1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/BasicBlock.h" 16 #include "llvm/CodeGen/LiveVariables.h" 17 #include "llvm/CodeGen/MachineDominators.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineLoopInfo.h" 20 #include "llvm/CodeGen/SlotIndexes.h" 21 #include "llvm/MC/MCAsmInfo.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/Target/TargetRegisterInfo.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Target/TargetInstrDesc.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 #include "llvm/Assembly/Writer.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/LeakDetector.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 using namespace llvm; 36 37 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb) 38 : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false), 39 AddressTaken(false) { 40 Insts.Parent = this; 41 } 42 43 MachineBasicBlock::~MachineBasicBlock() { 44 LeakDetector::removeGarbageObject(this); 45 } 46 47 /// getSymbol - Return the MCSymbol for this basic block. 48 /// 49 MCSymbol *MachineBasicBlock::getSymbol() const { 50 const MachineFunction *MF = getParent(); 51 MCContext &Ctx = MF->getContext(); 52 const char *Prefix = Ctx.getAsmInfo().getPrivateGlobalPrefix(); 53 return Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" + 54 Twine(MF->getFunctionNumber()) + "_" + 55 Twine(getNumber())); 56 } 57 58 59 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 60 MBB.print(OS); 61 return OS; 62 } 63 64 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the 65 /// parent pointer of the MBB, the MBB numbering, and any instructions in the 66 /// MBB to be on the right operand list for registers. 67 /// 68 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 69 /// gets the next available unique MBB number. If it is removed from a 70 /// MachineFunction, it goes back to being #-1. 71 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 72 MachineFunction &MF = *N->getParent(); 73 N->Number = MF.addToMBBNumbering(N); 74 75 // Make sure the instructions have their operands in the reginfo lists. 76 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 77 for (MachineBasicBlock::iterator I = N->begin(), E = N->end(); I != E; ++I) 78 I->AddRegOperandsToUseLists(RegInfo); 79 80 LeakDetector::removeGarbageObject(N); 81 } 82 83 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 84 N->getParent()->removeFromMBBNumbering(N->Number); 85 N->Number = -1; 86 LeakDetector::addGarbageObject(N); 87 } 88 89 90 /// addNodeToList (MI) - When we add an instruction to a basic block 91 /// list, we update its parent pointer and add its operands from reg use/def 92 /// lists if appropriate. 93 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 94 assert(N->getParent() == 0 && "machine instruction already in a basic block"); 95 N->setParent(Parent); 96 97 // Add the instruction's register operands to their corresponding 98 // use/def lists. 99 MachineFunction *MF = Parent->getParent(); 100 N->AddRegOperandsToUseLists(MF->getRegInfo()); 101 102 LeakDetector::removeGarbageObject(N); 103 } 104 105 /// removeNodeFromList (MI) - When we remove an instruction from a basic block 106 /// list, we update its parent pointer and remove its operands from reg use/def 107 /// lists if appropriate. 108 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 109 assert(N->getParent() != 0 && "machine instruction not in a basic block"); 110 111 // Remove from the use/def lists. 112 N->RemoveRegOperandsFromUseLists(); 113 114 N->setParent(0); 115 116 LeakDetector::addGarbageObject(N); 117 } 118 119 /// transferNodesFromList (MI) - When moving a range of instructions from one 120 /// MBB list to another, we need to update the parent pointers and the use/def 121 /// lists. 122 void ilist_traits<MachineInstr>:: 123 transferNodesFromList(ilist_traits<MachineInstr> &fromList, 124 MachineBasicBlock::iterator first, 125 MachineBasicBlock::iterator last) { 126 assert(Parent->getParent() == fromList.Parent->getParent() && 127 "MachineInstr parent mismatch!"); 128 129 // Splice within the same MBB -> no change. 130 if (Parent == fromList.Parent) return; 131 132 // If splicing between two blocks within the same function, just update the 133 // parent pointers. 