xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision b7668d516443231cba62e29786463587b61f90bb)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/ModuleSlotTracker.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/Support/DataTypes.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 #include <algorithm>
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "codegen"
40 
41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
42     : BB(B), Number(-1), xParent(&MF) {
43   Insts.Parent = this;
44 }
45 
46 MachineBasicBlock::~MachineBasicBlock() {
47 }
48 
49 /// Return the MCSymbol for this basic block.
50 MCSymbol *MachineBasicBlock::getSymbol() const {
51   if (!CachedMCSymbol) {
52     const MachineFunction *MF = getParent();
53     MCContext &Ctx = MF->getContext();
54     const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
55     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
56     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
57                                            Twine(MF->getFunctionNumber()) +
58                                            "_" + Twine(getNumber()));
59   }
60 
61   return CachedMCSymbol;
62 }
63 
64 
65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
66   MBB.print(OS);
67   return OS;
68 }
69 
70 /// When an MBB is added to an MF, we need to update the parent pointer of the
71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
72 /// operand list for registers.
73 ///
74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
75 /// gets the next available unique MBB number. If it is removed from a
76 /// MachineFunction, it goes back to being #-1.
77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
78   MachineFunction &MF = *N->getParent();
79   N->Number = MF.addToMBBNumbering(N);
80 
81   // Make sure the instructions have their operands in the reginfo lists.
82   MachineRegisterInfo &RegInfo = MF.getRegInfo();
83   for (MachineBasicBlock::instr_iterator
84          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
85     I->AddRegOperandsToUseLists(RegInfo);
86 }
87 
88 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
89   N->getParent()->removeFromMBBNumbering(N->Number);
90   N->Number = -1;
91 }
92 
93 /// When we add an instruction to a basic block list, we update its parent
94 /// pointer and add its operands from reg use/def lists if appropriate.
95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
96   assert(!N->getParent() && "machine instruction already in a basic block");
97   N->setParent(Parent);
98 
99   // Add the instruction's register operands to their corresponding
100   // use/def lists.
101   MachineFunction *MF = Parent->getParent();
102   N->AddRegOperandsToUseLists(MF->getRegInfo());
103 }
104 
105 /// When we remove an instruction from a basic block list, we update its parent
106 /// pointer and remove its operands from reg use/def lists if appropriate.
107 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
108   assert(N->getParent() && "machine instruction not in a basic block");
109 
110   // Remove from the use/def lists.
111   if (MachineFunction *MF = N->getParent()->getParent())
112     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
113 
114   N->setParent(nullptr);
115 }
116 
117 /// When moving a range of instructions from one MBB list to another, we need to
118 /// update the parent pointers and the use/def lists.
119 void ilist_traits<MachineInstr>::
120 transferNodesFromList(ilist_traits<MachineInstr> &FromList,
121                       ilist_iterator<MachineInstr> First,
122                       ilist_iterator<MachineInstr> Last) {
123   assert(Parent->getParent() == FromList.Parent->getParent() &&
124         "MachineInstr parent mismatch!");
125   assert(this != &FromList && "Called without a real transfer...");
126   assert(Parent != FromList.Parent && "Two lists have the same parent?");
127 
128   // If splicing between two blocks within the same function, just update the
129   // parent pointers.
130   for (; First != Last; ++First)
131     First->setParent(Parent);
132 }
133 
134 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
135   assert(!MI->getParent() && "MI is still in a block!");
136   Parent->getParent()->DeleteMachineInstr(MI);
137 }
138 
139 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
140   instr_iterator I = instr_begin(), E = instr_end();
141   while (I != E && I->isPHI())
142     ++I;
143   assert((I == E || !I->isInsideBundle()) &&
144          "First non-phi MI cannot be inside a bundle!");
145   return I;
146 }
147 
148 MachineBasicBlock::iterator
149 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
150   iterator E = end();
151   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue()))
152     ++I;
153   // FIXME: This needs to change if we wish to bundle labels / dbg_values
154   // inside the bundle.
155   assert((I == E || !I->isInsideBundle()) &&
156          "First non-phi / non-label instruction is inside a bundle!");
157   return I;
158 }
159 
160 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
161   iterator B = begin(), E = end(), I = E;
162   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
163     ; /*noop */
164   while (I != E && !I->isTerminator())
165     ++I;
166   return I;
167 }
168 
169 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
170   instr_iterator B = instr_begin(), E = instr_end(), I = E;
171   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
172     ; /*noop */
173   while (I != E && !I->isTerminator())
174     ++I;
175   return I;
176 }
177 
178 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
179   // Skip over begin-of-block dbg_value instructions.
180   iterator I = begin(), E = end();
181   while (I != E && I->isDebugValue())
182     ++I;
183   return I;
184 }
185 
186 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
187   // Skip over end-of-block dbg_value instructions.
188   instr_iterator B = instr_begin(), I = instr_end();
189   while (I != B) {
190     --I;
191     // Return instruction that starts a bundle.
192     if (I->isDebugValue() || I->isInsideBundle())
193       continue;
194     return I;
195   }
196   // The block is all debug values.
