1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/ModuleSlotTracker.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/Support/DataTypes.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 42 : BB(B), Number(-1), xParent(&MF) { 43 Insts.Parent = this; 44 } 45 46 MachineBasicBlock::~MachineBasicBlock() { 47 } 48 49 /// Return the MCSymbol for this basic block. 50 MCSymbol *MachineBasicBlock::getSymbol() const { 51 if (!CachedMCSymbol) { 52 const MachineFunction *MF = getParent(); 53 MCContext &Ctx = MF->getContext(); 54 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 55 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 56 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 57 Twine(MF->getFunctionNumber()) + 58 "_" + Twine(getNumber())); 59 } 60 61 return CachedMCSymbol; 62 } 63 64 65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 66 MBB.print(OS); 67 return OS; 68 } 69 70 /// When an MBB is added to an MF, we need to update the parent pointer of the 71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 72 /// operand list for registers. 73 /// 74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 75 /// gets the next available unique MBB number. If it is removed from a 76 /// MachineFunction, it goes back to being #-1. 77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 78 MachineFunction &MF = *N->getParent(); 79 N->Number = MF.addToMBBNumbering(N); 80 81 // Make sure the instructions have their operands in the reginfo lists. 82 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 83 for (MachineBasicBlock::instr_iterator 84 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 85 I->AddRegOperandsToUseLists(RegInfo); 86 } 87 88 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 89 N->getParent()->removeFromMBBNumbering(N->Number); 90 N->Number = -1; 91 } 92 93 /// When we add an instruction to a basic block list, we update its parent 94 /// pointer and add its operands from reg use/def lists if appropriate. 95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 96 assert(!N->getParent() && "machine instruction already in a basic block"); 97 N->setParent(Parent); 98 99 // Add the instruction's register operands to their corresponding 100 // use/def lists. 101 MachineFunction *MF = Parent->getParent(); 102 N->AddRegOperandsToUseLists(MF->getRegInfo()); 103 } 104 105 /// When we remove an instruction from a basic block list, we update its parent 106 /// pointer and remove its operands from reg use/def lists if appropriate. 107 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 108 assert(N->getParent() && "machine instruction not in a basic block"); 109 110 // Remove from the use/def lists. 111 if (MachineFunction *MF = N->getParent()->getParent()) 112 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 113 114 N->setParent(nullptr); 115 } 116 117 /// When moving a range of instructions from one MBB list to another, we need to 118 /// update the parent pointers and the use/def lists. 119 void ilist_traits<MachineInstr>:: 120 transferNodesFromList(ilist_traits<MachineInstr> &FromList, 121 ilist_iterator<MachineInstr> First, 122 ilist_iterator<MachineInstr> Last) { 123 assert(Parent->getParent() == FromList.Parent->getParent() && 124 "MachineInstr parent mismatch!"); 125 assert(this != &FromList && "Called without a real transfer..."); 126 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 127 128 // If splicing between two blocks within the same function, just update the 129 // parent pointers. 130 for (; First != Last; ++First) 131 First->setParent(Parent); 132 } 133 134 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 135 assert(!MI->getParent() && "MI is still in a block!"); 136 Parent->getParent()->DeleteMachineInstr(MI); 137 } 138 139 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 140 instr_iterator I = instr_begin(), E = instr_end(); 141 while (I != E && I->isPHI()) 142 ++I; 143 assert((I == E || !I->isInsideBundle()) && 144 "First non-phi MI cannot be inside a bundle!"); 145 return I; 146 } 147 148 MachineBasicBlock::iterator 149 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 150 iterator E = end(); 151 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 152 ++I; 153 // FIXME: This needs to change if we wish to bundle labels / dbg_values 154 // inside the bundle. 155 assert((I == E || !I->isInsideBundle()) && 156 "First non-phi / non-label instruction is inside a bundle!"); 157 return I; 158 } 159 160 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 161 iterator B = begin(), E = end(), I = E; 162 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 163 ; /*noop */ 164 while (I != E && !I->isTerminator()) 165 ++I; 166 return I; 167 } 168 169 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 170 instr_iterator B = instr_begin(), E = instr_end(), I = E; 171 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 172 ; /*noop */ 173 while (I != E && !I->isTerminator()) 174 ++I; 175 return I; 176 } 177 178 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 179 // Skip over begin-of-block dbg_value instructions. 180 iterator I = begin(), E = end(); 181 while (I != E && I->isDebugValue()) 182 ++I; 183 return I; 184 } 185 186 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 187 // Skip over end-of-block dbg_value instructions. 188 instr_iterator B = instr_begin(), I = instr_end(); 189 while (I != B) { 190 --I; 191 // Return instruction that starts a bundle. 