuccessor(Succ); 896 897 // Fix up any PHI nodes in the successor. 898 Succ->replacePhiUsesWith(FromMBB, this); 899 } 900 normalizeSuccProbs(); 901 } 902 903 /// A block emptied (i.e., with all instructions moved out of it) won't be 904 /// sampled at run time. In such cases, AutoFDO will be informed of zero samples 905 /// collected for the block. This is not accurate and could lead to misleading 906 /// weights assigned for the block. A way to mitigate that is to treat such 907 /// block as having unknown counts in the AutoFDO profile loader and allow the 908 /// counts inference tool a chance to calculate a relatively reasonable weight 909 /// for it. This can be done by moving all pseudo probes in the emptied block 910 /// i.e, /c this, to before /c ToMBB and tag them dangling. Note that this is 911 /// not needed for dead blocks which really have a zero weight. It's per 912 /// transforms to decide whether to call this function or not. 913 void MachineBasicBlock::moveAndDanglePseudoProbes(MachineBasicBlock *ToMBB) { 914 SmallVector<MachineInstr *, 4> ToBeMoved; 915 for (MachineInstr &MI : instrs()) { 916 if (MI.isPseudoProbe()) { 917 MI.addPseudoProbeAttribute(PseudoProbeAttributes::Dangling); 918 ToBeMoved.push_back(&MI); 919 } 920 } 921 922 MachineBasicBlock::iterator I = ToMBB->getFirstTerminator(); 923 for (MachineInstr *MI : ToBeMoved) { 924 MI->removeFromParent(); 925 ToMBB->insert(I, MI); 926 } 927 } 928 929 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 930 return is_contained(predecessors(), MBB); 931 } 932 933 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 934 return is_contained(successors(), MBB); 935 } 936 937 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 938 MachineFunction::const_iterator I(this); 939 return std::next(I) == MachineFunction::const_iterator(MBB); 940 } 941 942 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 943 MachineFunction::iterator Fallthrough = getIterator(); 944 ++Fallthrough; 945 // If FallthroughBlock is off the end of the function, it can't fall through. 946 if (Fallthrough == getParent()->end()) 947 return nullptr; 948 949 // If FallthroughBlock isn't a successor, no fallthrough is possible. 950 if (!isSuccessor(&*Fallthrough)) 951 return nullptr; 952 953 // Analyze the branches, if any, at the end of the block. 954 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 955 SmallVector<MachineOperand, 4> Cond; 956 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 957 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 958 // If we couldn't analyze the branch, examine the last instruction. 959 // If the block doesn't end in a known control barrier, assume fallthrough 960 // is possible. The isPredicated check is needed because this code can be 961 // called during IfConversion, where an instruction which is normally a 962 // Barrier is predicated and thus no longer an actual control barrier. 963 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 964 ? &*Fallthrough 965 : nullptr; 966 } 967 968 // If there is no branch, control always falls through. 969 if (!TBB) return &*Fallthrough; 970 971 // If there is some explicit branch to the fallthrough block, it can obviously 972 // reach, even though the branch should get folded to fall through implicitly. 973 if (MachineFunction::iterator(TBB) == Fallthrough || 974 MachineFunction::iterator(FBB) == Fallthrough) 975 return &*Fallthrough; 976 977 // If it's an unconditional branch to some block not the fall through, it 978 // doesn't fall through. 979 if (Cond.empty()) return nullptr; 980 981 // Otherwise, if it is conditional and has no explicit false block, it falls 982 // through. 983 return (FBB == nullptr) ? &*Fallthrough : nullptr; 984 } 985 986 bool MachineBasicBlock::canFallThrough() { 987 return getFallThrough() != nullptr; 988 } 989 990 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI, 991 bool UpdateLiveIns, 992 LiveIntervals *LIS) { 993 MachineBasicBlock::iterator SplitPoint(&MI); 994 ++SplitPoint; 995 996 if (SplitPoint == end()) { 997 // Don't bother with a new block. 998 return this; 999 } 1000 1001 MachineFunction *MF = getParent(); 1002 1003 LivePhysRegs LiveRegs; 1004 if (UpdateLiveIns) { 1005 // Make sure we add any physregs we define in the block as liveins to the 1006 // new block. 