134 for (; first != last; ++first) 135 first->setParent(Parent); 136 } 137 138 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 139 assert(!MI->getParent() && "MI is still in a block!"); 140 Parent->getParent()->DeleteMachineInstr(MI); 141 } 142 143 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 144 iterator I = begin(); 145 while (I != end() && I->isPHI()) 146 ++I; 147 return I; 148 } 149 150 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 151 iterator I = end(); 152 while (I != begin() && (--I)->getDesc().isTerminator()) 153 ; /*noop */ 154 if (I != end() && !I->getDesc().isTerminator()) ++I; 155 return I; 156 } 157 158 void MachineBasicBlock::dump() const { 159 print(dbgs()); 160 } 161 162 static inline void OutputReg(raw_ostream &os, unsigned RegNo, 163 const TargetRegisterInfo *TRI = 0) { 164 if (RegNo != 0 && TargetRegisterInfo::isPhysicalRegister(RegNo)) { 165 if (TRI) 166 os << " %" << TRI->get(RegNo).Name; 167 else 168 os << " %physreg" << RegNo; 169 } else 170 os << " %reg" << RegNo; 171 } 172 173 StringRef MachineBasicBlock::getName() const { 174 if (const BasicBlock *LBB = getBasicBlock()) 175 return LBB->getName(); 176 else 177 return "(null)"; 178 } 179 180 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 181 const MachineFunction *MF = getParent(); 182 if (!MF) { 183 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 184 << " is null\n"; 185 return; 186 } 187 188 if (Alignment) { OS << "Alignment " << Alignment << "\n"; } 189 190 if (Indexes) 191 OS << Indexes->getMBBStartIdx(this) << '\t'; 192 193 OS << "BB#" << getNumber() << ": "; 194 195 const char *Comma = ""; 196 if (const BasicBlock *LBB = getBasicBlock()) { 197 OS << Comma << "derived from LLVM BB "; 198 WriteAsOperand(OS, LBB, /*PrintType=*/false); 199 Comma = ", "; 200 } 201 if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 202 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 203 OS << '\n'; 204 205 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); 206 if (!livein_empty()) { 207 if (Indexes) OS << '\t'; 208 OS << " Live Ins:"; 209 for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I) 210 OutputReg(OS, *I, TRI); 211 OS << '\n'; 212 } 213 // Print the preds of this block according to the CFG. 214 if (!pred_empty()) { 215 if (Indexes) OS << '\t'; 216 OS << " Predecessors according to CFG:"; 217 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 218 OS << " BB#" << (*PI)->getNumber(); 219 OS << '\n'; 220 } 221 222 for (const_iterator I = begin(); I != end(); ++I) { 223 if (Indexes) { 224 if (Indexes->hasIndex(I)) 225 OS << Indexes->getInstructionIndex(I); 226 OS << '\t'; 227 } 228 OS << '\t'; 229 I->print(OS, &getParent()->getTarget()); 230 } 231 232 // Print the successors of this block according to the CFG. 233 if (!succ_empty()) { 234 if (Indexes) OS << '\t'; 235 OS << " Successors according to CFG:"; 236 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) 237 OS << " BB#" << (*SI)->getNumber(); 238 OS << '\n'; 239 } 240 } 241 242 void MachineBasicBlock::removeLiveIn(unsigned Reg) { 243 std::vector<unsigned>::iterator I = 244 std::find(LiveIns.begin(), LiveIns.end(), Reg); 245 assert(I != LiveIns.end() && "Not a live in!"); 246 LiveIns.erase(I); 247 } 248 249 bool MachineBasicBlock::isLiveIn(unsigned Reg) const { 250 livein_iterator I = std::find(livein_begin(), livein_end(), Reg); 251 return I != livein_end(); 252 } 253 254 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 255 getParent()->splice(NewAfter, this); 256 } 257 258 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 259 MachineFunction::iterator BBI = NewBefore; 260 getParent()->splice(++BBI, this); 261 } 262 263 void MachineBasicBlock::updateTerminator() { 264 const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo(); 265 // A block with no successors has no concerns with fall-through edges. 266 if (this->succ_empty()) return; 267 268 MachineBasicBlock *TBB = 0, *FBB = 0; 269 SmallVector<MachineOperand, 4> Cond; 270 DebugLoc dl; // FIXME: this is nowhere 271 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 272 (void) B; 273 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 274 if (Cond.empty()) { 275 if (TBB) { 276 // The block has an unconditional branch. If its successor is now 277 // its layout successor, delete the branch. 278 if (isLayoutSuccessor(TBB)) 279 TII->RemoveBranch(*this); 280 } else { 281 // The block has an unconditional fallthrough. If its successor is not 282 // its layout successor, insert a branch. 283 TBB = *succ_begin(); 284 if (!isLayoutSuccessor(TBB)) 285 TII->InsertBranch(*this, TBB, 0, Cond, dl); 286 } 287 } else { 288 if (FBB) { 289 // The block has a non-fallthrough conditional branch. If one of its 290 // successors is its layout successor, rewrite it to a fallthrough 291 // conditional branch. 