192 if (I->isDebugValue() || I->isInsideBundle()) 193 continue; 194 return I; 195 } 196 // The block is all debug values. 197 return end(); 198 } 199 200 bool MachineBasicBlock::hasEHPadSuccessor() const { 201 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 202 if ((*I)->isEHPad()) 203 return true; 204 return false; 205 } 206 207 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 208 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 209 print(dbgs()); 210 } 211 #endif 212 213 StringRef MachineBasicBlock::getName() const { 214 if (const BasicBlock *LBB = getBasicBlock()) 215 return LBB->getName(); 216 else 217 return "(null)"; 218 } 219 220 /// Return a hopefully unique identifier for this block. 221 std::string MachineBasicBlock::getFullName() const { 222 std::string Name; 223 if (getParent()) 224 Name = (getParent()->getName() + ":").str(); 225 if (getBasicBlock()) 226 Name += getBasicBlock()->getName(); 227 else 228 Name += ("BB" + Twine(getNumber())).str(); 229 return Name; 230 } 231 232 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes) 233 const { 234 const MachineFunction *MF = getParent(); 235 if (!MF) { 236 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 237 << " is null\n"; 238 return; 239 } 240 const Function *F = MF->getFunction(); 241 const Module *M = F ? F->getParent() : nullptr; 242 ModuleSlotTracker MST(M); 243 print(OS, MST, Indexes); 244 } 245 246 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 247 const SlotIndexes *Indexes) const { 248 const MachineFunction *MF = getParent(); 249 if (!MF) { 250 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 251 << " is null\n"; 252 return; 253 } 254 255 if (Indexes) 256 OS << Indexes->getMBBStartIdx(this) << '\t'; 257 258 OS << "BB#" << getNumber() << ": "; 259 260 const char *Comma = ""; 261 if (const BasicBlock *LBB = getBasicBlock()) { 262 OS << Comma << "derived from LLVM BB "; 263 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 264 Comma = ", "; 265 } 266 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 267 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 268 if (Alignment) 269 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 270 << " bytes)"; 271 272 OS << '\n'; 273 274 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 275 if (!livein_empty()) { 276 if (Indexes) OS << '\t'; 277 OS << " Live Ins:"; 278 for (const auto &LI : make_range(livein_begin(), livein_end())) { 279 OS << ' ' << PrintReg(LI.PhysReg, TRI); 280 if (LI.LaneMask != ~0u) 281 OS << ':' << PrintLaneMask(LI.LaneMask); 282 } 283 OS << '\n'; 284 } 285 // Print the preds of this block according to the CFG. 286 if (!pred_empty()) { 287 if (Indexes) OS << '\t'; 288 OS << " Predecessors according to CFG:"; 289 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 290 OS << " BB#" << (*PI)->getNumber(); 291 OS << '\n'; 292 } 293 294 for (auto &I : instrs()) { 295 if (Indexes) { 296 if (Indexes->hasIndex(I)) 297 OS << Indexes->getInstructionIndex(I); 298 OS << '\t'; 299 } 300 OS << '\t'; 301 if (I.isInsideBundle()) 302 OS << " * "; 303 I.print(OS, MST); 304 } 305 306 // Print the successors of this block according to the CFG. 307 if (!succ_empty()) { 308 if (Indexes) OS << '\t'; 309 OS << " Successors according to CFG:"; 310 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 311 OS << " BB#" << (*SI)->getNumber(); 312 if (!Probs.empty()) 313 OS << '(' << *getProbabilityIterator(SI) << ')'; 314 } 315 OS << '\n'; 316 } 317 } 318 319 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 320 bool /*PrintType*/) const { 321 OS << "BB#" << getNumber(); 322 } 323 324 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 325 LiveInVector::iterator I = find_if( 326 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 327 if (I == LiveIns.end()) 328 return; 329 330 I->LaneMask &= ~LaneMask; 331 if (I->LaneMask == 0) 332 LiveIns.erase(I); 333 } 334 335 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 336 livein_iterator I = find_if( 337 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 338 return I != livein_end() && (I->LaneMask & LaneMask) != 0; 339 } 340 341 void MachineBasicBlock::sortUniqueLiveIns() { 342 std::sort(LiveIns.begin(), LiveIns.end(), 343 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 344 return LI0.PhysReg < LI1.PhysReg; 345 }); 346 // Liveins are sorted by physreg now we can merge their lanemasks. 347 LiveInVector::const_iterator I = LiveIns.begin(); 348 LiveInVector::const_iterator J; 349 LiveInVector::iterator Out = LiveIns.begin(); 350 for (; I != LiveIns.end(); ++Out, I = J) { 351 unsigned PhysReg = I->PhysReg; 352 LaneBitmask LaneMask = I->LaneMask; 353 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 354 LaneMask |= J->LaneMask; 355 Out->PhysReg = PhysReg; 356 Out->LaneMask = LaneMask; 357 } 358 LiveIns.erase(Out, LiveIns.end()); 359 } 360 361 unsigned 362 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 363 assert(getParent() && "MBB must be inserted in function"); 364 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 365 assert(RC && "Register class is required"); 366 assert((isEHPad() || this == &getParent()->front()) && 367 "Only the entry block and landing pads can have physreg live ins"); 368 369 bool LiveIn = isLiveIn(PhysReg); 370 iterator I = SkipPHIsAndLabels(begin()), E = end(); 371 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 372 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 373 374 // Look for an existing copy. 375 if (LiveIn) 376 for (;I != E && I->isCopy(); ++I) 377 if (I->getOperand(1).getReg() == PhysReg) { 378 unsigned VirtReg = I->getOperand(0).getReg(); 379 if (!MRI.constrainRegClass(VirtReg, RC)) 380 llvm_unreachable("Incompatible live-in register class."); 381 return VirtReg; 382 } 383 384 // No luck, create a virtual register. 