1007 MachineBasicBlock::iterator Prev(&MI); 1008 LiveRegs.init(*MF->getSubtarget().getRegisterInfo()); 1009 LiveRegs.addLiveOuts(*this); 1010 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I) 1011 LiveRegs.stepBackward(*I); 1012 } 1013 1014 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock()); 1015 1016 MF->insert(++MachineFunction::iterator(this), SplitBB); 1017 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end()); 1018 1019 SplitBB->transferSuccessorsAndUpdatePHIs(this); 1020 addSuccessor(SplitBB); 1021 1022 if (UpdateLiveIns) 1023 addLiveIns(*SplitBB, LiveRegs); 1024 1025 if (LIS) 1026 LIS->insertMBBInMaps(SplitBB); 1027 1028 return SplitBB; 1029 } 1030 1031 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( 1032 MachineBasicBlock *Succ, Pass &P, 1033 std::vector<SparseBitVector<>> *LiveInSets) { 1034 if (!canSplitCriticalEdge(Succ)) 1035 return nullptr; 1036 1037 MachineFunction *MF = getParent(); 1038 MachineBasicBlock *PrevFallthrough = getNextNode(); 1039 DebugLoc DL; // FIXME: this is nowhere 1040 1041 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 1042 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 1043 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 1044 << " -- " << printMBBReference(*NMBB) << " -- " 1045 << printMBBReference(*Succ) << '\n'); 1046 1047 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 1048 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 1049 if (LIS) 1050 LIS->insertMBBInMaps(NMBB); 1051 else if (Indexes) 1052 Indexes->insertMBBInMaps(NMBB); 1053 1054 // On some targets like Mips, branches may kill virtual registers. Make sure 1055 // that LiveVariables is properly updated after updateTerminator replaces the 1056 // terminators. 1057 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 1058 1059 // Collect a list of virtual registers killed by the terminators. 1060 SmallVector<Register, 4> KilledRegs; 1061 if (LV) 1062 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 1063 I != E; ++I) { 1064 MachineInstr *MI = &*I; 1065 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 1066 OE = MI->operands_end(); OI != OE; ++OI) { 1067 if (!OI->isReg() || OI->getReg() == 0 || 1068 !OI->isUse() || !OI->isKill() || OI->isUndef()) 1069 continue; 1070 Register Reg = OI->getReg(); 1071 if (Register::isPhysicalRegister(Reg) || 1072 LV->getVarInfo(Reg).removeKill(*MI)) { 1073 KilledRegs.push_back(Reg); 1074 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI); 1075 OI->setIsKill(false); 1076 } 1077 } 1078 } 1079 1080 SmallVector<Register, 4> UsedRegs; 1081 if (LIS) { 1082 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 1083 I != E; ++I) { 1084 MachineInstr *MI = &*I; 1085 1086 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 1087 OE = MI->operands_end(); OI != OE; ++OI) { 1088 if (!OI->isReg() || OI->getReg() == 0) 1089 continue; 1090 1091 Register Reg = OI->getReg(); 1092 if (!is_contained(UsedRegs, Reg)) 1093 UsedRegs.push_back(Reg); 1094 } 1095 } 1096 } 1097 1098 ReplaceUsesOfBlockWith(Succ, NMBB); 1099 1100 // If updateTerminator() removes instructions, we need to remove them from 1101 // SlotIndexes. 1102 SmallVector<MachineInstr*, 4> Terminators; 1103 if (Indexes) { 1104 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 1105 I != E; ++I) 1106 Terminators.push_back(&*I); 1107 } 1108 1109 // Since we replaced all uses of Succ with NMBB, that should also be treated 1110 // as the fallthrough successor 1111 if (Succ == PrevFallthrough) 1112 PrevFallthrough = NMBB; 1113 updateTerminator(PrevFallthrough); 1114 1115 if (Indexes) { 1116 SmallVector<MachineInstr*, 4> NewTerminators; 1117 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 1118 I != E; ++I) 1119 NewTerminators.push_back(&*I); 1120 1121 for (MachineInstr *Terminator : Terminators) { 1122 if (!is_contained(NewTerminators, Terminator)) 1123 Indexes->removeMachineInstrFromMaps(*Terminator); 1124 } 1125 } 1126 1127 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 1128 NMBB->addSuccessor(Succ); 1129 if (!NMBB->isLayoutSuccessor(Succ)) { 1130 SmallVector<MachineOperand, 4> Cond; 1131 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 1132 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 1133 1134 if (Indexes) { 1135 for (MachineInstr &MI : NMBB->instrs()) { 1136 // Some instructions may have been moved to NMBB by updateTerminator(), 1137 // so we first remove any instruction that already has an index. 