197   return end();
198 }
199 
200 bool MachineBasicBlock::hasEHPadSuccessor() const {
201   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
202     if ((*I)->isEHPad())
203       return true;
204   return false;
205 }
206 
207 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
208 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
209   print(dbgs());
210 }
211 #endif
212 
213 StringRef MachineBasicBlock::getName() const {
214   if (const BasicBlock *LBB = getBasicBlock())
215     return LBB->getName();
216   else
217     return "(null)";
218 }
219 
220 /// Return a hopefully unique identifier for this block.
221 std::string MachineBasicBlock::getFullName() const {
222   std::string Name;
223   if (getParent())
224     Name = (getParent()->getName() + ":").str();
225   if (getBasicBlock())
226     Name += getBasicBlock()->getName();
227   else
228     Name += ("BB" + Twine(getNumber())).str();
229   return Name;
230 }
231 
232 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes)
233     const {
234   const MachineFunction *MF = getParent();
235   if (!MF) {
236     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
237        << " is null\n";
238     return;
239   }
240   const Function *F = MF->getFunction();
241   const Module *M = F ? F->getParent() : nullptr;
242   ModuleSlotTracker MST(M);
243   print(OS, MST, Indexes);
244 }
245 
246 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
247                               const SlotIndexes *Indexes) const {
248   const MachineFunction *MF = getParent();
249   if (!MF) {
250     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
251        << " is null\n";
252     return;
253   }
254 
255   if (Indexes)
256     OS << Indexes->getMBBStartIdx(this) << '\t';
257 
258   OS << "BB#" << getNumber() << ": ";
259 
260   const char *Comma = "";
261   if (const BasicBlock *LBB = getBasicBlock()) {
262     OS << Comma << "derived from LLVM BB ";
263     LBB->printAsOperand(OS, /*PrintType=*/false, MST);
264     Comma = ", ";
265   }
266   if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
267   if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
268   if (Alignment)
269     OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
270        << " bytes)";
271 
272   OS << '\n';
273 
274   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
275   if (!livein_empty()) {
276     if (Indexes) OS << '\t';
277     OS << "    Live Ins:";
278     for (const auto &LI : make_range(livein_begin(), livein_end())) {
279       OS << ' ' << PrintReg(LI.PhysReg, TRI);
280       if (LI.LaneMask != ~0u)
281         OS << ':' << PrintLaneMask(LI.LaneMask);
282     }
283     OS << '\n';
284   }
285   // Print the preds of this block according to the CFG.
286   if (!pred_empty()) {
287     if (Indexes) OS << '\t';
288     OS << "    Predecessors according to CFG:";
289     for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
290       OS << " BB#" << (*PI)->getNumber();
291     OS << '\n';
292   }
293 
294   for (auto &I : instrs()) {
295     if (Indexes) {
296       if (Indexes->hasIndex(I))
297         OS << Indexes->getInstructionIndex(I);
298       OS << '\t';
299     }
300     OS << '\t';
301     if (I.isInsideBundle())
302       OS << "  * ";
303     I.print(OS, MST);
304   }
305 
306   // Print the successors of this block according to the CFG.
307   if (!succ_empty()) {
308     if (Indexes) OS << '\t';
309     OS << "    Successors according to CFG:";
310     for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
311       OS << " BB#" << (*SI)->getNumber();
312       if (!Probs.empty())
313         OS << '(' << *getProbabilityIterator(SI) << ')';
314     }
315     OS << '\n';
316   }
317 }
318 
319 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
320                                        bool /*PrintType*/) const {
321   OS << "BB#" << getNumber();
322 }
323 
324 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
325   LiveInVector::iterator I = find_if(
326       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
327   if (I == LiveIns.end())
328     return;
329 
330   I->LaneMask &= ~LaneMask;
331   if (I->LaneMask == 0)
332     LiveIns.erase(I);
333 }
334 
335 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
336   livein_iterator I = find_if(
337       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
338   return I != livein_end() && (I->LaneMask & LaneMask) != 0;
339 }
340 
341 void MachineBasicBlock::sortUniqueLiveIns() {
342   std::sort(LiveIns.begin(), LiveIns.end(),
343             [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
344               return LI0.PhysReg < LI1.PhysReg;
345             });
346   // Liveins are sorted by physreg now we can merge their lanemasks.
347   LiveInVector::const_iterator I = LiveIns.begin();
348   LiveInVector::const_iterator J;
349   LiveInVector::iterator Out = LiveIns.begin();
350   for (; I != LiveIns.end(); ++Out, I = J) {
351     unsigned PhysReg = I->PhysReg;
352     LaneBitmask LaneMask = I->LaneMask;
353     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
354       LaneMask |= J->LaneMask;
355     Out->PhysReg = PhysReg;
356     Out->LaneMask = LaneMask;
357   }
358   LiveIns.erase(Out, LiveIns.end());
359 }
360 
361 unsigned
362 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
363   assert(getParent() && "MBB must be inserted in function");
364   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
365   assert(RC && "Register class is required");
366   assert((isEHPad() || this == &getParent()->front()) &&
367          "Only the entry block and landing pads can have physreg live ins");
368 
369   bool LiveIn = isLiveIn(PhysReg);
370   iterator I = SkipPHIsAndLabels(begin()), E = end();
371   MachineRegisterInfo &MRI = getParent()->getRegInfo();
372   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
373 
374   // Look for an existing copy.