385 unsigned VirtReg = MRI.createVirtualRegister(RC); 386 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 387 .addReg(PhysReg, RegState::Kill); 388 if (!LiveIn) 389 addLiveIn(PhysReg); 390 return VirtReg; 391 } 392 393 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 394 getParent()->splice(NewAfter->getIterator(), getIterator()); 395 } 396 397 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 398 getParent()->splice(++NewBefore->getIterator(), getIterator()); 399 } 400 401 void MachineBasicBlock::updateTerminator() { 402 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 403 // A block with no successors has no concerns with fall-through edges. 404 if (this->succ_empty()) 405 return; 406 407 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 408 SmallVector<MachineOperand, 4> Cond; 409 DebugLoc DL; // FIXME: this is nowhere 410 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 411 (void) B; 412 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 413 if (Cond.empty()) { 414 if (TBB) { 415 // The block has an unconditional branch. If its successor is now its 416 // layout successor, delete the branch. 417 if (isLayoutSuccessor(TBB)) 418 TII->RemoveBranch(*this); 419 } else { 420 // The block has an unconditional fallthrough. If its successor is not its 421 // layout successor, insert a branch. First we have to locate the only 422 // non-landing-pad successor, as that is the fallthrough block. 423 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 424 if ((*SI)->isEHPad()) 425 continue; 426 assert(!TBB && "Found more than one non-landing-pad successor!"); 427 TBB = *SI; 428 } 429 430 // If there is no non-landing-pad successor, the block has no fall-through 431 // edges to be concerned with. 432 if (!TBB) 433 return; 434 435 // Finally update the unconditional successor to be reached via a branch 436 // if it would not be reached by fallthrough. 437 if (!isLayoutSuccessor(TBB)) 438 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 439 } 440 return; 441 } 442 443 if (FBB) { 444 // The block has a non-fallthrough conditional branch. If one of its 445 // successors is its layout successor, rewrite it to a fallthrough 446 // conditional branch. 447 if (isLayoutSuccessor(TBB)) { 448 if (TII->ReverseBranchCondition(Cond)) 449 return; 450 TII->RemoveBranch(*this); 451 TII->InsertBranch(*this, FBB, nullptr, Cond, DL); 452 } else if (isLayoutSuccessor(FBB)) { 453 TII->RemoveBranch(*this); 454 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 455 } 456 return; 457 } 458 459 // Walk through the successors and find the successor which is not a landing 460 // pad and is not the conditional branch destination (in TBB) as the 461 // fallthrough successor. 462 MachineBasicBlock *FallthroughBB = nullptr; 463 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 464 if ((*SI)->isEHPad() || *SI == TBB) 465 continue; 466 assert(!FallthroughBB && "Found more than one fallthrough successor."); 467 FallthroughBB = *SI; 468 } 469 470 if (!FallthroughBB) { 471 if (canFallThrough()) { 472 // We fallthrough to the same basic block as the conditional jump targets. 473 // Remove the conditional jump, leaving unconditional fallthrough. 474 // FIXME: This does not seem like a reasonable pattern to support, but it 475 // has been seen in the wild coming out of degenerate ARM test cases. 476 TII->RemoveBranch(*this); 477 478 // Finally update the unconditional successor to be reached via a branch if 479 // it would not be reached by fallthrough. 480 if (!isLayoutSuccessor(TBB)) 481 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 482 return; 483 } 484 485 // We enter here iff exactly one successor is TBB which cannot fallthrough 486 // and the rest successors if any are EHPads. In this case, we need to 487 // change the conditional branch into unconditional branch. 488 TII->RemoveBranch(*this); 489 Cond.clear(); 490 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 491 return; 492 } 493 494 // The block has a fallthrough conditional branch. 495 if (isLayoutSuccessor(TBB)) { 496 if (TII->ReverseBranchCondition(Cond)) { 497 // We can't reverse the condition, add an unconditional branch. 498 Cond.clear(); 499 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 500 return; 501 } 502 TII->RemoveBranch(*this); 503 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 504 } else if (!isLayoutSuccessor(FallthroughBB)) { 505 TII->RemoveBranch(*this); 506 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL); 507 } 508 } 509 510 void MachineBasicBlock::validateSuccProbs() const { 511 #ifndef NDEBUG 512 int64_t Sum = 0; 513 for (auto Prob : Probs) 514 Sum += Prob.getNumerator(); 515 // Due to precision issue, we assume that the sum of probabilities is one if 516 // the difference between the sum of their numerators and the denominator is 517 // no greater than the number of successors. 