1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 42 : BB(B), Number(-1), xParent(&MF) { 43 Insts.Parent = this; 44 } 45 46 MachineBasicBlock::~MachineBasicBlock() { 47 } 48 49 /// Return the MCSymbol for this basic block. 50 MCSymbol *MachineBasicBlock::getSymbol() const { 51 if (!CachedMCSymbol) { 52 const MachineFunction *MF = getParent(); 53 MCContext &Ctx = MF->getContext(); 54 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 55 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 56 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 57 Twine(MF->getFunctionNumber()) + 58 "_" + Twine(getNumber())); 59 } 60 61 return CachedMCSymbol; 62 } 63 64 65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 66 MBB.print(OS); 67 return OS; 68 } 69 70 /// When an MBB is added to an MF, we need to update the parent pointer of the 71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 72 /// operand list for registers. 73 /// 74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 75 /// gets the next available unique MBB number. If it is removed from a 76 /// MachineFunction, it goes back to being #-1. 77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 78 MachineFunction &MF = *N->getParent(); 79 N->Number = MF.addToMBBNumbering(N); 80 81 // Make sure the instructions have their operands in the reginfo lists. 82 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 83 for (MachineBasicBlock::instr_iterator 84 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 85 I->AddRegOperandsToUseLists(RegInfo); 86 } 87 88 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 89 N->getParent()->removeFromMBBNumbering(N->Number); 90 N->Number = -1; 91 } 92 93 /// When we add an instruction to a basic block list, we update its parent 94 /// pointer and add its operands from reg use/def lists if appropriate. 95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 96 assert(!N->getParent() && "machine instruction already in a basic block"); 97 N->setParent(Parent); 98 99 // Add the instruction's register operands to their corresponding 100 // use/def lists. 101 MachineFunction *MF = Parent->getParent(); 102 N->AddRegOperandsToUseLists(MF->getRegInfo()); 103 } 104 105 /// When we remove an instruction from a basic block list, we update its parent 106 /// pointer and remove its operands from reg use/def lists if appropriate. 107 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 108 assert(N->getParent() && "machine instruction not in a basic block"); 109 110 // Remove from the use/def lists. 111 if (MachineFunction *MF = N->getParent()->getParent()) 112 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 113 114 N->setParent(nullptr); 115 } 116 117 /// When moving a range of instructions from one MBB list to another, we need to 118 /// update the parent pointers and the use/def lists. 119 void ilist_traits<MachineInstr>:: 120 transferNodesFromList(ilist_traits<MachineInstr> &FromList, 121 ilist_iterator<MachineInstr> First, 122 ilist_iterator<MachineInstr> Last) { 123 assert(Parent->getParent() == FromList.Parent->getParent() && 124 "MachineInstr parent mismatch!"); 125 126 // Splice within the same MBB -> no change. 127 if (Parent == FromList.Parent) return; 128 129 // If splicing between two blocks within the same function, just update the 130 // parent pointers. 131 for (; First != Last; ++First) 132 First->setParent(Parent); 133 } 134 135 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 136 assert(!MI->getParent() && "MI is still in a block!"); 137 Parent->getParent()->DeleteMachineInstr(MI); 138 } 139 140 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 141 instr_iterator I = instr_begin(), E = instr_end(); 142 while (I != E && I->isPHI()) 143 ++I; 144 assert((I == E || !I->isInsideBundle()) && 145 "First non-phi MI cannot be inside a bundle!"); 146 return I; 147 } 148 149 MachineBasicBlock::iterator 150 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 151 iterator E = end(); 152 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 153 ++I; 154 // FIXME: This needs to change if we wish to bundle labels / dbg_values 155 // inside the bundle. 156 assert((I == E || !I->isInsideBundle()) && 157 "First non-phi / non-label instruction is inside a bundle!"); 158 return I; 159 } 160 161 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 162 iterator B = begin(), E = end(), I = E; 163 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 164 ; /*noop */ 165 while (I != E && !I->isTerminator()) 166 ++I; 167 return I; 168 } 169 170 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 171 instr_iterator B = instr_begin(), E = instr_end(), I = E; 172 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 173 ; /*noop */ 174 while (I != E && !I->isTerminator()) 175 ++I; 176 return I; 177 } 178 179 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 180 // Skip over begin-of-block dbg_value instructions. 181 iterator I = begin(), E = end(); 182 while (I != E && I->isDebugValue()) 183 ++I; 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 188 // Skip over end-of-block dbg_value instructions. 189 instr_iterator B = instr_begin(), I = instr_end(); 190 while (I != B) { 191 --I; 192 // Return instruction that starts a bundle. 193 if (I->isDebugValue() || I->isInsideBundle()) 194 continue; 195 return I; 196 } 197 // The block is all debug values. 198 return end(); 199 } 200 201 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 202 // A block with a landing pad successor only has one other successor. 