375   if (LiveIn)
376     for (;I != E && I->isCopy(); ++I)
377       if (I->getOperand(1).getReg() == PhysReg) {
378         unsigned VirtReg = I->getOperand(0).getReg();
379         if (!MRI.constrainRegClass(VirtReg, RC))
380           llvm_unreachable("Incompatible live-in register class.");
381         return VirtReg;
382       }
383 
384   // No luck, create a virtual register.
385   unsigned VirtReg = MRI.createVirtualRegister(RC);
386   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
387     .addReg(PhysReg, RegState::Kill);
388   if (!LiveIn)
389     addLiveIn(PhysReg);
390   return VirtReg;
391 }
392 
393 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
394   getParent()->splice(NewAfter->getIterator(), getIterator());
395 }
396 
397 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
398   getParent()->splice(++NewBefore->getIterator(), getIterator());
399 }
400 
401 void MachineBasicBlock::updateTerminator() {
402   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
403   // A block with no successors has no concerns with fall-through edges.
404   if (this->succ_empty())
405     return;
406 
407   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
408   SmallVector<MachineOperand, 4> Cond;
409   DebugLoc DL;  // FIXME: this is nowhere
410   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
411   (void) B;
412   assert(!B && "UpdateTerminators requires analyzable predecessors!");
413   if (Cond.empty()) {
414     if (TBB) {
415       // The block has an unconditional branch. If its successor is now its
416       // layout successor, delete the branch.
417       if (isLayoutSuccessor(TBB))
418         TII->RemoveBranch(*this);
419     } else {
420       // The block has an unconditional fallthrough. If its successor is not its
421       // layout successor, insert a branch. First we have to locate the only
422       // non-landing-pad successor, as that is the fallthrough block.
423       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
424         if ((*SI)->isEHPad())
425           continue;
426         assert(!TBB && "Found more than one non-landing-pad successor!");
427         TBB = *SI;
428       }
429 
430       // If there is no non-landing-pad successor, the block has no fall-through
431       // edges to be concerned with.
432       if (!TBB)
433         return;
434 
435       // Finally update the unconditional successor to be reached via a branch
436       // if it would not be reached by fallthrough.
437       if (!isLayoutSuccessor(TBB))
438         TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
439     }
440     return;
441   }
442 
443   if (FBB) {
444     // The block has a non-fallthrough conditional branch. If one of its
445     // successors is its layout successor, rewrite it to a fallthrough
446     // conditional branch.
447     if (isLayoutSuccessor(TBB)) {
448       if (TII->ReverseBranchCondition(Cond))
449         return;
450       TII->RemoveBranch(*this);
451       TII->InsertBranch(*this, FBB, nullptr, Cond, DL);
452     } else if (isLayoutSuccessor(FBB)) {
453       TII->RemoveBranch(*this);
454       TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
455     }
456     return;
457   }
458 
459   // Walk through the successors and find the successor which is not a landing
460   // pad and is not the conditional branch destination (in TBB) as the
461   // fallthrough successor.
462   MachineBasicBlock *FallthroughBB = nullptr;
463   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
464     if ((*SI)->isEHPad() || *SI == TBB)
465       continue;
466     assert(!FallthroughBB && "Found more than one fallthrough successor.");
467     FallthroughBB = *SI;
468   }
469 
470   if (!FallthroughBB) {
471     if (canFallThrough()) {
472       // We fallthrough to the same basic block as the conditional jump targets.
473       // Remove the conditional jump, leaving unconditional fallthrough.
474       // FIXME: This does not seem like a reasonable pattern to support, but it
475       // has been seen in the wild coming out of degenerate ARM test cases.
476       TII->RemoveBranch(*this);
477 
478       // Finally update the unconditional successor to be reached via a branch if
479       // it would not be reached by fallthrough.
480       if (!isLayoutSuccessor(TBB))
481         TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
482       return;
483     }
484 
485     // We enter here iff exactly one successor is TBB which cannot fallthrough
486     // and the rest successors if any are EHPads.  In this case, we need to
487     // change the conditional branch into unconditional branch.
488     TII->RemoveBranch(*this);
489     Cond.clear();
490     TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
491     return;
492   }
493 
494   // The block has a fallthrough conditional branch.
495   if (isLayoutSuccessor(TBB)) {
496     if (TII->ReverseBranchCondition(Cond)) {
497       // We can't reverse the condition, add an unconditional branch.
498       Cond.clear();
499       TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL);
500       return;
501     }
502     TII->RemoveBranch(*this);
503     TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL);
504   } else if (!isLayoutSuccessor(FallthroughBB)) {
505     TII->RemoveBranch(*this);
506     TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL);
507   }
508 }
509 
510 void MachineBasicBlock::validateSuccProbs() const {
511 #ifndef NDEBUG
512   int64_t Sum = 0;
513   for (auto Prob : Probs)
514     Sum += Prob.getNumerator();
515   // Due to precision issue, we assume that the sum of probabilities is one if
516   // the difference between the sum of their numerators and the denominator is
517   // no greater than the number of successors.