518 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 519 Probs.size() && 520 "The sum of successors's probabilities exceeds one."); 521 #endif // NDEBUG 522 } 523 524 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 525 BranchProbability Prob) { 526 // Probability list is either empty (if successor list isn't empty, this means 527 // disabled optimization) or has the same size as successor list. 528 if (!(Probs.empty() && !Successors.empty())) 529 Probs.push_back(Prob); 530 Successors.push_back(Succ); 531 Succ->addPredecessor(this); 532 } 533 534 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 535 // We need to make sure probability list is either empty or has the same size 536 // of successor list. When this function is called, we can safely delete all 537 // probability in the list. 538 Probs.clear(); 539 Successors.push_back(Succ); 540 Succ->addPredecessor(this); 541 } 542 543 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 544 bool NormalizeSuccProbs) { 545 succ_iterator I = find(Successors, Succ); 546 removeSuccessor(I, NormalizeSuccProbs); 547 } 548 549 MachineBasicBlock::succ_iterator 550 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 551 assert(I != Successors.end() && "Not a current successor!"); 552 553 // If probability list is empty it means we don't use it (disabled 554 // optimization). 555 if (!Probs.empty()) { 556 probability_iterator WI = getProbabilityIterator(I); 557 Probs.erase(WI); 558 if (NormalizeSuccProbs) 559 normalizeSuccProbs(); 560 } 561 562 (*I)->removePredecessor(this); 563 return Successors.erase(I); 564 } 565 566 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 567 MachineBasicBlock *New) { 568 if (Old == New) 569 return; 570 571 succ_iterator E = succ_end(); 572 succ_iterator NewI = E; 573 succ_iterator OldI = E; 574 for (succ_iterator I = succ_begin(); I != E; ++I) { 575 if (*I == Old) { 576 OldI = I; 577 if (NewI != E) 578 break; 579 } 580 if (*I == New) { 581 NewI = I; 582 if (OldI != E) 583 break; 584 } 585 } 586 assert(OldI != E && "Old is not a successor of this block"); 587 588 // If New isn't already a successor, let it take Old's place. 589 if (NewI == E) { 590 Old->removePredecessor(this); 591 New->addPredecessor(this); 592 *OldI = New; 593 return; 594 } 595 596 // New is already a successor. 597 // Update its probability instead of adding a duplicate edge. 598 if (!Probs.empty()) { 599 auto ProbIter = getProbabilityIterator(NewI); 600 if (!ProbIter->isUnknown()) 601 *ProbIter += *getProbabilityIterator(OldI); 602 } 603 removeSuccessor(OldI); 604 } 605 606 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 607 Predecessors.push_back(Pred); 608 } 609 610 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 611 pred_iterator I = find(Predecessors, Pred); 612 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 613 Predecessors.erase(I); 614 } 615 616 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 617 if (this == FromMBB) 618 return; 619 620 while (!FromMBB->succ_empty()) { 621 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 622 623 // If probability list is empty it means we don't use it (disabled optimization). 624 if (!FromMBB->Probs.empty()) { 625 auto Prob = *FromMBB->Probs.begin(); 626 addSuccessor(Succ, Prob); 627 } else 628 addSuccessorWithoutProb(Succ); 629 630 FromMBB->removeSuccessor(Succ); 631 } 632 } 633 634 void 635 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 636 if (this == FromMBB) 637 return; 638 639 while (!FromMBB->succ_empty()) { 640 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 641 if (!FromMBB->Probs.empty()) { 642 auto Prob = *FromMBB->Probs.begin(); 643 addSuccessor(Succ, Prob); 644 } else 645 addSuccessorWithoutProb(Succ); 646 FromMBB->removeSuccessor(Succ); 647 648 // Fix up any PHI nodes in the successor. 649 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 650 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 651 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 652 MachineOperand &MO = MI->getOperand(i); 653 if (MO.getMBB() == FromMBB) 654 MO.setMBB(this); 655 } 656 } 657 normalizeSuccProbs(); 658 } 659 660 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 661 return is_contained(predecessors(), MBB); 662 } 663 664 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 665 return is_contained(successors(), MBB); 666 } 667 668 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 669 MachineFunction::const_iterator I(this); 670 return std::next(I) == MachineFunction::const_iterator(MBB); 671 } 672 673 bool MachineBasicBlock::canFallThrough() { 674 MachineFunction::iterator Fallthrough = getIterator(); 675 ++Fallthrough; 676 // If FallthroughBlock is off the end of the function, it can't fall through. 677 if (Fallthrough == getParent()->end()) 678 return false; 679 680 // If FallthroughBlock isn't a successor, no fallthrough is possible. 681 if (!isSuccessor(&*Fallthrough)) 682 return false; 683 684 // Analyze the branches, if any, at the end of the block. 685 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 686 SmallVector<MachineOperand, 4> Cond; 687 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 688 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 689 // If we couldn't analyze the branch, examine the last instruction. 690 // If the block doesn't end in a known control barrier, assume fallthrough 691 // is possible. The isPredicated check is needed because this code can be 692 // called during IfConversion, where an instruction which is normally a 693 // Barrier is predicated and thus no longer an actual control barrier. 