292 if (isLayoutSuccessor(TBB)) { 293 if (TII->ReverseBranchCondition(Cond)) 294 return; 295 TII->RemoveBranch(*this); 296 TII->InsertBranch(*this, FBB, 0, Cond, dl); 297 } else if (isLayoutSuccessor(FBB)) { 298 TII->RemoveBranch(*this); 299 TII->InsertBranch(*this, TBB, 0, Cond, dl); 300 } 301 } else { 302 // The block has a fallthrough conditional branch. 303 MachineBasicBlock *MBBA = *succ_begin(); 304 MachineBasicBlock *MBBB = *llvm::next(succ_begin()); 305 if (MBBA == TBB) std::swap(MBBB, MBBA); 306 if (isLayoutSuccessor(TBB)) { 307 if (TII->ReverseBranchCondition(Cond)) { 308 // We can't reverse the condition, add an unconditional branch. 309 Cond.clear(); 310 TII->InsertBranch(*this, MBBA, 0, Cond, dl); 311 return; 312 } 313 TII->RemoveBranch(*this); 314 TII->InsertBranch(*this, MBBA, 0, Cond, dl); 315 } else if (!isLayoutSuccessor(MBBA)) { 316 TII->RemoveBranch(*this); 317 TII->InsertBranch(*this, TBB, MBBA, Cond, dl); 318 } 319 } 320 } 321 } 322 323 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ) { 324 Successors.push_back(succ); 325 succ->addPredecessor(this); 326 } 327 328 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) { 329 succ->removePredecessor(this); 330 succ_iterator I = std::find(Successors.begin(), Successors.end(), succ); 331 assert(I != Successors.end() && "Not a current successor!"); 332 Successors.erase(I); 333 } 334 335 MachineBasicBlock::succ_iterator 336 MachineBasicBlock::removeSuccessor(succ_iterator I) { 337 assert(I != Successors.end() && "Not a current successor!"); 338 (*I)->removePredecessor(this); 339 return Successors.erase(I); 340 } 341 342 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) { 343 Predecessors.push_back(pred); 344 } 345 346 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) { 347 std::vector<MachineBasicBlock *>::iterator I = 348 std::find(Predecessors.begin(), Predecessors.end(), pred); 349 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 350 Predecessors.erase(I); 351 } 352 353 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) { 354 if (this == fromMBB) 355 return; 356 357 while (!fromMBB->succ_empty()) { 358 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 359 addSuccessor(Succ); 360 fromMBB->removeSuccessor(Succ); 361 } 362 } 363 364 void 365 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) { 366 if (this == fromMBB) 367 return; 368 369 while (!fromMBB->succ_empty()) { 370 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 371 addSuccessor(Succ); 372 fromMBB->removeSuccessor(Succ); 373 374 // Fix up any PHI nodes in the successor. 375 for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end(); 376 MI != ME && MI->isPHI(); ++MI) 377 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 378 MachineOperand &MO = MI->getOperand(i); 379 if (MO.getMBB() == fromMBB) 380 MO.setMBB(this); 381 } 382 } 383 } 384 385 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 386 std::vector<MachineBasicBlock *>::const_iterator I = 387 std::find(Successors.begin(), Successors.end(), MBB); 388 return I != Successors.end(); 389 } 390 391 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 392 MachineFunction::const_iterator I(this); 393 return llvm::next(I) == MachineFunction::const_iterator(MBB); 394 } 395 396 bool MachineBasicBlock::canFallThrough() { 397 MachineFunction::iterator Fallthrough = this; 398 ++Fallthrough; 399 // If FallthroughBlock is off the end of the function, it can't fall through. 400 if (Fallthrough == getParent()->end()) 401 return false; 402 403 // If FallthroughBlock isn't a successor, no fallthrough is possible. 404 if (!isSuccessor(Fallthrough)) 405 return false; 406 407 // Analyze the branches, if any, at the end of the block. 408 MachineBasicBlock *TBB = 0, *FBB = 0; 409 SmallVector<MachineOperand, 4> Cond; 410 const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo(); 411 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 412 // If we couldn't analyze the branch, examine the last instruction. 413 // If the block doesn't end in a known control barrier, assume fallthrough 414 // is possible. The isPredicable check is needed because this code can be 415 // called during IfConversion, where an instruction which is normally a 416 // Barrier is predicated and thus no longer an actual control barrier. This 417 // is over-conservative though, because if an instruction isn't actually 418 // predicated we could still treat it like a barrier. 