1138 if (Indexes->hasIndex(MI)) 1139 Indexes->removeMachineInstrFromMaps(MI); 1140 Indexes->insertMachineInstrInMaps(MI); 1141 } 1142 } 1143 } 1144 1145 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 1146 Succ->replacePhiUsesWith(this, NMBB); 1147 1148 // Inherit live-ins from the successor 1149 for (const auto &LI : Succ->liveins()) 1150 NMBB->addLiveIn(LI); 1151 1152 // Update LiveVariables. 1153 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1154 if (LV) { 1155 // Restore kills of virtual registers that were killed by the terminators. 1156 while (!KilledRegs.empty()) { 1157 Register Reg = KilledRegs.pop_back_val(); 1158 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 1159 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 1160 continue; 1161 if (Register::isVirtualRegister(Reg)) 1162 LV->getVarInfo(Reg).Kills.push_back(&*I); 1163 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1164 break; 1165 } 1166 } 1167 // Update relevant live-through information. 1168 if (LiveInSets != nullptr) 1169 LV->addNewBlock(NMBB, this, Succ, *LiveInSets); 1170 else 1171 LV->addNewBlock(NMBB, this, Succ); 1172 } 1173 1174 if (LIS) { 1175 // After splitting the edge and updating SlotIndexes, live intervals may be 1176 // in one of two situations, depending on whether this block was the last in 1177 // the function. If the original block was the last in the function, all 1178 // live intervals will end prior to the beginning of the new split block. If 1179 // the original block was not at the end of the function, all live intervals 1180 // will extend to the end of the new split block. 1181 1182 bool isLastMBB = 1183 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1184 1185 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1186 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1187 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1188 1189 // Find the registers used from NMBB in PHIs in Succ. 1190 SmallSet<Register, 8> PHISrcRegs; 1191 for (MachineBasicBlock::instr_iterator 1192 I = Succ->instr_begin(), E = Succ->instr_end(); 1193 I != E && I->isPHI(); ++I) { 1194 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1195 if (I->getOperand(ni+1).getMBB() == NMBB) { 1196 MachineOperand &MO = I->getOperand(ni); 1197 Register Reg = MO.getReg(); 1198 PHISrcRegs.insert(Reg); 1199 if (MO.isUndef()) 1200 continue; 1201 1202 LiveInterval &LI = LIS->getInterval(Reg); 1203 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1204 assert(VNI && 1205 "PHI sources should be live out of their predecessors."); 1206 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1207 } 1208 } 1209 } 1210 1211 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1212 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1213 Register Reg = Register::index2VirtReg(i); 1214 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1215 continue; 1216 1217 LiveInterval &LI = LIS->getInterval(Reg); 1218 if (!LI.liveAt(PrevIndex)) 1219 continue; 1220 1221 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1222 if (isLiveOut && isLastMBB) { 1223 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1224 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1225 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1226 } else if (!isLiveOut && !isLastMBB) { 1227 LI.removeSegment(StartIndex, EndIndex); 1228 } 1229 } 1230 1231 // Update all intervals for registers whose uses may have been modified by 1232 // updateTerminator(). 1233 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1234 } 1235 1236 if (MachineDominatorTree *MDT = 1237 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1238 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1239 1240 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1241 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1242 // If one or the other blocks were not in a loop, the new block is not 1243 // either, and thus LI doesn't need to be updated. 1244 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1245 if (TIL == DestLoop) { 1246 // Both in the same loop, the NMBB joins loop. 1247 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1248 } else if (TIL->contains(DestLoop)) { 1249 // Edge from an outer loop to an inner loop. Add to the outer loop. 1250 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1251 } else if (DestLoop->contains(TIL)) { 1252 // Edge from an inner loop to an outer loop. Add to the outer loop. 1253 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1254 } else { 1255 // Edge from two loops with no containment relation. Because these 1256 // are natural loops, we know that the destination block must be the 1257 // header of its loop (adding a branch into a loop elsewhere would 1258 // create an irreducible loop). 