203 if (succ_size() > 2) 204 return nullptr; 205 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 206 if ((*I)->isEHPad()) 207 return *I; 208 return nullptr; 209 } 210 211 bool MachineBasicBlock::hasEHPadSuccessor() const { 212 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 213 if ((*I)->isEHPad()) 214 return true; 215 return false; 216 } 217 218 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 219 void MachineBasicBlock::dump() const { 220 print(dbgs()); 221 } 222 #endif 223 224 StringRef MachineBasicBlock::getName() const { 225 if (const BasicBlock *LBB = getBasicBlock()) 226 return LBB->getName(); 227 else 228 return "(null)"; 229 } 230 231 /// Return a hopefully unique identifier for this block. 232 std::string MachineBasicBlock::getFullName() const { 233 std::string Name; 234 if (getParent()) 235 Name = (getParent()->getName() + ":").str(); 236 if (getBasicBlock()) 237 Name += getBasicBlock()->getName(); 238 else 239 Name += ("BB" + Twine(getNumber())).str(); 240 return Name; 241 } 242 243 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 244 const MachineFunction *MF = getParent(); 245 if (!MF) { 246 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 247 << " is null\n"; 248 return; 249 } 250 const Function *F = MF->getFunction(); 251 const Module *M = F ? F->getParent() : nullptr; 252 ModuleSlotTracker MST(M); 253 print(OS, MST, Indexes); 254 } 255 256 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 257 SlotIndexes *Indexes) const { 258 const MachineFunction *MF = getParent(); 259 if (!MF) { 260 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 261 << " is null\n"; 262 return; 263 } 264 265 if (Indexes) 266 OS << Indexes->getMBBStartIdx(this) << '\t'; 267 268 OS << "BB#" << getNumber() << ": "; 269 270 const char *Comma = ""; 271 if (const BasicBlock *LBB = getBasicBlock()) { 272 OS << Comma << "derived from LLVM BB "; 273 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 274 Comma = ", "; 275 } 276 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 277 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 278 if (Alignment) 279 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 280 << " bytes)"; 281 282 OS << '\n'; 283 284 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 285 if (!livein_empty()) { 286 if (Indexes) OS << '\t'; 287 OS << " Live Ins:"; 288 for (const auto &LI : make_range(livein_begin(), livein_end())) { 289 OS << ' ' << PrintReg(LI.PhysReg, TRI); 290 if (LI.LaneMask != ~0u) 291 OS << ':' << PrintLaneMask(LI.LaneMask); 292 } 293 OS << '\n'; 294 } 295 // Print the preds of this block according to the CFG. 296 if (!pred_empty()) { 297 if (Indexes) OS << '\t'; 298 OS << " Predecessors according to CFG:"; 299 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 300 OS << " BB#" << (*PI)->getNumber(); 301 OS << '\n'; 302 } 303 304 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 305 if (Indexes) { 306 if (Indexes->hasIndex(&*I)) 307 OS << Indexes->getInstructionIndex(&*I); 308 OS << '\t'; 309 } 310 OS << '\t'; 311 if (I->isInsideBundle()) 312 OS << " * "; 313 I->print(OS, MST); 314 } 315 316 // Print the successors of this block according to the CFG. 317 if (!succ_empty()) { 318 if (Indexes) OS << '\t'; 319 OS << " Successors according to CFG:"; 320 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 321 OS << " BB#" << (*SI)->getNumber(); 322 if (!Weights.empty()) 323 OS << '(' << *getWeightIterator(SI) << ')'; 324 } 325 OS << '\n'; 326 } 327 } 328 329 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 330 bool /*PrintType*/) const { 331 OS << "BB#" << getNumber(); 332 } 333 334 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 335 LiveInVector::iterator I = std::find_if( 336 LiveIns.begin(), LiveIns.end(), 337 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 338 if (I == LiveIns.end()) 339 return; 340 341 I->LaneMask &= ~LaneMask; 342 if (I->LaneMask == 0) 343 LiveIns.erase(I); 344 } 345 346 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 347 livein_iterator I = std::find_if( 348 LiveIns.begin(), LiveIns.end(), 349 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 350 return I != livein_end() && (I->LaneMask & LaneMask) != 0; 351 } 352 353 void MachineBasicBlock::sortUniqueLiveIns() { 354 std::sort(LiveIns.begin(), LiveIns.end(), 355 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 356 return LI0.PhysReg < LI1.PhysReg; 357 }); 358 // Liveins are sorted by physreg now we can merge their lanemasks. 359 LiveInVector::const_iterator I = LiveIns.begin(); 360 LiveInVector::const_iterator J; 361 LiveInVector::iterator Out = LiveIns.begin(); 362 for (; I != LiveIns.end(); ++Out, I = J) { 363 unsigned PhysReg = I->PhysReg; 364 LaneBitmask LaneMask = I->LaneMask; 365 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 366 LaneMask |= J->LaneMask; 367 Out->PhysReg = PhysReg; 368 Out->LaneMask = LaneMask; 369 } 370 LiveIns.erase(Out, LiveIns.end()); 371 } 372 373 unsigned 374 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 375 assert(getParent() && "MBB must be inserted in function"); 376 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 377 assert(RC && "Register class is required"); 378 assert((isEHPad() || this == &getParent()->front()) && 379 "Only the entry block and landing pads can have physreg live ins"); 380 381 bool LiveIn = isLiveIn(PhysReg); 382 iterator I = SkipPHIsAndLabels(begin()), E = end(); 383 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 384 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 385 386 // Look for an existing copy. 387 if (LiveIn) 388 for (;I != E && I->isCopy(); ++I) 389 if (I->getOperand(1).getReg() == PhysReg) { 390 unsigned VirtReg = I->getOperand(0).getReg(); 391 if (!MRI.constrainRegClass(VirtReg, RC)) 392 llvm_unreachable("Incompatible live-in register class."); 393 return VirtReg; 394 } 395 396 // No luck, create a virtual register. 