xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision b550cb1750174d9c0dc002913f10f6de01566b5a)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/ModuleSlotTracker.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/Support/DataTypes.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 #include <algorithm>
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "codegen"
40 
41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
42     : BB(B), Number(-1), xParent(&MF) {
43   Insts.Parent = this;
44 }
45 
46 MachineBasicBlock::~MachineBasicBlock() {
47 }
48 
49 /// Return the MCSymbol for this basic block.
50 MCSymbol *MachineBasicBlock::getSymbol() const {
51   if (!CachedMCSymbol) {
52     const MachineFunction *MF = getParent();
53     MCContext &Ctx = MF->getContext();
54     const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
55     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
56     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
57                                            Twine(MF->getFunctionNumber()) +
58                                            "_" + Twine(getNumber()));
59   }
60 
61   return CachedMCSymbol;
62 }
63 
64 
65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
66   MBB.print(OS);
67   return OS;
68 }
69 
70 /// When an MBB is added to an MF, we need to update the parent pointer of the
71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
72 /// operand list for registers.
73 ///
74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
75 /// gets the next available unique MBB number. If it is removed from a
76 /// MachineFunction, it goes back to being #-1.
77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
78   MachineFunction &MF = *N->getParent();
79   N->Number = MF.addToMBBNumbering(N);
80 
81   // Make sure the instructions have their operands in the reginfo lists.
82   MachineRegisterInfo &RegInfo = MF.getRegInfo();
83   for (MachineBasicBlock::instr_iterator
84          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
85     I->AddRegOperandsToUseLists(RegInfo);
86 }
87 
88 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
89   N->getParent()->removeFromMBBNumbering(N->Number);
90   N->Number = -1;
91 }
92 
93 /// When we add an instruction to a basic block list, we update its parent
94 /// pointer and add its operands from reg use/def lists if appropriate.
95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
96   assert(!N->getParent() && "machine instruction already in a basic block");
97   N->setParent(Parent);
98 
99   // Add the instruction's register operands to their corresponding
100   // use/def lists.
101   MachineFunction *MF = Parent->getParent();
102   N->AddRegOperandsToUseLists(MF->getRegInfo());
103 }
104 
105 /// When we remove an instruction from a basic block list, we update its parent
106 /// pointer and remove its operands from reg use/def lists if appropriate.
107 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
108   assert(N->getParent() && "machine instruction not in a basic block");
109 
110   // Remove from the use/def lists.
111   if (MachineFunction *MF = N->getParent()->getParent())
112     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
113 
114   N->setParent(nullptr);
115 }
116 
117 /// When moving a range of instructions from one MBB list to another, we need to
118 /// update the parent pointers and the use/def lists.
119 void ilist_traits<MachineInstr>::
120 transferNodesFromList(ilist_traits<MachineInstr> &FromList,
121                       ilist_iterator<MachineInstr> First,
122                       ilist_iterator<MachineInstr> Last) {
123   assert(Parent->getParent() == FromList.Parent->getParent() &&
124         "MachineInstr parent mismatch!");
125 
126   // Splice within the same MBB -> no change.
127   if (Parent == FromList.Parent) return;
128 
129   // If splicing between two blocks within the same function, just update the
130   // parent pointers.
131   for (; First != Last; ++First)
132     First->setParent(Parent);
133 }
134 
135 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
136   assert(!MI->getParent() && "MI is still in a block!");
137   Parent->getParent()->DeleteMachineInstr(MI);
138 }
139 
140 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
141   instr_iterator I = instr_begin(), E = instr_end();
142   while (I != E && I->isPHI())
143     ++I;
144   assert((I == E || !I->isInsideBundle()) &&
145          "First non-phi MI cannot be inside a bundle!");
146   return I;
147 }
148 
149 MachineBasicBlock::iterator
150 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
151   iterator E = end();
152   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue()))
153     ++I;
154   // FIXME: This needs to change if we wish to bundle labels / dbg_values
155   // inside the bundle.
156   assert((I == E || !I->isInsideBundle()) &&
157          "First non-phi / non-label instruction is inside a bundle!");
158   return I;
159 }
160 
161 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
162   iterator B = begin(), E = end(), I = E;
163   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
164     ; /*noop */
165   while (I != E && !I->isTerminator())
166     ++I;
167   return I;
168 }
169 
170 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
171   instr_iterator B = instr_begin(), E = instr_end(), I = E;
172   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
173     ; /*noop */
174   while (I != E && !I->isTerminator())
175     ++I;
176   return I;
177 }
178 
179 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
180   // Skip over begin-of-block dbg_value instructions.
181   iterator I = begin(), E = end();
182   while (I != E && I->isDebugValue())
183     ++I;
184   return I;
185 }
186 
187 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
188   // Skip over end-of-block dbg_value instructions.