419 return empty() || !back().getDesc().isBarrier() || 420 back().getDesc().isPredicable(); 421 } 422 423 // If there is no branch, control always falls through. 424 if (TBB == 0) return true; 425 426 // If there is some explicit branch to the fallthrough block, it can obviously 427 // reach, even though the branch should get folded to fall through implicitly. 428 if (MachineFunction::iterator(TBB) == Fallthrough || 429 MachineFunction::iterator(FBB) == Fallthrough) 430 return true; 431 432 // If it's an unconditional branch to some block not the fall through, it 433 // doesn't fall through. 434 if (Cond.empty()) return false; 435 436 // Otherwise, if it is conditional and has no explicit false block, it falls 437 // through. 438 return FBB == 0; 439 } 440 441 MachineBasicBlock * 442 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 443 MachineFunction *MF = getParent(); 444 DebugLoc dl; // FIXME: this is nowhere 445 446 // We may need to update this's terminator, but we can't do that if AnalyzeBranch 447 // fails. If this uses a jump table, we won't touch it. 448 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 449 MachineBasicBlock *TBB = 0, *FBB = 0; 450 SmallVector<MachineOperand, 4> Cond; 451 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 452 return NULL; 453 454 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 455 MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB); 456 DEBUG(dbgs() << "Splitting critical edge:" 457 " BB#" << getNumber() 458 << " -- BB#" << NMBB->getNumber() 459 << " -- BB#" << Succ->getNumber() << '\n'); 460 461 ReplaceUsesOfBlockWith(Succ, NMBB); 462 updateTerminator(); 463 464 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 465 NMBB->addSuccessor(Succ); 466 if (!NMBB->isLayoutSuccessor(Succ)) { 467 Cond.clear(); 468 MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl); 469 } 470 471 // Fix PHI nodes in Succ so they refer to NMBB instead of this 472 for (MachineBasicBlock::iterator i = Succ->begin(), e = Succ->end(); 473 i != e && i->isPHI(); ++i) 474 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 475 if (i->getOperand(ni+1).getMBB() == this) 476 i->getOperand(ni+1).setMBB(NMBB); 477 478 if (LiveVariables *LV = 479 P->getAnalysisIfAvailable<LiveVariables>()) 480 LV->addNewBlock(NMBB, this, Succ); 481 482 if (MachineDominatorTree *MDT = 483 P->getAnalysisIfAvailable<MachineDominatorTree>()) { 484 // Update dominator information. 485 MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ); 486 487 bool IsNewIDom = true; 488 for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end(); 489 PI != E; ++PI) { 490 MachineBasicBlock *PredBB = *PI; 491 if (PredBB == NMBB) 492 continue; 493 if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) { 494 IsNewIDom = false; 495 break; 496 } 497 } 498 499 // We know "this" dominates the newly created basic block. 500 MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this); 501 502 // If all the other predecessors of "Succ" are dominated by "Succ" itself 503 // then the new block is the new immediate dominator of "Succ". Otherwise, 504 // the new block doesn't dominate anything. 505 if (IsNewIDom) 506 MDT->changeImmediateDominator(SucccDTNode, NewDTNode); 507 } 508 509 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 510 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 511 // If one or the other blocks were not in a loop, the new block is not 512 // either, and thus LI doesn't need to be updated. 513 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 514 if (TIL == DestLoop) { 515 // Both in the same loop, the NMBB joins loop. 516 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 517 } else if (TIL->contains(DestLoop)) { 518 // Edge from an outer loop to an inner loop. Add to the outer loop. 519 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 520 } else if (DestLoop->contains(TIL)) { 521 // Edge from an inner loop to an outer loop. Add to the outer loop. 522 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 523 } else { 524 // Edge from two loops with no containment relation. Because these 525 // are natural loops, we know that the destination block must be the 526 // header of its loop (adding a branch into a loop elsewhere would 527 // create an irreducible loop). 