694 return empty() || !back().isBarrier() || TII->isPredicated(back()); 695 } 696 697 // If there is no branch, control always falls through. 698 if (!TBB) return true; 699 700 // If there is some explicit branch to the fallthrough block, it can obviously 701 // reach, even though the branch should get folded to fall through implicitly. 702 if (MachineFunction::iterator(TBB) == Fallthrough || 703 MachineFunction::iterator(FBB) == Fallthrough) 704 return true; 705 706 // If it's an unconditional branch to some block not the fall through, it 707 // doesn't fall through. 708 if (Cond.empty()) return false; 709 710 // Otherwise, if it is conditional and has no explicit false block, it falls 711 // through. 712 return FBB == nullptr; 713 } 714 715 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 716 Pass &P) { 717 if (!canSplitCriticalEdge(Succ)) 718 return nullptr; 719 720 MachineFunction *MF = getParent(); 721 DebugLoc DL; // FIXME: this is nowhere 722 723 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 724 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 725 DEBUG(dbgs() << "Splitting critical edge:" 726 " BB#" << getNumber() 727 << " -- BB#" << NMBB->getNumber() 728 << " -- BB#" << Succ->getNumber() << '\n'); 729 730 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 731 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 732 if (LIS) 733 LIS->insertMBBInMaps(NMBB); 734 else if (Indexes) 735 Indexes->insertMBBInMaps(NMBB); 736 737 // On some targets like Mips, branches may kill virtual registers. Make sure 738 // that LiveVariables is properly updated after updateTerminator replaces the 739 // terminators. 740 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 741 742 // Collect a list of virtual registers killed by the terminators. 743 SmallVector<unsigned, 4> KilledRegs; 744 if (LV) 745 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 746 I != E; ++I) { 747 MachineInstr *MI = &*I; 748 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 749 OE = MI->operands_end(); OI != OE; ++OI) { 750 if (!OI->isReg() || OI->getReg() == 0 || 751 !OI->isUse() || !OI->isKill() || OI->isUndef()) 752 continue; 753 unsigned Reg = OI->getReg(); 754 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 755 LV->getVarInfo(Reg).removeKill(*MI)) { 756 KilledRegs.push_back(Reg); 757 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 758 OI->setIsKill(false); 759 } 760 } 761 } 762 763 SmallVector<unsigned, 4> UsedRegs; 764 if (LIS) { 765 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 766 I != E; ++I) { 767 MachineInstr *MI = &*I; 768 769 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 770 OE = MI->operands_end(); OI != OE; ++OI) { 771 if (!OI->isReg() || OI->getReg() == 0) 772 continue; 773 774 unsigned Reg = OI->getReg(); 775 if (!is_contained(UsedRegs, Reg)) 776 UsedRegs.push_back(Reg); 777 } 778 } 779 } 780 781 ReplaceUsesOfBlockWith(Succ, NMBB); 782 783 // If updateTerminator() removes instructions, we need to remove them from 784 // SlotIndexes. 785 SmallVector<MachineInstr*, 4> Terminators; 786 if (Indexes) { 787 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 788 I != E; ++I) 789 Terminators.push_back(&*I); 790 } 791 792 updateTerminator(); 793 794 if (Indexes) { 795 SmallVector<MachineInstr*, 4> NewTerminators; 796 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 797 I != E; ++I) 798 NewTerminators.push_back(&*I); 799 800 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 801 E = Terminators.end(); I != E; ++I) { 802 if (!is_contained(NewTerminators, *I)) 803 Indexes->removeMachineInstrFromMaps(**I); 804 } 805 } 806 807 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 808 NMBB->addSuccessor(Succ); 809 if (!NMBB->isLayoutSuccessor(Succ)) { 810 SmallVector<MachineOperand, 4> Cond; 811 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 812 TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL); 813 814 if (Indexes) { 815 for (MachineInstr &MI : NMBB->instrs()) { 816 // Some instructions may have been moved to NMBB by updateTerminator(), 817 // so we first remove any instruction that already has an index. 818 if (Indexes->hasIndex(MI)) 819 Indexes->removeMachineInstrFromMaps(MI); 820 Indexes->insertMachineInstrInMaps(MI); 821 } 822 } 823 } 824 825 // Fix PHI nodes in Succ so they refer to NMBB instead of this 826 for (MachineBasicBlock::instr_iterator 827 i = Succ->instr_begin(),e = Succ->instr_end(); 828 i != e && i->isPHI(); ++i) 829 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 830 if (i->getOperand(ni+1).getMBB() == this) 831 i->getOperand(ni+1).setMBB(NMBB); 832 833 // Inherit live-ins from the successor 834 for (const auto &LI : Succ->liveins()) 835 NMBB->addLiveIn(LI); 836 837 // Update LiveVariables. 838 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 839 if (LV) { 840 // Restore kills of virtual registers that were killed by the terminators. 841 while (!KilledRegs.empty()) { 842 unsigned Reg = KilledRegs.pop_back_val(); 843 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 844 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 845 continue; 846 if (TargetRegisterInfo::isVirtualRegister(Reg)) 847 LV->getVarInfo(Reg).Kills.push_back(&*I); 848 DEBUG(dbgs() << "Restored terminator kill: " << *I); 849 break; 850 } 851 } 852 // Update relevant live-through information. 