189   instr_iterator B = instr_begin(), I = instr_end();
190   while (I != B) {
191     --I;
192     // Return instruction that starts a bundle.
193     if (I->isDebugValue() || I->isInsideBundle())
194       continue;
195     return I;
196   }
197   // The block is all debug values.
198   return end();
199 }
200 
201 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
202   // A block with a landing pad successor only has one other successor.
203   if (succ_size() > 2)
204     return nullptr;
205   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
206     if ((*I)->isEHPad())
207       return *I;
208   return nullptr;
209 }
210 
211 bool MachineBasicBlock::hasEHPadSuccessor() const {
212   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
213     if ((*I)->isEHPad())
214       return true;
215   return false;
216 }
217 
218 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
219 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
220   print(dbgs());
221 }
222 #endif
223 
224 StringRef MachineBasicBlock::getName() const {
225   if (const BasicBlock *LBB = getBasicBlock())
226     return LBB->getName();
227   else
228     return "(null)";
229 }
230 
231 /// Return a hopefully unique identifier for this block.
232 std::string MachineBasicBlock::getFullName() const {
233   std::string Name;
234   if (getParent())
235     Name = (getParent()->getName() + ":").str();
236   if (getBasicBlock())
237     Name += getBasicBlock()->getName();
238   else
239     Name += ("BB" + Twine(getNumber())).str();
240   return Name;
241 }
242 
243 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
244   const MachineFunction *MF = getParent();
245   if (!MF) {
246     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
247        << " is null\n";
248     return;
249   }
250   const Function *F = MF->getFunction();
251   const Module *M = F ? F->getParent() : nullptr;
252   ModuleSlotTracker MST(M);
253   print(OS, MST, Indexes);
254 }
255 
256 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
257                               SlotIndexes *Indexes) const {
258   const MachineFunction *MF = getParent();
259   if (!MF) {
260     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
261        << " is null\n";
262     return;
263   }
264 
265   if (Indexes)
266     OS << Indexes->getMBBStartIdx(this) << '\t';
267 
268   OS << "BB#" << getNumber() << ": ";
269 
270   const char *Comma = "";
271   if (const BasicBlock *LBB = getBasicBlock()) {
272     OS << Comma << "derived from LLVM BB ";
273     LBB->printAsOperand(OS, /*PrintType=*/false, MST);
274     Comma = ", ";
275   }
276   if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
277   if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
278   if (Alignment)
279     OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
280        << " bytes)";
281 
282   OS << '\n';
283 
284   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
285   if (!livein_empty()) {
286     if (Indexes) OS << '\t';
287     OS << "    Live Ins:";
288     for (const auto &LI : make_range(livein_begin(), livein_end())) {
289       OS << ' ' << PrintReg(LI.PhysReg, TRI);
290       if (LI.LaneMask != ~0u)
291         OS << ':' << PrintLaneMask(LI.LaneMask);
292     }
293     OS << '\n';
294   }
295   // Print the preds of this block according to the CFG.
296   if (!pred_empty()) {
297     if (Indexes) OS << '\t';
298     OS << "    Predecessors according to CFG:";
299     for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
300       OS << " BB#" << (*PI)->getNumber();
301     OS << '\n';
302   }
303 
304   for (auto &I : instrs()) {
305     if (Indexes) {
306       if (Indexes->hasIndex(I))
307         OS << Indexes->getInstructionIndex(I);
308       OS << '\t';
309     }
310     OS << '\t';
311     if (I.isInsideBundle())
312       OS << "  * ";
313     I.print(OS, MST);
314   }
315 
316   // Print the successors of this block according to the CFG.
317   if (!succ_empty()) {
318     if (Indexes) OS << '\t';
319     OS << "    Successors according to CFG:";
320     for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
321       OS << " BB#" << (*SI)->getNumber();
322       if (!Probs.empty())
323         OS << '(' << *getProbabilityIterator(SI) << ')';
324     }
325     OS << '\n';
326   }
327 }
328 
329 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
330                                        bool /*PrintType*/) const {
331   OS << "BB#" << getNumber();
332 }
333 
334 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
335   LiveInVector::iterator I = std::find_if(
336       LiveIns.begin(), LiveIns.end(),
337       [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
338   if (I == LiveIns.end())
339     return;
340 
341   I->LaneMask &= ~LaneMask;
342   if (I->LaneMask == 0)
343     LiveIns.erase(I);
344 }
345 
346 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
347   livein_iterator I = std::find_if(
348       LiveIns.begin(), LiveIns.end(),
349       [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
350   return I != livein_end() && (I->LaneMask & LaneMask) != 0;
351 }
352 
353 void MachineBasicBlock::sortUniqueLiveIns() {
354   std::sort(LiveIns.begin(), LiveIns.end(),
355             [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
356               return LI0.PhysReg < LI1.PhysReg;
357             });
358   // Liveins are sorted by physreg now we can merge their lanemasks.