397 unsigned VirtReg = MRI.createVirtualRegister(RC); 398 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 399 .addReg(PhysReg, RegState::Kill); 400 if (!LiveIn) 401 addLiveIn(PhysReg); 402 return VirtReg; 403 } 404 405 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 406 getParent()->splice(NewAfter->getIterator(), getIterator()); 407 } 408 409 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 410 getParent()->splice(++NewBefore->getIterator(), getIterator()); 411 } 412 413 void MachineBasicBlock::updateTerminator() { 414 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 415 // A block with no successors has no concerns with fall-through edges. 416 if (this->succ_empty()) return; 417 418 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 419 SmallVector<MachineOperand, 4> Cond; 420 DebugLoc DL; // FIXME: this is nowhere 421 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 422 (void) B; 423 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 424 if (Cond.empty()) { 425 if (TBB) { 426 // The block has an unconditional branch. If its successor is now 427 // its layout successor, delete the branch. 428 if (isLayoutSuccessor(TBB)) 429 TII->RemoveBranch(*this); 430 } else { 431 // The block has an unconditional fallthrough. If its successor is not 432 // its layout successor, insert a branch. First we have to locate the 433 // only non-landing-pad successor, as that is the fallthrough block. 434 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 435 if ((*SI)->isEHPad()) 436 continue; 437 assert(!TBB && "Found more than one non-landing-pad successor!"); 438 TBB = *SI; 439 } 440 441 // If there is no non-landing-pad successor, the block has no 442 // fall-through edges to be concerned with. 443 if (!TBB) 444 return; 445 446 // Finally update the unconditional successor to be reached via a branch 447 // if it would not be reached by fallthrough. 448 if (!isLayoutSuccessor(TBB)) 449 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 450 } 451 } else { 452 if (FBB) { 453 // The block has a non-fallthrough conditional branch. If one of its 454 // successors is its layout successor, rewrite it to a fallthrough 455 // conditional branch. 456 if (isLayoutSuccessor(TBB)) { 457 if (TII->ReverseBranchCondition(Cond)) 458 return; 459 TII->RemoveBranch(*this); 460 TII->InsertBranch(*this, FBB, nullptr, Cond, DL); 461 } else if (isLayoutSuccessor(FBB)) { 462 TII->RemoveBranch(*this); 463 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 464 } 465 } else { 466 // Walk through the successors and find the successor which is not 467 // a landing pad and is not the conditional branch destination (in TBB) 468 // as the fallthrough successor. 469 MachineBasicBlock *FallthroughBB = nullptr; 470 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 471 if ((*SI)->isEHPad() || *SI == TBB) 472 continue; 473 assert(!FallthroughBB && "Found more than one fallthrough successor."); 474 FallthroughBB = *SI; 475 } 476 if (!FallthroughBB && canFallThrough()) { 477 // We fallthrough to the same basic block as the conditional jump 478 // targets. Remove the conditional jump, leaving unconditional 479 // fallthrough. 480 // FIXME: This does not seem like a reasonable pattern to support, but 481 // it has been seen in the wild coming out of degenerate ARM test cases. 482 TII->RemoveBranch(*this); 483 484 // Finally update the unconditional successor to be reached via a branch 485 // if it would not be reached by fallthrough. 486 if (!isLayoutSuccessor(TBB)) 487 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 488 return; 489 } 490 491 // The block has a fallthrough conditional branch. 492 if (isLayoutSuccessor(TBB)) { 493 if (TII->ReverseBranchCondition(Cond)) { 494 // We can't reverse the condition, add an unconditional branch. 495 Cond.clear(); 496 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 497 return; 498 } 499 TII->RemoveBranch(*this); 500 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 501 } else if (!isLayoutSuccessor(FallthroughBB)) { 502 TII->RemoveBranch(*this); 503 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL); 504 } 505 } 506 } 507 } 508 509 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, uint32_t Weight) { 510 // Weight list is either empty (if successor list isn't empty, this means 511 // disabled optimization) or has the same size as successor list. 512 if (!(Weights.empty() && !Successors.empty())) 513 Weights.push_back(Weight); 514 Successors.push_back(Succ); 515 Succ->addPredecessor(this); 516 } 517 518 void MachineBasicBlock::addSuccessorWithoutWeight(MachineBasicBlock *Succ) { 519 // We need to make sure weight list is either empty or has the same size of 520 // successor list. When this function is called, we can safely delete all 521 // weight in the list. 522 Weights.clear(); 523 Successors.push_back(Succ); 524 Succ->addPredecessor(this); 525 } 526 527 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 528 BranchProbability Prob) { 529 // Probability list is either empty (if successor list isn't empty, this means 530 // disabled optimization) or has the same size as successor list. 531 if (!