518   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
519              Probs.size() &&
520          "The sum of successors's probabilities exceeds one.");
521 #endif // NDEBUG
522 }
523 
524 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
525                                      BranchProbability Prob) {
526   // Probability list is either empty (if successor list isn't empty, this means
527   // disabled optimization) or has the same size as successor list.
528   if (!(Probs.empty() && !Successors.empty()))
529     Probs.push_back(Prob);
530   Successors.push_back(Succ);
531   Succ->addPredecessor(this);
532 }
533 
534 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
535   // We need to make sure probability list is either empty or has the same size
536   // of successor list. When this function is called, we can safely delete all
537   // probability in the list.
538   Probs.clear();
539   Successors.push_back(Succ);
540   Succ->addPredecessor(this);
541 }
542 
543 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
544                                         bool NormalizeSuccProbs) {
545   succ_iterator I = find(Successors, Succ);
546   removeSuccessor(I, NormalizeSuccProbs);
547 }
548 
549 MachineBasicBlock::succ_iterator
550 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
551   assert(I != Successors.end() && "Not a current successor!");
552 
553   // If probability list is empty it means we don't use it (disabled
554   // optimization).
555   if (!Probs.empty()) {
556     probability_iterator WI = getProbabilityIterator(I);
557     Probs.erase(WI);
558     if (NormalizeSuccProbs)
559       normalizeSuccProbs();
560   }
561 
562   (*I)->removePredecessor(this);
563   return Successors.erase(I);
564 }
565 
566 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
567                                          MachineBasicBlock *New) {
568   if (Old == New)
569     return;
570 
571   succ_iterator E = succ_end();
572   succ_iterator NewI = E;
573   succ_iterator OldI = E;
574   for (succ_iterator I = succ_begin(); I != E; ++I) {
575     if (*I == Old) {
576       OldI = I;
577       if (NewI != E)
578         break;
579     }
580     if (*I == New) {
581       NewI = I;
582       if (OldI != E)
583         break;
584     }
585   }
586   assert(OldI != E && "Old is not a successor of this block");
587 
588   // If New isn't already a successor, let it take Old's place.
589   if (NewI == E) {
590     Old->removePredecessor(this);
591     New->addPredecessor(this);
592     *OldI = New;
593     return;
594   }
595 
596   // New is already a successor.
597   // Update its probability instead of adding a duplicate edge.
598   if (!Probs.empty()) {
599     auto ProbIter = getProbabilityIterator(NewI);
600     if (!ProbIter->isUnknown())
601       *ProbIter += *getProbabilityIterator(OldI);
602   }
603   removeSuccessor(OldI);
604 }
605 
606 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
607   Predecessors.push_back(Pred);
608 }
609 
610 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
611   pred_iterator I = find(Predecessors, Pred);
612   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
613   Predecessors.erase(I);
614 }
615 
616 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
617   if (this == FromMBB)
618     return;
619 
620   while (!FromMBB->succ_empty()) {
621     MachineBasicBlock *Succ = *FromMBB->succ_begin();
622 
623     // If probability list is empty it means we don't use it (disabled optimization).
624     if (!FromMBB->Probs.empty()) {
625       auto Prob = *FromMBB->Probs.begin();
626       addSuccessor(Succ, Prob);
627     } else
628       addSuccessorWithoutProb(Succ);
629 
630     FromMBB->removeSuccessor(Succ);
631   }
632 }
633 
634 void
635 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
636   if (this == FromMBB)
637     return;
638 
639   while (!FromMBB->succ_empty()) {
640     MachineBasicBlock *Succ = *FromMBB->succ_begin();
641     if (!FromMBB->Probs.empty()) {
642       auto Prob = *FromMBB->Probs.begin();
643       addSuccessor(Succ, Prob);
644     } else
645       addSuccessorWithoutProb(Succ);
646     FromMBB->removeSuccessor(Succ);
647 
648     // Fix up any PHI nodes in the successor.
649     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
650            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
651       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
652         MachineOperand &MO = MI->getOperand(i);
653         if (MO.getMBB() == FromMBB)
654           MO.setMBB(this);
655       }
656   }
657   normalizeSuccProbs();
658 }
659 
660 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
661   return is_contained(predecessors(), MBB);
662 }
663 
664 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
665   return is_contained(successors(), MBB);
666 }
667 
668 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
669   MachineFunction::const_iterator I(this);
670   return std::next(I) == MachineFunction::const_iterator(MBB);
671 }
672 
673 bool MachineBasicBlock::canFallThrough() {
674   MachineFunction::iterator Fallthrough = getIterator();
675   ++Fallthrough;
676   // If FallthroughBlock is off the end of the function, it can't fall through.
677   if (Fallthrough == getParent()->end())
678     return false;
679 
680   // If FallthroughBlock isn't a successor, no fallthrough is possible.
681   if (!isSuccessor(&*Fallthrough))
682     return false;
683 
684   // Analyze the branches, if any, at the end of the block.