359   LiveInVector::const_iterator I = LiveIns.begin();
360   LiveInVector::const_iterator J;
361   LiveInVector::iterator Out = LiveIns.begin();
362   for (; I != LiveIns.end(); ++Out, I = J) {
363     unsigned PhysReg = I->PhysReg;
364     LaneBitmask LaneMask = I->LaneMask;
365     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
366       LaneMask |= J->LaneMask;
367     Out->PhysReg = PhysReg;
368     Out->LaneMask = LaneMask;
369   }
370   LiveIns.erase(Out, LiveIns.end());
371 }
372 
373 unsigned
374 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
375   assert(getParent() && "MBB must be inserted in function");
376   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
377   assert(RC && "Register class is required");
378   assert((isEHPad() || this == &getParent()->front()) &&
379          "Only the entry block and landing pads can have physreg live ins");
380 
381   bool LiveIn = isLiveIn(PhysReg);
382   iterator I = SkipPHIsAndLabels(begin()), E = end();
383   MachineRegisterInfo &MRI = getParent()->getRegInfo();
384   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
385 
386   // Look for an existing copy.
387   if (LiveIn)
388     for (;I != E && I->isCopy(); ++I)
389       if (I->getOperand(1).getReg() == PhysReg) {
390         unsigned VirtReg = I->getOperand(0).getReg();
391         if (!MRI.constrainRegClass(VirtReg, RC))
392           llvm_unreachable("Incompatible live-in register class.");
393         return VirtReg;
394       }
395 
396   // No luck, create a virtual register.
397   unsigned VirtReg = MRI.createVirtualRegister(RC);
398   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
399     .addReg(PhysReg, RegState::Kill);
400   if (!LiveIn)
401     addLiveIn(PhysReg);
402   return VirtReg;
403 }
404 
405 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
406   getParent()->splice(NewAfter->getIterator(), getIterator());
407 }
408 
409 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
410   getParent()->splice(++NewBefore->getIterator(), getIterator());
411 }
412 
413 void MachineBasicBlock::updateTerminator() {
414   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
415   // A block with no successors has no concerns with fall-through edges.
416   if (this->succ_empty()) return;
417 
418   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
419   SmallVector<MachineOperand, 4> Cond;
420   DebugLoc DL;  // FIXME: this is nowhere
421   bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
422   (void) B;
423   assert(!B && "UpdateTerminators requires analyzable predecessors!");
424   if (Cond.empty()) {
425     if (TBB) {
426       // The block has an unconditional branch. If its successor is now
427       // its layout successor, delete the branch.
428       if (isLayoutSuccessor(TBB))
429         TII->RemoveBranch(*this);
430     } else {
431       // The block has an unconditional fallthrough. If its successor is not
432       // its layout successor, insert a branch. First we have to locate the
433       // only non-landing-pad successor, as that is the fallthrough block.
434       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
435         if ((*SI)->isEHPad())
436           continue;
437         assert(!TBB && "Found more than one non-landing-pad successor!");
438         TBB = *SI;
439       }
440 
441       // If there is no non-landing-pad successor, the block has no
442       // fall-through edges to be concerned with.
443       if (!TBB)
444         return;
445 
446       // Finally update the unconditional successor to be reached via a branch
447       // if it would not be reached by fallthrough.
448       if (!isLayoutSuccessor(TBB))
449         TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
450     }
451   } else {
452     if (FBB) {
453       // The block has a non-fallthrough conditional branch. If one of its
454       // successors is its layout successor, rewrite it to a fallthrough
455       // conditional branch.
456       if (isLayoutSuccessor(TBB)) {
457         if (TII->ReverseBranchCondition(Cond))
458           return;
459         TII->RemoveBranch(*this);
460         TII->InsertBranch(*this, FBB, nullptr, Cond, DL);
461       } else if (isLayoutSuccessor(FBB)) {
462         TII->RemoveBranch(*this);
463         TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
464       }
465     } else {
466       // Walk through the successors and find the successor which is not
467       // a landing pad and is not the conditional branch destination (in TBB)
468       // as the fallthrough successor.
469       MachineBasicBlock *FallthroughBB = nullptr;
470       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
471         if ((*SI)->isEHPad() || *SI == TBB)
472           continue;
473         assert(!FallthroughBB && "Found more than one fallthrough successor.");
474         FallthroughBB = *SI;
475       }
476       if (!FallthroughBB && canFallThrough()) {
477         // We fallthrough to the same basic block as the conditional jump
478         // targets. Remove the conditional jump, leaving unconditional
479         // fallthrough.
480         // FIXME: This does not seem like a reasonable pattern to support, but
481         // it has been seen in the wild coming out of degenerate ARM test cases.