(Probs.empty() && !Successors.empty())) 532 Probs.push_back(Prob); 533 Successors.push_back(Succ); 534 Succ->addPredecessor(this); 535 } 536 537 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 538 // We need to make sure probability list is either empty or has the same size 539 // of successor list. When this function is called, we can safely delete all 540 // probability in the list. 541 Probs.clear(); 542 Successors.push_back(Succ); 543 Succ->addPredecessor(this); 544 } 545 546 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ) { 547 Succ->removePredecessor(this); 548 succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ); 549 assert(I != Successors.end() && "Not a current successor!"); 550 551 // If Weight list is empty it means we don't use it (disabled optimization). 552 if (!Weights.empty()) { 553 weight_iterator WI = getWeightIterator(I); 554 Weights.erase(WI); 555 } 556 557 // If probability list is empty it means we don't use it (disabled 558 // optimization). 559 if (!Probs.empty()) { 560 probability_iterator WI = getProbabilityIterator(I); 561 Probs.erase(WI); 562 } 563 564 Successors.erase(I); 565 } 566 567 MachineBasicBlock::succ_iterator 568 MachineBasicBlock::removeSuccessor(succ_iterator I) { 569 assert(I != Successors.end() && "Not a current successor!"); 570 571 // If Weight list is empty it means we don't use it (disabled optimization). 572 if (!Weights.empty()) { 573 weight_iterator WI = getWeightIterator(I); 574 Weights.erase(WI); 575 } 576 577 // If probability list is empty it means we don't use it (disabled 578 // optimization). 579 if (!Probs.empty()) { 580 probability_iterator WI = getProbabilityIterator(I); 581 Probs.erase(WI); 582 } 583 584 (*I)->removePredecessor(this); 585 return Successors.erase(I); 586 } 587 588 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 589 MachineBasicBlock *New) { 590 if (Old == New) 591 return; 592 593 succ_iterator E = succ_end(); 594 succ_iterator NewI = E; 595 succ_iterator OldI = E; 596 for (succ_iterator I = succ_begin(); I != E; ++I) { 597 if (*I == Old) { 598 OldI = I; 599 if (NewI != E) 600 break; 601 } 602 if (*I == New) { 603 NewI = I; 604 if (OldI != E) 605 break; 606 } 607 } 608 assert(OldI != E && "Old is not a successor of this block"); 609 Old->removePredecessor(this); 610 611 // If New isn't already a successor, let it take Old's place. 612 if (NewI == E) { 613 New->addPredecessor(this); 614 *OldI = New; 615 return; 616 } 617 618 // New is already a successor. 619 // Update its weight instead of adding a duplicate edge. 620 if (!Weights.empty()) { 621 weight_iterator OldWI = getWeightIterator(OldI); 622 *getWeightIterator(NewI) += *OldWI; 623 Weights.erase(OldWI); 624 } 625 // Update its probability instead of adding a duplicate edge. 626 if (!Probs.empty()) { 627 probability_iterator OldPI = getProbabilityIterator(OldI); 628 *getProbabilityIterator(NewI) += *OldPI; 629 Probs.erase(OldPI); 630 } 631 Successors.erase(OldI); 632 } 633 634 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 635 Predecessors.push_back(Pred); 636 } 637 638 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 639 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred); 640 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 641 Predecessors.erase(I); 642 } 643 644 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 645 if (this == FromMBB) 646 return; 647 648 while (!FromMBB->succ_empty()) { 649 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 650 uint32_t Weight = 0; 651 652 // If Weight list is empty it means we don't use it (disabled optimization). 653 if (!FromMBB->Weights.empty()) 654 Weight = *FromMBB->Weights.begin(); 655 656 addSuccessor(Succ, Weight); 657 FromMBB->removeSuccessor(Succ); 658 } 659 } 660 661 void 662 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 663 if (this == FromMBB) 664 return; 665 666 while (!FromMBB->succ_empty()) { 667 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 668 uint32_t Weight = 0; 669 if (!FromMBB->Weights.empty()) 670 Weight = *FromMBB->Weights.begin(); 671 addSuccessor(Succ, Weight); 672 FromMBB->removeSuccessor(Succ); 673 674 // Fix up any PHI nodes in the successor. 675 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 676 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 677 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 678 MachineOperand &MO = MI->getOperand(i); 679 if (MO.getMBB() == FromMBB) 680 MO.setMBB(this); 681 } 682 } 683 } 684 685 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 686 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 687 } 688 689 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 690 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 691 } 692 693 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 694 MachineFunction::const_iterator I(this); 695 return std::next(I) == MachineFunction::const_iterator(MBB); 696 } 697 698 bool MachineBasicBlock::canFallThrough() { 699 MachineFunction::iterator Fallthrough = getIterator(); 700 ++Fallthrough; 701 // If FallthroughBlock is off the end of the function, it can't fall through. 702 if (Fallthrough == getParent()->end()) 703 return false; 704 705 // If FallthroughBlock isn't a successor, no fallthrough is possible. 706 if (!isSuccessor(&*Fallthrough)) 707 return false; 708 709 // Analyze the branches, if any, at the end of the block. 710 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 711 SmallVector<MachineOperand, 4> Cond; 712 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 713 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 714 // If we couldn't analyze the branch, examine the last instruction. 