685   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
686   SmallVector<MachineOperand, 4> Cond;
687   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
688   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
689     // If we couldn't analyze the branch, examine the last instruction.
690     // If the block doesn't end in a known control barrier, assume fallthrough
691     // is possible. The isPredicated check is needed because this code can be
692     // called during IfConversion, where an instruction which is normally a
693     // Barrier is predicated and thus no longer an actual control barrier.
694     return empty() || !back().isBarrier() || TII->isPredicated(back());
695   }
696 
697   // If there is no branch, control always falls through.
698   if (!TBB) return true;
699 
700   // If there is some explicit branch to the fallthrough block, it can obviously
701   // reach, even though the branch should get folded to fall through implicitly.
702   if (MachineFunction::iterator(TBB) == Fallthrough ||
703       MachineFunction::iterator(FBB) == Fallthrough)
704     return true;
705 
706   // If it's an unconditional branch to some block not the fall through, it
707   // doesn't fall through.
708   if (Cond.empty()) return false;
709 
710   // Otherwise, if it is conditional and has no explicit false block, it falls
711   // through.
712   return FBB == nullptr;
713 }
714 
715 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
716                                                         Pass &P) {
717   if (!canSplitCriticalEdge(Succ))
718     return nullptr;
719 
720   MachineFunction *MF = getParent();
721   DebugLoc DL;  // FIXME: this is nowhere
722 
723   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
724   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
725   DEBUG(dbgs() << "Splitting critical edge:"
726         " BB#" << getNumber()
727         << " -- BB#" << NMBB->getNumber()
728         << " -- BB#" << Succ->getNumber() << '\n');
729 
730   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
731   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
732   if (LIS)
733     LIS->insertMBBInMaps(NMBB);
734   else if (Indexes)
735     Indexes->insertMBBInMaps(NMBB);
736 
737   // On some targets like Mips, branches may kill virtual registers. Make sure
738   // that LiveVariables is properly updated after updateTerminator replaces the
739   // terminators.
740   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
741 
742   // Collect a list of virtual registers killed by the terminators.
743   SmallVector<unsigned, 4> KilledRegs;
744   if (LV)
745     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
746          I != E; ++I) {
747       MachineInstr *MI = &*I;
748       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
749            OE = MI->operands_end(); OI != OE; ++OI) {
750         if (!OI->isReg() || OI->getReg() == 0 ||
751             !OI->isUse() || !OI->isKill() || OI->isUndef())
752           continue;
753         unsigned Reg = OI->getReg();
754         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
755             LV->getVarInfo(Reg).removeKill(*MI)) {
756           KilledRegs.push_back(Reg);
757           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
758           OI->setIsKill(false);
759         }
760       }
761     }
762 
763   SmallVector<unsigned, 4> UsedRegs;
764   if (LIS) {
765     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
766          I != E; ++I) {
767       MachineInstr *MI = &*I;
768 
769       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
770            OE = MI->operands_end(); OI != OE; ++OI) {
771         if (!OI->isReg() || OI->getReg() == 0)
772           continue;
773 
774         unsigned Reg = OI->getReg();
775         if (!is_contained(UsedRegs, Reg))
776           UsedRegs.push_back(Reg);
777       }
778     }
779   }
780 
781   ReplaceUsesOfBlockWith(Succ, NMBB);
782 
783   // If updateTerminator() removes instructions, we need to remove them from
784   // SlotIndexes.
785   SmallVector<MachineInstr*, 4> Terminators;
786   if (Indexes) {
787     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
788          I != E; ++I)
789       Terminators.push_back(&*I);
790   }
791 
792   updateTerminator();
793 
794   if (Indexes) {
795     SmallVector<MachineInstr*, 4> NewTerminators;
796     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
797          I != E; ++I)
798       NewTerminators.push_back(&*I);
799 
800     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
801         E = Terminators.end(); I != E; ++I) {
802       if (!is_contained(NewTerminators, *I))
803         Indexes->removeMachineInstrFromMaps(**I);
804     }
805   }
806 
807   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
808   NMBB->addSuccessor(Succ);
809   if (!NMBB->isLayoutSuccessor(Succ)) {
810     SmallVector<MachineOperand, 4> Cond;
811     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
812     TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL);
813 
814     if (Indexes) {
815       for (MachineInstr &MI : NMBB->instrs()) {
816         // Some instructions may have been moved to NMBB by updateTerminator(),
817         // so we first remove any instruction that already has an index.
818         if (Indexes->hasIndex(MI))
819           Indexes->removeMachineInstrFromMaps(MI);
820         Indexes->insertMachineInstrInMaps(MI);
821       }
822     }
823   }
824 
825   // Fix PHI nodes in Succ so they refer to NMBB instead of this
826   for (MachineBasicBlock::instr_iterator
827          i = Succ->instr_begin(),e = Succ->instr_end();
828        i != e && i->isPHI(); ++i)
829     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
830       if (i->getOperand(ni+1).getMBB() == this)
831         i->getOperand(ni+1).setMBB(NMBB);
832 
833   // Inherit live-ins from the successor
834   for (const auto &LI : Succ->liveins())
835     NMBB->addLiveIn(LI);
836 
837   // Update LiveVariables.