853 LV->addNewBlock(NMBB, this, Succ); 854 } 855 856 if (LIS) { 857 // After splitting the edge and updating SlotIndexes, live intervals may be 858 // in one of two situations, depending on whether this block was the last in 859 // the function. If the original block was the last in the function, all 860 // live intervals will end prior to the beginning of the new split block. If 861 // the original block was not at the end of the function, all live intervals 862 // will extend to the end of the new split block. 863 864 bool isLastMBB = 865 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 866 867 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 868 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 869 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 870 871 // Find the registers used from NMBB in PHIs in Succ. 872 SmallSet<unsigned, 8> PHISrcRegs; 873 for (MachineBasicBlock::instr_iterator 874 I = Succ->instr_begin(), E = Succ->instr_end(); 875 I != E && I->isPHI(); ++I) { 876 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 877 if (I->getOperand(ni+1).getMBB() == NMBB) { 878 MachineOperand &MO = I->getOperand(ni); 879 unsigned Reg = MO.getReg(); 880 PHISrcRegs.insert(Reg); 881 if (MO.isUndef()) 882 continue; 883 884 LiveInterval &LI = LIS->getInterval(Reg); 885 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 886 assert(VNI && 887 "PHI sources should be live out of their predecessors."); 888 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 889 } 890 } 891 } 892 893 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 894 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 895 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 896 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 897 continue; 898 899 LiveInterval &LI = LIS->getInterval(Reg); 900 if (!LI.liveAt(PrevIndex)) 901 continue; 902 903 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 904 if (isLiveOut && isLastMBB) { 905 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 906 assert(VNI && "LiveInterval should have VNInfo where it is live."); 907 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 908 } else if (!isLiveOut && !isLastMBB) { 909 LI.removeSegment(StartIndex, EndIndex); 910 } 911 } 912 913 // Update all intervals for registers whose uses may have been modified by 914 // updateTerminator(). 915 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 916 } 917 918 if (MachineDominatorTree *MDT = 919 P.getAnalysisIfAvailable<MachineDominatorTree>()) 920 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 921 922 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 923 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 924 // If one or the other blocks were not in a loop, the new block is not 925 // either, and thus LI doesn't need to be updated. 926 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 927 if (TIL == DestLoop) { 928 // Both in the same loop, the NMBB joins loop. 929 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 930 } else if (TIL->contains(DestLoop)) { 931 // Edge from an outer loop to an inner loop. Add to the outer loop. 932 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 933 } else if (DestLoop->contains(TIL)) { 934 // Edge from an inner loop to an outer loop. Add to the outer loop. 935 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 936 } else { 937 // Edge from two loops with no containment relation. Because these 938 // are natural loops, we know that the destination block must be the 939 // header of its loop (adding a branch into a loop elsewhere would 940 // create an irreducible loop). 941 assert(DestLoop->getHeader() == Succ && 942 "Should not create irreducible loops!"); 943 if (MachineLoop *P = DestLoop->getParentLoop()) 944 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 945 } 946 } 947 } 948 949 return NMBB; 950 } 951 952 bool MachineBasicBlock::canSplitCriticalEdge( 953 const MachineBasicBlock *Succ) const { 954 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 955 // it in this generic function. 956 if (Succ->isEHPad()) 957 return false; 958 959 const MachineFunction *MF = getParent(); 960 961 // Performance might be harmed on HW that implements branching using exec mask 962 // where both sides of the branches are always executed. 963 if (MF->getTarget().requiresStructuredCFG()) 964 return false; 965 966 // We may need to update this's terminator, but we can't do that if 967 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 968 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 969 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 970 SmallVector<MachineOperand, 4> Cond; 971 // AnalyzeBanch should modify this, since we did not allow modification. 972 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 973 /*AllowModify*/ false)) 974 return false; 975 976 // Avoid bugpoint weirdness: A block may end with a conditional branch but 977 // jumps to the same MBB is either case. We have duplicate CFG edges in that 978 // case that we can't handle. Since this never happens in properly optimized 979 // code, just skip those edges. 980 if (TBB && TBB == FBB) { 981 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 982 << getNumber() << '\n'); 983 return false; 984 } 985 return true; 986 } 987 988 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 989 /// neighboring instructions so the bundle won't be broken by removing MI. 990 static void unbundleSingleMI(MachineInstr *MI) { 991 // Removing the first instruction in a bundle. 