715 // If the block doesn't end in a known control barrier, assume fallthrough 716 // is possible. The isPredicated check is needed because this code can be 717 // called during IfConversion, where an instruction which is normally a 718 // Barrier is predicated and thus no longer an actual control barrier. 719 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 720 } 721 722 // If there is no branch, control always falls through. 723 if (!TBB) return true; 724 725 // If there is some explicit branch to the fallthrough block, it can obviously 726 // reach, even though the branch should get folded to fall through implicitly. 727 if (MachineFunction::iterator(TBB) == Fallthrough || 728 MachineFunction::iterator(FBB) == Fallthrough) 729 return true; 730 731 // If it's an unconditional branch to some block not the fall through, it 732 // doesn't fall through. 733 if (Cond.empty()) return false; 734 735 // Otherwise, if it is conditional and has no explicit false block, it falls 736 // through. 737 return FBB == nullptr; 738 } 739 740 MachineBasicBlock * 741 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 742 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 743 // it in this generic function. 744 if (Succ->isEHPad()) 745 return nullptr; 746 747 MachineFunction *MF = getParent(); 748 DebugLoc DL; // FIXME: this is nowhere 749 750 // Performance might be harmed on HW that implements branching using exec mask 751 // where both sides of the branches are always executed. 752 if (MF->getTarget().requiresStructuredCFG()) 753 return nullptr; 754 755 // We may need to update this's terminator, but we can't do that if 756 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 757 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 758 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 759 SmallVector<MachineOperand, 4> Cond; 760 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 761 return nullptr; 762 763 // Avoid bugpoint weirdness: A block may end with a conditional branch but 764 // jumps to the same MBB is either case. We have duplicate CFG edges in that 765 // case that we can't handle. Since this never happens in properly optimized 766 // code, just skip those edges. 767 if (TBB && TBB == FBB) { 768 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 769 << getNumber() << '\n'); 770 return nullptr; 771 } 772 773 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 774 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 775 DEBUG(dbgs() << "Splitting critical edge:" 776 " BB#" << getNumber() 777 << " -- BB#" << NMBB->getNumber() 778 << " -- BB#" << Succ->getNumber() << '\n'); 779 780 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 781 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 782 if (LIS) 783 LIS->insertMBBInMaps(NMBB); 784 else if (Indexes) 785 Indexes->insertMBBInMaps(NMBB); 786 787 // On some targets like Mips, branches may kill virtual registers. Make sure 788 // that LiveVariables is properly updated after updateTerminator replaces the 789 // terminators. 790 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 791 792 // Collect a list of virtual registers killed by the terminators. 793 SmallVector<unsigned, 4> KilledRegs; 794 if (LV) 795 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 796 I != E; ++I) { 797 MachineInstr *MI = &*I; 798 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 799 OE = MI->operands_end(); OI != OE; ++OI) { 800 if (!OI->isReg() || OI->getReg() == 0 || 801 !OI->isUse() || !OI->isKill() || OI->isUndef()) 802 continue; 803 unsigned Reg = OI->getReg(); 804 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 805 LV->getVarInfo(Reg).removeKill(MI)) { 806 KilledRegs.push_back(Reg); 807 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 808 OI->setIsKill(false); 809 } 810 } 811 } 812 813 SmallVector<unsigned, 4> UsedRegs; 814 if (LIS) { 815 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 816 I != E; ++I) { 817 MachineInstr *MI = &*I; 818 819 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 820 OE = MI->operands_end(); OI != OE; ++OI) { 821 if (!OI->isReg() || OI->getReg() == 0) 822 continue; 823 824 unsigned Reg = OI->getReg(); 825 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 826 UsedRegs.push_back(Reg); 827 } 828 } 829 } 830 831 ReplaceUsesOfBlockWith(Succ, NMBB); 832 833 // If updateTerminator() removes instructions, we need to remove them from 834 // SlotIndexes. 835 SmallVector<MachineInstr*, 4> Terminators; 836 if (Indexes) { 837 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 838 I != E; ++I) 839 Terminators.push_back(&*I); 840 } 841 842 updateTerminator(); 843 844 if (Indexes) { 845 SmallVector<MachineInstr*, 4> NewTerminators; 846 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 847 I != E; ++I) 848 NewTerminators.push_back(&*I); 849 850 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 851 E = Terminators.end(); I != E; ++I) { 852 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 853 NewTerminators.end()) 854 Indexes->removeMachineInstrFromMaps(*I); 855 } 856 } 857 858 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 859 NMBB->addSuccessor(Succ); 860 if (!NMBB->isLayoutSuccessor(Succ)) { 861 Cond.clear(); 862 TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL); 863 864 if (Indexes) { 865 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 866 I != E; ++I) { 867 // Some instructions may have been moved to NMBB by updateTerminator(), 868 // so we first remove any instruction that already has an index. 