838   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
839   if (LV) {
840     // Restore kills of virtual registers that were killed by the terminators.
841     while (!KilledRegs.empty()) {
842       unsigned Reg = KilledRegs.pop_back_val();
843       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
844         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
845           continue;
846         if (TargetRegisterInfo::isVirtualRegister(Reg))
847           LV->getVarInfo(Reg).Kills.push_back(&*I);
848         DEBUG(dbgs() << "Restored terminator kill: " << *I);
849         break;
850       }
851     }
852     // Update relevant live-through information.
853     LV->addNewBlock(NMBB, this, Succ);
854   }
855 
856   if (LIS) {
857     // After splitting the edge and updating SlotIndexes, live intervals may be
858     // in one of two situations, depending on whether this block was the last in
859     // the function. If the original block was the last in the function, all
860     // live intervals will end prior to the beginning of the new split block. If
861     // the original block was not at the end of the function, all live intervals
862     // will extend to the end of the new split block.
863 
864     bool isLastMBB =
865       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
866 
867     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
868     SlotIndex PrevIndex = StartIndex.getPrevSlot();
869     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
870 
871     // Find the registers used from NMBB in PHIs in Succ.
872     SmallSet<unsigned, 8> PHISrcRegs;
873     for (MachineBasicBlock::instr_iterator
874          I = Succ->instr_begin(), E = Succ->instr_end();
875          I != E && I->isPHI(); ++I) {
876       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
877         if (I->getOperand(ni+1).getMBB() == NMBB) {
878           MachineOperand &MO = I->getOperand(ni);
879           unsigned Reg = MO.getReg();
880           PHISrcRegs.insert(Reg);
881           if (MO.isUndef())
882             continue;
883 
884           LiveInterval &LI = LIS->getInterval(Reg);
885           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
886           assert(VNI &&
887                  "PHI sources should be live out of their predecessors.");
888           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
889         }
890       }
891     }
892 
893     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
894     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
895       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
896       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
897         continue;
898 
899       LiveInterval &LI = LIS->getInterval(Reg);
900       if (!LI.liveAt(PrevIndex))
901         continue;
902 
903       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
904       if (isLiveOut && isLastMBB) {
905         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
906         assert(VNI && "LiveInterval should have VNInfo where it is live.");
907         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
908       } else if (!isLiveOut && !isLastMBB) {
909         LI.removeSegment(StartIndex, EndIndex);
910       }
911     }
912 
913     // Update all intervals for registers whose uses may have been modified by
914     // updateTerminator().
915     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
916   }
917 
918   if (MachineDominatorTree *MDT =
919           P.getAnalysisIfAvailable<MachineDominatorTree>())
920     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
921 
922   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
923     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
924       // If one or the other blocks were not in a loop, the new block is not
925       // either, and thus LI doesn't need to be updated.
926       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
927         if (TIL == DestLoop) {
928           // Both in the same loop, the NMBB joins loop.
929           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
930         } else if (TIL->contains(DestLoop)) {
931           // Edge from an outer loop to an inner loop.  Add to the outer loop.
932           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
933         } else if (DestLoop->contains(TIL)) {
934           // Edge from an inner loop to an outer loop.  Add to the outer loop.
935           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
936         } else {
937           // Edge from two loops with no containment relation.  Because these
938           // are natural loops, we know that the destination block must be the
939           // header of its loop (adding a branch into a loop elsewhere would
940           // create an irreducible loop).
941           assert(DestLoop->getHeader() == Succ &&
942                  "Should not create irreducible loops!");
943           if (MachineLoop *P = DestLoop->getParentLoop())
944             P->addBasicBlockToLoop(NMBB, MLI->getBase());
945         }
946       }
947     }
948 
949   return NMBB;
950 }
951 
952 bool MachineBasicBlock::canSplitCriticalEdge(
953     const MachineBasicBlock *Succ) const {
954   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
955   // it in this generic function.
956   if (Succ->isEHPad())
957     return false;
958 
959   const MachineFunction *MF = getParent();
960 
961   // Performance might be harmed on HW that implements branching using exec mask
962   // where both sides of the branches are always executed.
963   if (MF->getTarget().requiresStructuredCFG())
964     return false;
965 
966   // We may need to update this's terminator, but we can't do that if
967   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
968   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
969   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
970   SmallVector<MachineOperand, 4> Cond;
971   // AnalyzeBanch should modify this, since we did not allow modification.
972   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
973                          /*AllowModify*/ false))
974     return false;
975 
976   // Avoid bugpoint weirdness: A block may end with a conditional branch but
977   // jumps to the same MBB is either case. We have duplicate CFG edges in that
978   // case that we can't handle. Since this never happens in properly optimized
979   // code, just skip those edges.
980   if (TBB && TBB == FBB) {
981     DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
982                  << getNumber() << '\n');
983     return false;
984   }
985   return true;
986 }
987 
988 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
989 /// neighboring instructions so the bundle won't be broken by removing MI.