992 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 993 MI->unbundleFromSucc(); 994 // Removing the last instruction in a bundle. 995 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 996 MI->unbundleFromPred(); 997 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 998 // are already fine. 999 } 1000 1001 MachineBasicBlock::instr_iterator 1002 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1003 unbundleSingleMI(&*I); 1004 return Insts.erase(I); 1005 } 1006 1007 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1008 unbundleSingleMI(MI); 1009 MI->clearFlag(MachineInstr::BundledPred); 1010 MI->clearFlag(MachineInstr::BundledSucc); 1011 return Insts.remove(MI); 1012 } 1013 1014 MachineBasicBlock::instr_iterator 1015 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1016 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1017 "Cannot insert instruction with bundle flags"); 1018 // Set the bundle flags when inserting inside a bundle. 1019 if (I != instr_end() && I->isBundledWithPred()) { 1020 MI->setFlag(MachineInstr::BundledPred); 1021 MI->setFlag(MachineInstr::BundledSucc); 1022 } 1023 return Insts.insert(I, MI); 1024 } 1025 1026 /// This method unlinks 'this' from the containing function, and returns it, but 1027 /// does not delete it. 1028 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1029 assert(getParent() && "Not embedded in a function!"); 1030 getParent()->remove(this); 1031 return this; 1032 } 1033 1034 /// This method unlinks 'this' from the containing function, and deletes it. 1035 void MachineBasicBlock::eraseFromParent() { 1036 assert(getParent() && "Not embedded in a function!"); 1037 getParent()->erase(this); 1038 } 1039 1040 /// Given a machine basic block that branched to 'Old', change the code and CFG 1041 /// so that it branches to 'New' instead. 1042 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1043 MachineBasicBlock *New) { 1044 assert(Old != New && "Cannot replace self with self!"); 1045 1046 MachineBasicBlock::instr_iterator I = instr_end(); 1047 while (I != instr_begin()) { 1048 --I; 1049 if (!I->isTerminator()) break; 1050 1051 // Scan the operands of this machine instruction, replacing any uses of Old 1052 // with New. 1053 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1054 if (I->getOperand(i).isMBB() && 1055 I->getOperand(i).getMBB() == Old) 1056 I->getOperand(i).setMBB(New); 1057 } 1058 1059 // Update the successor information. 1060 replaceSuccessor(Old, New); 1061 } 1062 1063 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1064 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1065 /// MBB successors from the CFG. DestA and DestB can be null. 1066 /// 1067 /// Besides DestA and DestB, retain other edges leading to LandingPads 1068 /// (currently there can be only one; we don't check or require that here). 1069 /// Note it is possible that DestA and/or DestB are LandingPads. 1070 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1071 MachineBasicBlock *DestB, 1072 bool IsCond) { 1073 // The values of DestA and DestB frequently come from a call to the 1074 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1075 // values from there. 1076 // 1077 // 1. If both DestA and DestB are null, then the block ends with no branches 1078 // (it falls through to its successor). 1079 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1080 // with only an unconditional branch. 1081 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1082 // with a conditional branch that falls through to a successor (DestB). 1083 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1084 // conditional branch followed by an unconditional branch. DestA is the 1085 // 'true' destination and DestB is the 'false' destination. 1086 1087 bool Changed = false; 1088 1089 MachineBasicBlock *FallThru = getNextNode(); 1090 1091 if (!DestA && !DestB) { 1092 // Block falls through to successor. 1093 DestA = FallThru; 1094 DestB = FallThru; 1095 } else if (DestA && !DestB) { 1096 if (IsCond) 1097 // Block ends in conditional jump that falls through to successor. 1098 DestB = FallThru; 1099 } else { 1100 assert(DestA && DestB && IsCond && 1101 "CFG in a bad state. Cannot correct CFG edges"); 1102 } 1103 1104 // Remove superfluous edges. I.e., those which aren't destinations of this 1105 // basic block, duplicate edges, or landing pads. 1106 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1107 MachineBasicBlock::succ_iterator SI = succ_begin(); 1108 while (SI != succ_end()) { 1109 const MachineBasicBlock *MBB = *SI; 1110 if (!SeenMBBs.insert(MBB).second || 1111 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1112 // This is a superfluous edge, remove it. 1113 SI = removeSuccessor(SI); 1114 Changed = true; 1115 } else { 1116 ++SI; 1117 } 1118 } 1119 1120 if (Changed) 1121 normalizeSuccProbs(); 1122 return Changed; 1123 } 1124 1125 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1126 /// instructions. Return UnknownLoc if there is none. 1127 DebugLoc 1128 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1129 DebugLoc DL; 1130 instr_iterator E = instr_end(); 1131 if (MBBI == E) 1132 return DL; 1133 1134 // Skip debug declarations, we don't want a DebugLoc from them. 1135 while (MBBI != E && MBBI->isDebugValue()) 1136 MBBI++; 1137 if (MBBI != E) 1138 DL = MBBI->getDebugLoc(); 1139 return DL; 1140 } 1141 1142 /// Return probability of the edge from this block to MBB. 1143 BranchProbability 1144 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1145 if (Probs.empty()) 1146 return BranchProbability(1, succ_size()); 1147 1148 const auto &Prob = *getProbabilityIterator(Succ); 1149 if (Prob.isUnknown()) { 1150 // For unknown probabilities, collect the sum of all known ones, and evenly 1151 // ditribute the complemental of the sum to each unknown probability. 