1259 assert(DestLoop->getHeader() == Succ && 1260 "Should not create irreducible loops!"); 1261 if (MachineLoop *P = DestLoop->getParentLoop()) 1262 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1263 } 1264 } 1265 } 1266 1267 return NMBB; 1268 } 1269 1270 bool MachineBasicBlock::canSplitCriticalEdge( 1271 const MachineBasicBlock *Succ) const { 1272 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1273 // it in this generic function. 1274 if (Succ->isEHPad()) 1275 return false; 1276 1277 // Splitting the critical edge to a callbr's indirect block isn't advised. 1278 // Don't do it in this generic function. 1279 if (Succ->isInlineAsmBrIndirectTarget()) 1280 return false; 1281 1282 const MachineFunction *MF = getParent(); 1283 // Performance might be harmed on HW that implements branching using exec mask 1284 // where both sides of the branches are always executed. 1285 if (MF->getTarget().requiresStructuredCFG()) 1286 return false; 1287 1288 // We may need to update this's terminator, but we can't do that if 1289 // analyzeBranch fails. If this uses a jump table, we won't touch it. 1290 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1291 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1292 SmallVector<MachineOperand, 4> Cond; 1293 // AnalyzeBanch should modify this, since we did not allow modification. 1294 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1295 /*AllowModify*/ false)) 1296 return false; 1297 1298 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1299 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1300 // case that we can't handle. Since this never happens in properly optimized 1301 // code, just skip those edges. 1302 if (TBB && TBB == FBB) { 1303 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1304 << printMBBReference(*this) << '\n'); 1305 return false; 1306 } 1307 return true; 1308 } 1309 1310 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1311 /// neighboring instructions so the bundle won't be broken by removing MI. 1312 static void unbundleSingleMI(MachineInstr *MI) { 1313 // Removing the first instruction in a bundle. 1314 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1315 MI->unbundleFromSucc(); 1316 // Removing the last instruction in a bundle. 1317 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1318 MI->unbundleFromPred(); 1319 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1320 // are already fine. 1321 } 1322 1323 MachineBasicBlock::instr_iterator 1324 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1325 unbundleSingleMI(&*I); 1326 return Insts.erase(I); 1327 } 1328 1329 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1330 unbundleSingleMI(MI); 1331 MI->clearFlag(MachineInstr::BundledPred); 1332 MI->clearFlag(MachineInstr::BundledSucc); 1333 return Insts.remove(MI); 1334 } 1335 1336 MachineBasicBlock::instr_iterator 1337 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1338 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1339 "Cannot insert instruction with bundle flags"); 1340 // Set the bundle flags when inserting inside a bundle. 1341 if (I != instr_end() && I->isBundledWithPred()) { 1342 MI->setFlag(MachineInstr::BundledPred); 1343 MI->setFlag(MachineInstr::BundledSucc); 1344 } 1345 return Insts.insert(I, MI); 1346 } 1347 1348 /// This method unlinks 'this' from the containing function, and returns it, but 1349 /// does not delete it. 1350 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1351 assert(getParent() && "Not embedded in a function!"); 1352 getParent()->remove(this); 1353 return this; 1354 } 1355 1356 /// This method unlinks 'this' from the containing function, and deletes it. 1357 void MachineBasicBlock::eraseFromParent() { 1358 assert(getParent() && "Not embedded in a function!"); 1359 getParent()->erase(this); 1360 } 1361 1362 /// Given a machine basic block that branched to 'Old', change the code and CFG 1363 /// so that it branches to 'New' instead. 1364 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1365 MachineBasicBlock *New) { 1366 assert(Old != New && "Cannot replace self with self!"); 1367 1368 MachineBasicBlock::instr_iterator I = instr_end(); 1369 while (I != instr_begin()) { 1370 --I; 1371 if (!I->isTerminator()) break; 1372 1373 // Scan the operands of this machine instruction, replacing any uses of Old 1374 // with New. 1375 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1376 if (I->getOperand(i).isMBB() && 1377 I->getOperand(i).getMBB() == Old) 1378 I->getOperand(i).setMBB(New); 1379 } 1380 1381 // Update the successor information. 