990 static void unbundleSingleMI(MachineInstr *MI) {
991   // Removing the first instruction in a bundle.
992   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
993     MI->unbundleFromSucc();
994   // Removing the last instruction in a bundle.
995   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
996     MI->unbundleFromPred();
997   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
998   // are already fine.
999 }
1000 
1001 MachineBasicBlock::instr_iterator
1002 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1003   unbundleSingleMI(&*I);
1004   return Insts.erase(I);
1005 }
1006 
1007 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1008   unbundleSingleMI(MI);
1009   MI->clearFlag(MachineInstr::BundledPred);
1010   MI->clearFlag(MachineInstr::BundledSucc);
1011   return Insts.remove(MI);
1012 }
1013 
1014 MachineBasicBlock::instr_iterator
1015 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1016   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1017          "Cannot insert instruction with bundle flags");
1018   // Set the bundle flags when inserting inside a bundle.
1019   if (I != instr_end() && I->isBundledWithPred()) {
1020     MI->setFlag(MachineInstr::BundledPred);
1021     MI->setFlag(MachineInstr::BundledSucc);
1022   }
1023   return Insts.insert(I, MI);
1024 }
1025 
1026 /// This method unlinks 'this' from the containing function, and returns it, but
1027 /// does not delete it.
1028 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1029   assert(getParent() && "Not embedded in a function!");
1030   getParent()->remove(this);
1031   return this;
1032 }
1033 
1034 /// This method unlinks 'this' from the containing function, and deletes it.
1035 void MachineBasicBlock::eraseFromParent() {
1036   assert(getParent() && "Not embedded in a function!");
1037   getParent()->erase(this);
1038 }
1039 
1040 /// Given a machine basic block that branched to 'Old', change the code and CFG
1041 /// so that it branches to 'New' instead.
1042 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1043                                                MachineBasicBlock *New) {
1044   assert(Old != New && "Cannot replace self with self!");
1045 
1046   MachineBasicBlock::instr_iterator I = instr_end();
1047   while (I != instr_begin()) {
1048     --I;
1049     if (!I->isTerminator()) break;
1050 
1051     // Scan the operands of this machine instruction, replacing any uses of Old
1052     // with New.
1053     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1054       if (I->getOperand(i).isMBB() &&
1055           I->getOperand(i).getMBB() == Old)
1056         I->getOperand(i).setMBB(New);
1057   }
1058 
1059   // Update the successor information.
1060   replaceSuccessor(Old, New);
1061 }
1062 
1063 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1064 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1065 /// MBB successors from the CFG.  DestA and DestB can be null.
1066 ///
1067 /// Besides DestA and DestB, retain other edges leading to LandingPads
1068 /// (currently there can be only one; we don't check or require that here).
1069 /// Note it is possible that DestA and/or DestB are LandingPads.
1070 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1071                                              MachineBasicBlock *DestB,
1072                                              bool IsCond) {
1073   // The values of DestA and DestB frequently come from a call to the
1074   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1075   // values from there.
1076   //
1077   // 1. If both DestA and DestB are null, then the block ends with no branches
1078   //    (it falls through to its successor).
1079   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1080   //    with only an unconditional branch.
1081   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1082   //    with a conditional branch that falls through to a successor (DestB).
1083   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1084   //    conditional branch followed by an unconditional branch. DestA is the
1085   //    'true' destination and DestB is the 'false' destination.
1086 
1087   bool Changed = false;
1088 
1089   MachineBasicBlock *FallThru = getNextNode();
1090 
1091   if (!DestA && !DestB) {
1092     // Block falls through to successor.
1093     DestA = FallThru;
1094     DestB = FallThru;
1095   } else if (DestA && !DestB) {
1096     if (IsCond)
1097       // Block ends in conditional jump that falls through to successor.
1098       DestB = FallThru;
1099   } else {
1100     assert(DestA && DestB && IsCond &&
1101            "CFG in a bad state. Cannot correct CFG edges");
1102   }
1103 
1104   // Remove superfluous edges. I.e., those which aren't destinations of this
1105   // basic block, duplicate edges, or landing pads.
1106   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1107   MachineBasicBlock::succ_iterator SI = succ_begin();
1108   while (SI != succ_end()) {
1109     const MachineBasicBlock *MBB = *SI;
1110     if (!SeenMBBs.insert(MBB).second ||
1111         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1112       // This is a superfluous edge, remove it.
1113       SI = removeSuccessor(SI);
1114       Changed = true;
1115     } else {
1116       ++SI;
1117     }
1118   }
1119 
1120   if (Changed)
1121     normalizeSuccProbs();
1122   return Changed;
1123 }
1124 
1125 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1126 /// instructions.  Return UnknownLoc if there is none.
1127 DebugLoc
1128 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1129   DebugLoc DL;
1130   instr_iterator E = instr_end();
1131   if (MBBI == E)
1132     return DL;
1133 
1134   // Skip debug declarations, we don't want a DebugLoc from them.
1135   while (MBBI != E && MBBI->isDebugValue())
1136     MBBI++;
1137   if (MBBI != E)
1138     DL = MBBI->getDebugLoc();
1139   return DL;
1140 }
1141 
1142 /// Return probability of the edge from this block to MBB.