1152 unsigned KnownProbNum = 0; 1153 auto Sum = BranchProbability::getZero(); 1154 for (auto &P : Probs) { 1155 if (!P.isUnknown()) { 1156 Sum += P; 1157 KnownProbNum++; 1158 } 1159 } 1160 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1161 } else 1162 return Prob; 1163 } 1164 1165 /// Set successor probability of a given iterator. 1166 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1167 BranchProbability Prob) { 1168 assert(!Prob.isUnknown()); 1169 if (Probs.empty()) 1170 return; 1171 *getProbabilityIterator(I) = Prob; 1172 } 1173 1174 /// Return probability iterator corresonding to the I successor iterator 1175 MachineBasicBlock::const_probability_iterator 1176 MachineBasicBlock::getProbabilityIterator( 1177 MachineBasicBlock::const_succ_iterator I) const { 1178 assert(Probs.size() == Successors.size() && "Async probability list!"); 1179 const size_t index = std::distance(Successors.begin(), I); 1180 assert(index < Probs.size() && "Not a current successor!"); 1181 return Probs.begin() + index; 1182 } 1183 1184 /// Return probability iterator corresonding to the I successor iterator. 1185 MachineBasicBlock::probability_iterator 1186 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1187 assert(Probs.size() == Successors.size() && "Async probability list!"); 1188 const size_t index = std::distance(Successors.begin(), I); 1189 assert(index < Probs.size() && "Not a current successor!"); 1190 return Probs.begin() + index; 1191 } 1192 1193 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1194 /// as of just before "MI". 1195 /// 1196 /// Search is localised to a neighborhood of 1197 /// Neighborhood instructions before (searching for defs or kills) and N 1198 /// instructions after (searching just for defs) MI. 1199 MachineBasicBlock::LivenessQueryResult 1200 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1201 unsigned Reg, const_iterator Before, 1202 unsigned Neighborhood) const { 1203 unsigned N = Neighborhood; 1204 1205 // Start by searching backwards from Before, looking for kills, reads or defs. 1206 const_iterator I(Before); 1207 // If this is the first insn in the block, don't search backwards. 1208 if (I != begin()) { 1209 do { 1210 --I; 1211 1212 MachineOperandIteratorBase::PhysRegInfo Info = 1213 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1214 1215 // Defs happen after uses so they take precedence if both are present. 1216 1217 // Register is dead after a dead def of the full register. 1218 if (Info.DeadDef) 1219 return LQR_Dead; 1220 // Register is (at least partially) live after a def. 1221 if (Info.Defined) { 1222 if (!Info.PartialDeadDef) 1223 return LQR_Live; 1224 // As soon as we saw a partial definition (dead or not), 1225 // we cannot tell if the value is partial live without 1226 // tracking the lanemasks. We are not going to do this, 1227 // so fall back on the remaining of the analysis. 1228 break; 1229 } 1230 // Register is dead after a full kill or clobber and no def. 1231 if (Info.Killed || Info.Clobbered) 1232 return LQR_Dead; 1233 // Register must be live if we read it. 1234 if (Info.Read) 1235 return LQR_Live; 1236 } while (I != begin() && --N > 0); 1237 } 1238 1239 // Did we get to the start of the block? 1240 if (I == begin()) { 1241 // If so, the register's state is definitely defined by the live-in state. 1242 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1243 ++RAI) 1244 if (isLiveIn(*RAI)) 1245 return LQR_Live; 1246 1247 return LQR_Dead; 1248 } 1249 1250 N = Neighborhood; 1251 1252 // Try searching forwards from Before, looking for reads or defs. 1253 I = const_iterator(Before); 1254 // If this is the last insn in the block, don't search forwards. 1255 if (I != end()) { 1256 for (++I; I != end() && N > 0; ++I, --N) { 1257 MachineOperandIteratorBase::PhysRegInfo Info = 1258 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1259 1260 // Register is live when we read it here. 1261 if (Info.Read) 1262 return LQR_Live; 1263 // Register is dead if we can fully overwrite or clobber it here. 1264 if (Info.FullyDefined || Info.Clobbered) 1265 return LQR_Dead; 1266 } 1267 } 1268 1269 // At this point we have no idea of the liveness of the register. 1270 return LQR_Unknown; 1271 } 1272 1273 const uint32_t * 1274 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1275 // EH funclet entry does not preserve any registers. 1276 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1277 } 1278 1279 const uint32_t * 1280 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1281 // If we see a return block with successors, this must be a funclet return, 1282 // which does not preserve any registers. If there are no successors, we don't 1283 // care what kind of return it is, putting a mask after it is a no-op. 1284 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1285 } 1286