1382 replaceSuccessor(Old, New); 1383 } 1384 1385 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1386 MachineBasicBlock *New) { 1387 for (MachineInstr &MI : phis()) 1388 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1389 MachineOperand &MO = MI.getOperand(i); 1390 if (MO.getMBB() == Old) 1391 MO.setMBB(New); 1392 } 1393 } 1394 1395 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1396 /// instructions. Return UnknownLoc if there is none. 1397 DebugLoc 1398 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1399 // Skip debug declarations, we don't want a DebugLoc from them. 1400 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1401 if (MBBI != instr_end()) 1402 return MBBI->getDebugLoc(); 1403 return {}; 1404 } 1405 1406 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) { 1407 // Skip debug declarations, we don't want a DebugLoc from them. 1408 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin()); 1409 if (!MBBI->isDebugInstr()) 1410 return MBBI->getDebugLoc(); 1411 return {}; 1412 } 1413 1414 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE 1415 /// instructions. Return UnknownLoc if there is none. 1416 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1417 if (MBBI == instr_begin()) return {}; 1418 // Skip debug instructions, we don't want a DebugLoc from them. 1419 MBBI = prev_nodbg(MBBI, instr_begin()); 1420 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); 1421 return {}; 1422 } 1423 1424 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) { 1425 if (MBBI == instr_rend()) 1426 return {}; 1427 // Skip debug declarations, we don't want a DebugLoc from them. 1428 MBBI = next_nodbg(MBBI, instr_rend()); 1429 if (MBBI != instr_rend()) 1430 return MBBI->getDebugLoc(); 1431 return {}; 1432 } 1433 1434 /// Find and return the merged DebugLoc of the branch instructions of the block. 1435 /// Return UnknownLoc if there is none. 1436 DebugLoc 1437 MachineBasicBlock::findBranchDebugLoc() { 1438 DebugLoc DL; 1439 auto TI = getFirstTerminator(); 1440 while (TI != end() && !TI->isBranch()) 1441 ++TI; 1442 1443 if (TI != end()) { 1444 DL = TI->getDebugLoc(); 1445 for (++TI ; TI != end() ; ++TI) 1446 if (TI->isBranch()) 1447 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1448 } 1449 return DL; 1450 } 1451 1452 /// Return probability of the edge from this block to MBB. 1453 BranchProbability 1454 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1455 if (Probs.empty()) 1456 return BranchProbability(1, succ_size()); 1457 1458 const auto &Prob = *getProbabilityIterator(Succ); 1459 if (Prob.isUnknown()) { 1460 // For unknown probabilities, collect the sum of all known ones, and evenly 1461 // ditribute the complemental of the sum to each unknown probability. 1462 unsigned KnownProbNum = 0; 1463 auto Sum = BranchProbability::getZero(); 1464 for (auto &P : Probs) { 1465 if (!P.isUnknown()) { 1466 Sum += P; 1467 KnownProbNum++; 1468 } 1469 } 1470 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1471 } else 1472 return Prob; 1473 } 1474 1475 /// Set successor probability of a given iterator. 1476 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1477 BranchProbability Prob) { 1478 assert(!Prob.isUnknown()); 1479 if (Probs.empty()) 1480 return; 1481 *getProbabilityIterator(I) = Prob; 1482 } 1483 1484 /// Return probability iterator corresonding to the I successor iterator 1485 MachineBasicBlock::const_probability_iterator 1486 MachineBasicBlock::getProbabilityIterator( 1487 MachineBasicBlock::const_succ_iterator I) const { 1488 assert(Probs.size() == Successors.size() && "Async probability list!"); 1489 const size_t index = std::distance(Successors.begin(), I); 1490 assert(index < Probs.size() && "Not a current successor!"); 1491 return Probs.begin() + index; 1492 } 1493 1494 /// Return probability iterator corresonding to the I successor iterator. 1495 MachineBasicBlock::probability_iterator 1496 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1497 assert(Probs.size() == Successors.size() && "Async probability list!"); 1498 const size_t index = std::distance(Successors.begin(), I); 1499 assert(index < Probs.size() && "Not a current successor!"); 1500 return Probs.begin() + index; 1501 } 1502 1503 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1504 /// as of just before "MI". 