1143 BranchProbability
1144 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1145   if (Probs.empty())
1146     return BranchProbability(1, succ_size());
1147 
1148   const auto &Prob = *getProbabilityIterator(Succ);
1149   if (Prob.isUnknown()) {
1150     // For unknown probabilities, collect the sum of all known ones, and evenly
1151     // ditribute the complemental of the sum to each unknown probability.
1152     unsigned KnownProbNum = 0;
1153     auto Sum = BranchProbability::getZero();
1154     for (auto &P : Probs) {
1155       if (!P.isUnknown()) {
1156         Sum += P;
1157         KnownProbNum++;
1158       }
1159     }
1160     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1161   } else
1162     return Prob;
1163 }
1164 
1165 /// Set successor probability of a given iterator.
1166 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1167                                            BranchProbability Prob) {
1168   assert(!Prob.isUnknown());
1169   if (Probs.empty())
1170     return;
1171   *getProbabilityIterator(I) = Prob;
1172 }
1173 
1174 /// Return probability iterator corresonding to the I successor iterator
1175 MachineBasicBlock::const_probability_iterator
1176 MachineBasicBlock::getProbabilityIterator(
1177     MachineBasicBlock::const_succ_iterator I) const {
1178   assert(Probs.size() == Successors.size() && "Async probability list!");
1179   const size_t index = std::distance(Successors.begin(), I);
1180   assert(index < Probs.size() && "Not a current successor!");
1181   return Probs.begin() + index;
1182 }
1183 
1184 /// Return probability iterator corresonding to the I successor iterator.
1185 MachineBasicBlock::probability_iterator
1186 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1187   assert(Probs.size() == Successors.size() && "Async probability list!");
1188   const size_t index = std::distance(Successors.begin(), I);
1189   assert(index < Probs.size() && "Not a current successor!");
1190   return Probs.begin() + index;
1191 }
1192 
1193 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1194 /// as of just before "MI".
1195 ///
1196 /// Search is localised to a neighborhood of
1197 /// Neighborhood instructions before (searching for defs or kills) and N
1198 /// instructions after (searching just for defs) MI.
1199 MachineBasicBlock::LivenessQueryResult
1200 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1201                                            unsigned Reg, const_iterator Before,
1202                                            unsigned Neighborhood) const {
1203   unsigned N = Neighborhood;
1204 
1205   // Start by searching backwards from Before, looking for kills, reads or defs.
1206   const_iterator I(Before);
1207   // If this is the first insn in the block, don't search backwards.
1208   if (I != begin()) {
1209     do {
1210       --I;
1211 
1212       MachineOperandIteratorBase::PhysRegInfo Info =
1213           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1214 
1215       // Defs happen after uses so they take precedence if both are present.
1216 
1217       // Register is dead after a dead def of the full register.
1218       if (Info.DeadDef)
1219         return LQR_Dead;
1220       // Register is (at least partially) live after a def.
1221       if (Info.Defined) {
1222         if (!Info.PartialDeadDef)
1223           return LQR_Live;
1224         // As soon as we saw a partial definition (dead or not),
1225         // we cannot tell if the value is partial live without
1226         // tracking the lanemasks. We are not going to do this,
1227         // so fall back on the remaining of the analysis.
1228         break;
1229       }
1230       // Register is dead after a full kill or clobber and no def.
1231       if (Info.Killed || Info.Clobbered)
1232         return LQR_Dead;
1233       // Register must be live if we read it.
1234       if (Info.Read)
1235         return LQR_Live;
1236     } while (I != begin() && --N > 0);
1237   }
1238 
1239   // Did we get to the start of the block?
1240   if (I == begin()) {
1241     // If so, the register's state is definitely defined by the live-in state.
1242     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
1243          ++RAI)
1244       if (isLiveIn(*RAI))
1245         return LQR_Live;
1246 
1247     return LQR_Dead;
1248   }
1249 
1250   N = Neighborhood;
1251 
1252   // Try searching forwards from Before, looking for reads or defs.
1253   I = const_iterator(Before);
1254   // If this is the last insn in the block, don't search forwards.
1255   if (I != end()) {
1256     for (++I; I != end() && N > 0; ++I, --N) {
1257       MachineOperandIteratorBase::PhysRegInfo Info =
1258           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1259 
1260       // Register is live when we read it here.
1261       if (Info.Read)
1262         return LQR_Live;
1263       // Register is dead if we can fully overwrite or clobber it here.
1264       if (Info.FullyDefined || Info.Clobbered)
1265         return LQR_Dead;
1266     }
1267   }
1268 
1269   // At this point we have no idea of the liveness of the register.
1270   return LQR_Unknown;
1271 }
1272 
1273 const uint32_t *
1274 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1275   // EH funclet entry does not preserve any registers.
1276   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1277 }
1278 
1279 const uint32_t *
1280 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1281   // If we see a return block with successors, this must be a funclet return,
1282   // which does not preserve any registers. If there are no successors, we don't
1283   // care what kind of return it is, putting a mask after it is a no-op.
1284   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1285 }
1286