869 if (Indexes->hasIndex(&*I)) 870 Indexes->removeMachineInstrFromMaps(&*I); 871 Indexes->insertMachineInstrInMaps(&*I); 872 } 873 } 874 } 875 876 // Fix PHI nodes in Succ so they refer to NMBB instead of this 877 for (MachineBasicBlock::instr_iterator 878 i = Succ->instr_begin(),e = Succ->instr_end(); 879 i != e && i->isPHI(); ++i) 880 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 881 if (i->getOperand(ni+1).getMBB() == this) 882 i->getOperand(ni+1).setMBB(NMBB); 883 884 // Inherit live-ins from the successor 885 for (const auto &LI : Succ->liveins()) 886 NMBB->addLiveIn(LI); 887 888 // Update LiveVariables. 889 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 890 if (LV) { 891 // Restore kills of virtual registers that were killed by the terminators. 892 while (!KilledRegs.empty()) { 893 unsigned Reg = KilledRegs.pop_back_val(); 894 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 895 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 896 continue; 897 if (TargetRegisterInfo::isVirtualRegister(Reg)) 898 LV->getVarInfo(Reg).Kills.push_back(&*I); 899 DEBUG(dbgs() << "Restored terminator kill: " << *I); 900 break; 901 } 902 } 903 // Update relevant live-through information. 904 LV->addNewBlock(NMBB, this, Succ); 905 } 906 907 if (LIS) { 908 // After splitting the edge and updating SlotIndexes, live intervals may be 909 // in one of two situations, depending on whether this block was the last in 910 // the function. If the original block was the last in the function, all 911 // live intervals will end prior to the beginning of the new split block. If 912 // the original block was not at the end of the function, all live intervals 913 // will extend to the end of the new split block. 914 915 bool isLastMBB = 916 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 917 918 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 919 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 920 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 921 922 // Find the registers used from NMBB in PHIs in Succ. 923 SmallSet<unsigned, 8> PHISrcRegs; 924 for (MachineBasicBlock::instr_iterator 925 I = Succ->instr_begin(), E = Succ->instr_end(); 926 I != E && I->isPHI(); ++I) { 927 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 928 if (I->getOperand(ni+1).getMBB() == NMBB) { 929 MachineOperand &MO = I->getOperand(ni); 930 unsigned Reg = MO.getReg(); 931 PHISrcRegs.insert(Reg); 932 if (MO.isUndef()) 933 continue; 934 935 LiveInterval &LI = LIS->getInterval(Reg); 936 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 937 assert(VNI && 938 "PHI sources should be live out of their predecessors."); 939 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 940 } 941 } 942 } 943 944 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 945 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 946 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 947 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 948 continue; 949 950 LiveInterval &LI = LIS->getInterval(Reg); 951 if (!LI.liveAt(PrevIndex)) 952 continue; 953 954 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 955 if (isLiveOut && isLastMBB) { 956 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 957 assert(VNI && "LiveInterval should have VNInfo where it is live."); 958 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 959 } else if (!isLiveOut && !isLastMBB) { 960 LI.removeSegment(StartIndex, EndIndex); 961 } 962 } 963 964 // Update all intervals for registers whose uses may have been modified by 965 // updateTerminator(). 966 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 967 } 968 969 if (MachineDominatorTree *MDT = 970 P->getAnalysisIfAvailable<MachineDominatorTree>()) 971 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 972 973 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 974 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 975 // If one or the other blocks were not in a loop, the new block is not 976 // either, and thus LI doesn't need to be updated. 977 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 978 if (TIL == DestLoop) { 979 // Both in the same loop, the NMBB joins loop. 980 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 981 } else if (TIL->contains(DestLoop)) { 982 // Edge from an outer loop to an inner loop. Add to the outer loop. 983 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 984 } else if (DestLoop->contains(TIL)) { 985 // Edge from an inner loop to an outer loop. Add to the outer loop. 986 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 987 } else { 988 // Edge from two loops with no containment relation. Because these 989 // are natural loops, we know that the destination block must be the 990 // header of its loop (adding a branch into a loop elsewhere would 991 // create an irreducible loop). 992 assert(DestLoop->getHeader() == Succ && 993 "Should not create irreducible loops!"); 994 if (MachineLoop *P = DestLoop->getParentLoop()) 995 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 996 } 997 } 998 } 999 1000 return NMBB; 1001 } 1002 1003 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1004 /// neighboring instructions so the bundle won't be broken by removing MI. 1005 static void unbundleSingleMI(MachineInstr *MI) { 1006 // Removing the first instruction in a bundle. 1007 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1008 MI->unbundleFromSucc(); 1009 // Removing the last instruction in a bundle. 