528 assert(DestLoop->getHeader() == Succ && 529 "Should not create irreducible loops!"); 530 if (MachineLoop *P = DestLoop->getParentLoop()) 531 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 532 } 533 } 534 } 535 536 return NMBB; 537 } 538 539 /// removeFromParent - This method unlinks 'this' from the containing function, 540 /// and returns it, but does not delete it. 541 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 542 assert(getParent() && "Not embedded in a function!"); 543 getParent()->remove(this); 544 return this; 545 } 546 547 548 /// eraseFromParent - This method unlinks 'this' from the containing function, 549 /// and deletes it. 550 void MachineBasicBlock::eraseFromParent() { 551 assert(getParent() && "Not embedded in a function!"); 552 getParent()->erase(this); 553 } 554 555 556 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to 557 /// 'Old', change the code and CFG so that it branches to 'New' instead. 558 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 559 MachineBasicBlock *New) { 560 assert(Old != New && "Cannot replace self with self!"); 561 562 MachineBasicBlock::iterator I = end(); 563 while (I != begin()) { 564 --I; 565 if (!I->getDesc().isTerminator()) break; 566 567 // Scan the operands of this machine instruction, replacing any uses of Old 568 // with New. 569 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 570 if (I->getOperand(i).isMBB() && 571 I->getOperand(i).getMBB() == Old) 572 I->getOperand(i).setMBB(New); 573 } 574 575 // Update the successor information. 576 removeSuccessor(Old); 577 addSuccessor(New); 578 } 579 580 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the 581 /// CFG to be inserted. If we have proven that MBB can only branch to DestA and 582 /// DestB, remove any other MBB successors from the CFG. DestA and DestB can be 583 /// null. 584 /// 585 /// Besides DestA and DestB, retain other edges leading to LandingPads 586 /// (currently there can be only one; we don't check or require that here). 587 /// Note it is possible that DestA and/or DestB are LandingPads. 588 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 589 MachineBasicBlock *DestB, 590 bool isCond) { 591 // The values of DestA and DestB frequently come from a call to the 592 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 593 // values from there. 594 // 595 // 1. If both DestA and DestB are null, then the block ends with no branches 596 // (it falls through to its successor). 597 // 2. If DestA is set, DestB is null, and isCond is false, then the block ends 598 // with only an unconditional branch. 599 // 3. If DestA is set, DestB is null, and isCond is true, then the block ends 600 // with a conditional branch that falls through to a successor (DestB). 601 // 4. If DestA and DestB is set and isCond is true, then the block ends with a 602 // conditional branch followed by an unconditional branch. DestA is the 603 // 'true' destination and DestB is the 'false' destination. 604 605 bool Changed = false; 606 607 MachineFunction::iterator FallThru = 608 llvm::next(MachineFunction::iterator(this)); 609 610 if (DestA == 0 && DestB == 0) { 611 // Block falls through to successor. 612 DestA = FallThru; 613 DestB = FallThru; 614 } else if (DestA != 0 && DestB == 0) { 615 if (isCond) 616 // Block ends in conditional jump that falls through to successor. 617 DestB = FallThru; 618 } else { 619 assert(DestA && DestB && isCond && 620 "CFG in a bad state. Cannot correct CFG edges"); 621 } 622 623 // Remove superfluous edges. I.e., those which aren't destinations of this 624 // basic block, duplicate edges, or landing pads. 625 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 626 MachineBasicBlock::succ_iterator SI = succ_begin(); 627 while (SI != succ_end()) { 628 const MachineBasicBlock *MBB = *SI; 629 if (!SeenMBBs.insert(MBB) || 630 (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) { 631 // This is a superfluous edge, remove it. 632 SI = removeSuccessor(SI); 633 Changed = true; 634 } else { 635 ++SI; 636 } 637 } 638 639 return Changed; 640 } 641 642 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping 643 /// any DBG_VALUE instructions. Return UnknownLoc if there is none. 644 DebugLoc 645 MachineBasicBlock::findDebugLoc(MachineBasicBlock::iterator &MBBI) { 646 DebugLoc DL; 647 MachineBasicBlock::iterator E = end(); 648 if (MBBI != E) { 649 // Skip debug declarations, we don't want a DebugLoc from them. 650 MachineBasicBlock::iterator MBBI2 = MBBI; 651 while (MBBI2 != E && MBBI2->isDebugValue()) 652 MBBI2++; 653 if (MBBI2 != E) 654 DL = MBBI2->getDebugLoc(); 655 } 656 return DL; 657 } 658 659 void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB, 660 bool t) { 661 OS << "BB#" << MBB->getNumber(); 662 } 663 664