1505 /// 1506 /// Search is localised to a neighborhood of 1507 /// Neighborhood instructions before (searching for defs or kills) and N 1508 /// instructions after (searching just for defs) MI. 1509 MachineBasicBlock::LivenessQueryResult 1510 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1511 MCRegister Reg, const_iterator Before, 1512 unsigned Neighborhood) const { 1513 unsigned N = Neighborhood; 1514 1515 // Try searching forwards from Before, looking for reads or defs. 1516 const_iterator I(Before); 1517 for (; I != end() && N > 0; ++I) { 1518 if (I->isDebugOrPseudoInstr()) 1519 continue; 1520 1521 --N; 1522 1523 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1524 1525 // Register is live when we read it here. 1526 if (Info.Read) 1527 return LQR_Live; 1528 // Register is dead if we can fully overwrite or clobber it here. 1529 if (Info.FullyDefined || Info.Clobbered) 1530 return LQR_Dead; 1531 } 1532 1533 // If we reached the end, it is safe to clobber Reg at the end of a block of 1534 // no successor has it live in. 1535 if (I == end()) { 1536 for (MachineBasicBlock *S : successors()) { 1537 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1538 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1539 return LQR_Live; 1540 } 1541 } 1542 1543 return LQR_Dead; 1544 } 1545 1546 1547 N = Neighborhood; 1548 1549 // Start by searching backwards from Before, looking for kills, reads or defs. 1550 I = const_iterator(Before); 1551 // If this is the first insn in the block, don't search backwards. 1552 if (I != begin()) { 1553 do { 1554 --I; 1555 1556 if (I->isDebugOrPseudoInstr()) 1557 continue; 1558 1559 --N; 1560 1561 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1562 1563 // Defs happen after uses so they take precedence if both are present. 1564 1565 // Register is dead after a dead def of the full register. 1566 if (Info.DeadDef) 1567 return LQR_Dead; 1568 // Register is (at least partially) live after a def. 1569 if (Info.Defined) { 1570 if (!Info.PartialDeadDef) 1571 return LQR_Live; 1572 // As soon as we saw a partial definition (dead or not), 1573 // we cannot tell if the value is partial live without 1574 // tracking the lanemasks. We are not going to do this, 1575 // so fall back on the remaining of the analysis. 1576 break; 1577 } 1578 // Register is dead after a full kill or clobber and no def. 1579 if (Info.Killed || Info.Clobbered) 1580 return LQR_Dead; 1581 // Register must be live if we read it. 1582 if (Info.Read) 1583 return LQR_Live; 1584 1585 } while (I != begin() && N > 0); 1586 } 1587 1588 // If all the instructions before this in the block are debug instructions, 1589 // skip over them. 1590 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr()) 1591 --I; 1592 1593 // Did we get to the start of the block? 1594 if (I == begin()) { 1595 // If so, the register's state is definitely defined by the live-in state. 1596 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1597 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1598 return LQR_Live; 1599 1600 return LQR_Dead; 1601 } 1602 1603 // At this point we have no idea of the liveness of the register. 1604 return LQR_Unknown; 1605 } 1606 1607 const uint32_t * 1608 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1609 // EH funclet entry does not preserve any registers. 1610 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1611 } 1612 1613 const uint32_t * 1614 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1615 // If we see a return block with successors, this must be a funclet return, 1616 // which does not preserve any registers. If there are no successors, we don't 1617 // care what kind of return it is, putting a mask after it is a no-op. 1618 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1619 } 1620 1621 void MachineBasicBlock::clearLiveIns() { 1622 LiveIns.clear(); 1623 } 1624 1625 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1626 assert(getParent()->getProperties().hasProperty( 1627 MachineFunctionProperties::Property::TracksLiveness) && 1628 "Liveness information is accurate"); 1629 return LiveIns.begin(); 1630 } 1631 1632 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); 1633 const MBBSectionID 1634 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception); 1635