1010 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1011 MI->unbundleFromPred(); 1012 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1013 // are already fine. 1014 } 1015 1016 MachineBasicBlock::instr_iterator 1017 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1018 unbundleSingleMI(&*I); 1019 return Insts.erase(I); 1020 } 1021 1022 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1023 unbundleSingleMI(MI); 1024 MI->clearFlag(MachineInstr::BundledPred); 1025 MI->clearFlag(MachineInstr::BundledSucc); 1026 return Insts.remove(MI); 1027 } 1028 1029 MachineBasicBlock::instr_iterator 1030 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1031 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1032 "Cannot insert instruction with bundle flags"); 1033 // Set the bundle flags when inserting inside a bundle. 1034 if (I != instr_end() && I->isBundledWithPred()) { 1035 MI->setFlag(MachineInstr::BundledPred); 1036 MI->setFlag(MachineInstr::BundledSucc); 1037 } 1038 return Insts.insert(I, MI); 1039 } 1040 1041 /// This method unlinks 'this' from the containing function, and returns it, but 1042 /// does not delete it. 1043 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1044 assert(getParent() && "Not embedded in a function!"); 1045 getParent()->remove(this); 1046 return this; 1047 } 1048 1049 /// This method unlinks 'this' from the containing function, and deletes it. 1050 void MachineBasicBlock::eraseFromParent() { 1051 assert(getParent() && "Not embedded in a function!"); 1052 getParent()->erase(this); 1053 } 1054 1055 /// Given a machine basic block that branched to 'Old', change the code and CFG 1056 /// so that it branches to 'New' instead. 1057 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1058 MachineBasicBlock *New) { 1059 assert(Old != New && "Cannot replace self with self!"); 1060 1061 MachineBasicBlock::instr_iterator I = instr_end(); 1062 while (I != instr_begin()) { 1063 --I; 1064 if (!I->isTerminator()) break; 1065 1066 // Scan the operands of this machine instruction, replacing any uses of Old 1067 // with New. 1068 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1069 if (I->getOperand(i).isMBB() && 1070 I->getOperand(i).getMBB() == Old) 1071 I->getOperand(i).setMBB(New); 1072 } 1073 1074 // Update the successor information. 1075 replaceSuccessor(Old, New); 1076 } 1077 1078 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1079 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1080 /// MBB successors from the CFG. DestA and DestB can be null. 1081 /// 1082 /// Besides DestA and DestB, retain other edges leading to LandingPads 1083 /// (currently there can be only one; we don't check or require that here). 1084 /// Note it is possible that DestA and/or DestB are LandingPads. 1085 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1086 MachineBasicBlock *DestB, 1087 bool IsCond) { 1088 // The values of DestA and DestB frequently come from a call to the 1089 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1090 // values from there. 1091 // 1092 // 1. If both DestA and DestB are null, then the block ends with no branches 1093 // (it falls through to its successor). 1094 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1095 // with only an unconditional branch. 1096 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1097 // with a conditional branch that falls through to a successor (DestB). 1098 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1099 // conditional branch followed by an unconditional branch. DestA is the 1100 // 'true' destination and DestB is the 'false' destination. 1101 1102 bool Changed = false; 1103 1104 MachineFunction::iterator FallThru = std::next(getIterator()); 1105 1106 if (!DestA && !DestB) { 1107 // Block falls through to successor. 1108 DestA = &*FallThru; 1109 DestB = &*FallThru; 1110 } else if (DestA && !DestB) { 1111 if (IsCond) 1112 // Block ends in conditional jump that falls through to successor. 1113 DestB = &*FallThru; 1114 } else { 1115 assert(DestA && DestB && IsCond && 1116 "CFG in a bad state. Cannot correct CFG edges"); 1117 } 1118 1119 // Remove superfluous edges. I.e., those which aren't destinations of this 1120 // basic block, duplicate edges, or landing pads. 1121 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1122 MachineBasicBlock::succ_iterator SI = succ_begin(); 1123 while (SI != succ_end()) { 1124 const MachineBasicBlock *MBB = *SI; 1125 if (!SeenMBBs.insert(MBB).second || 1126 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1127 // This is a superfluous edge, remove it. 1128 SI = removeSuccessor(SI); 1129 Changed = true; 1130 } else { 1131 ++SI; 1132 } 1133 } 1134 1135 return Changed; 1136 } 1137 1138 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1139 /// instructions. Return UnknownLoc if there is none. 1140 DebugLoc 1141 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1142 DebugLoc DL; 1143 instr_iterator E = instr_end(); 1144 if (MBBI == E) 1145 return DL; 1146 1147 // Skip debug declarations, we don't want a DebugLoc from them. 1148 while (MBBI != E && MBBI->isDebugValue()) 1149 MBBI++; 1150 if (MBBI != E) 1151 DL = MBBI->getDebugLoc(); 1152 return DL; 1153 } 1154 1155 /// Return weight of the edge from this block to MBB. 1156 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { 1157 if (Weights.empty()) 1158 return 0; 1159 1160 return *getWeightIterator(Succ); 1161 } 1162 1163 /// Return probability of the edge from this block to MBB. If probability list 1164 /// is empty, return a default probability which is 1/N, where N is the number 1165 /// of successors. If the probability of the given successor is unknown, then 1166 /// sum up all known probabilities and return the complement of the sum divided 1167 /// by the number of unknown probabilities. 1168 BranchProbability 1169 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1170 if (Probs.empty()) 1171 return BranchProbability(1, succ_size()); 1172 1173 auto Prob = *getProbabilityIterator(Succ); 1174 assert(!Prob.isUnknown()); 1175 return Prob; 1176 } 1177 1178 /// Set successor weight of a given iterator. 1179 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t Weight) { 1180 if (Weights.empty()) 1181 return; 1182 *getWeightIterator(I) = Weight; 1183 } 1184 1185 /// Set successor probability of a given iterator. 1186 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1187 BranchProbability Prob) { 1188 assert(!Prob.isUnknown()); 1189 if (Probs.empty()) 1190 return; 1191 *getProbabilityIterator(I) = Prob; 1192 } 1193 1194 /// Return wight iterator corresonding to the I successor iterator. 1195 MachineBasicBlock::weight_iterator MachineBasicBlock:: 1196 getWeightIterator(MachineBasicBlock::succ_iterator I) { 1197 assert(Weights.size() == Successors.size() && "Async weight list!"); 1198 size_t index = std::distance(Successors.begin(), I); 1199 assert(index < Weights.size() && "Not a current successor!"); 1200 return Weights.begin() + index; 1201 } 1202 1203 /// Return wight iterator corresonding to the I successor iterator. 1204 MachineBasicBlock::const_weight_iterator MachineBasicBlock:: 1205 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { 1206 assert(Weights.size() == Successors.size() && "Async weight list!"); 1207 const size_t index = std::distance(Successors.begin(), I); 1208 assert(index < Weights.size() && "Not a current successor!"); 1209 return Weights.begin() + index; 1210 } 1211 1212 /// Return probability iterator corresonding to the I successor iterator. 1213 MachineBasicBlock::probability_iterator 1214 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1215 assert(Probs.size() == Successors.size() && "Async probability list!"); 1216 const size_t index = std::distance(Successors.begin(), I); 1217 assert(index < Probs.size() && "Not a current successor!"); 1218 return Probs.begin() + index; 1219 } 1220 1221 /// Return probability iterator corresonding to the I successor iterator 1222 MachineBasicBlock::const_probability_iterator 1223 MachineBasicBlock::getProbabilityIterator( 1224 MachineBasicBlock::const_succ_iterator I) const { 1225 assert(Probs.size() == Successors.size() && "Async probability list!"); 1226 const size_t index = std::distance(Successors.begin(), I); 1227 assert(index < Probs.size() && "Not a current successor!"); 1228 return Probs.begin() + index; 1229 } 1230 1231 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1232 /// as of just before "MI". 1233 /// 1234 /// Search is localised to a neighborhood of 1235 /// Neighborhood instructions before (searching for defs or kills) and N 1236 /// instructions after (searching just for defs) MI. 1237 MachineBasicBlock::LivenessQueryResult 1238 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1239 unsigned Reg, const_iterator Before, 1240 unsigned Neighborhood) const { 1241 unsigned N = Neighborhood; 1242 1243 // Start by searching backwards from Before, looking for kills, reads or defs. 1244 const_iterator I(Before); 1245 // If this is the first insn in the block, don't search backwards. 1246 if (I != begin()) { 1247 do { 1248 --I; 1249 1250 MachineOperandIteratorBase::PhysRegInfo Analysis = 1251 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1252 1253 if (Analysis.Defines) 1254 // Outputs happen after inputs so they take precedence if both are 1255 // present. 1256 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 1257 1258 if (Analysis.Kills || Analysis.Clobbers) 1259 // Register killed, so isn't live. 1260 return LQR_Dead; 1261 1262 else if (Analysis.ReadsOverlap) 1263 // Defined or read without a previous kill - live. 1264 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 1265 1266 } while (I != begin() && --N > 0); 1267 } 1268 1269 // Did we get to the start of the block? 1270 if (I == begin()) { 1271 // If so, the register's state is definitely defined by the live-in state. 1272 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 1273 RAI.isValid(); ++RAI) { 1274 if (isLiveIn(*RAI)) 1275 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 1276 } 1277 1278 return LQR_Dead; 1279 } 1280 1281 N = Neighborhood; 1282 1283 // Try searching forwards from Before, looking for reads or defs. 1284 I = const_iterator(Before); 1285 // If this is the last insn in the block, don't search forwards. 1286 if (I != end()) { 1287 for (++I; I != end() && N > 0; ++I, --N) { 1288 MachineOperandIteratorBase::PhysRegInfo Analysis = 1289 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1290 1291 if (Analysis.ReadsOverlap) 1292 // Used, therefore must have been live. 1293 return (Analysis.Reads) ? 1294 LQR_Live : LQR_OverlappingLive; 1295 1296 else if (Analysis.Clobbers || Analysis.Defines) 1297 // Defined (but not read) therefore cannot have been live. 1298 return LQR_Dead; 1299 } 1300 } 1301 1302 // At this point we have no idea of the liveness of the register. 1303 return LQR_Unknown; 1304 } 1305 1306 const uint32_t * 1307 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1308 // EH funclet entry does not preserve any registers. 1309 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1310 } 1311 1312 const uint32_t * 1313 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1314 // If we see a return block with successors, this must be a funclet return, 1315 // which does not preserve any registers. If there are no successors, we don't 1316 // care what kind of return it is, putting a mask after it is a no-op. 1317 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1318 } 1319