482         TII->RemoveBranch(*this);
483 
484         // Finally update the unconditional successor to be reached via a branch
485         // if it would not be reached by fallthrough.
486         if (!isLayoutSuccessor(TBB))
487           TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
488         return;
489       }
490 
491       // The block has a fallthrough conditional branch.
492       if (isLayoutSuccessor(TBB)) {
493         if (TII->ReverseBranchCondition(Cond)) {
494           // We can't reverse the condition, add an unconditional branch.
495           Cond.clear();
496           TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL);
497           return;
498         }
499         TII->RemoveBranch(*this);
500         TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL);
501       } else if (!isLayoutSuccessor(FallthroughBB)) {
502         TII->RemoveBranch(*this);
503         TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL);
504       }
505     }
506   }
507 }
508 
509 void MachineBasicBlock::validateSuccProbs() const {
510 #ifndef NDEBUG
511   int64_t Sum = 0;
512   for (auto Prob : Probs)
513     Sum += Prob.getNumerator();
514   // Due to precision issue, we assume that the sum of probabilities is one if
515   // the difference between the sum of their numerators and the denominator is
516   // no greater than the number of successors.
517   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
518              Probs.size() &&
519          "The sum of successors's probabilities exceeds one.");
520 #endif // NDEBUG
521 }
522 
523 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
524                                      BranchProbability Prob) {
525   // Probability list is either empty (if successor list isn't empty, this means
526   // disabled optimization) or has the same size as successor list.
527   if (!(Probs.empty() && !Successors.empty()))
528     Probs.push_back(Prob);
529   Successors.push_back(Succ);
530   Succ->addPredecessor(this);
531 }
532 
533 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
534   // We need to make sure probability list is either empty or has the same size
535   // of successor list. When this function is called, we can safely delete all
536   // probability in the list.
537   Probs.clear();
538   Successors.push_back(Succ);
539   Succ->addPredecessor(this);
540 }
541 
542 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
543                                         bool NormalizeSuccProbs) {
544   succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ);
545   removeSuccessor(I, NormalizeSuccProbs);
546 }
547 
548 MachineBasicBlock::succ_iterator
549 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
550   assert(I != Successors.end() && "Not a current successor!");
551 
552   // If probability list is empty it means we don't use it (disabled
553   // optimization).
554   if (!Probs.empty()) {
555     probability_iterator WI = getProbabilityIterator(I);
556     Probs.erase(WI);
557     if (NormalizeSuccProbs)
558       normalizeSuccProbs();
559   }
560 
561   (*I)->removePredecessor(this);
562   return Successors.erase(I);
563 }
564 
565 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
566                                          MachineBasicBlock *New) {
567   if (Old == New)
568     return;
569 
570   succ_iterator E = succ_end();
571   succ_iterator NewI = E;
572   succ_iterator OldI = E;
573   for (succ_iterator I = succ_begin(); I != E; ++I) {
574     if (*I == Old) {
575       OldI = I;
576       if (NewI != E)
577         break;
578     }
579     if (*I == New) {
580       NewI = I;
581       if (OldI != E)
582         break;
583     }
584   }
585   assert(OldI != E && "Old is not a successor of this block");
586 
587   // If New isn't already a successor, let it take Old's place.
588   if (NewI == E) {
589     Old->removePredecessor(this);
590     New->addPredecessor(this);
591     *OldI = New;
592     return;
593   }
594 
595   // New is already a successor.
596   // Update its probability instead of adding a duplicate edge.
597   if (!Probs.empty()) {
598     auto ProbIter = getProbabilityIterator(NewI);
599     if (!ProbIter->isUnknown())
600       *ProbIter += *getProbabilityIterator(OldI);
601   }
602   removeSuccessor(OldI);
603 }
604 
605 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
606   Predecessors.push_back(Pred);
607 }
608 
609 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
610   pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred);
611   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
612   Predecessors.erase(I);
613 }
614 
615 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
616   if (this == FromMBB)
617     return;
618 
619   while (!FromMBB->succ_empty()) {
620     MachineBasicBlock *Succ = *FromMBB->succ_begin();
621 
622     // If probability list is empty it means we don't use it (disabled optimization).
623     if (!FromMBB->Probs.empty()) {
624       auto Prob = *FromMBB->Probs.begin();
625       addSuccessor(Succ, Prob);
626     } else
627       addSuccessorWithoutProb(Succ);
628 
629     FromMBB->removeSuccessor(Succ);
630   }
631 }
632 
633 void
634 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
635   if (this == FromMBB)
636     return;
637 
638   while (!FromMBB->succ_empty()) {
639     MachineBasicBlock *Succ = *FromMBB->succ_begin();
640     if (!FromMBB->Probs.empty()) {
641       auto Prob = *FromMBB->Probs.begin();
642       addSuccessor(Succ, Prob);
643     } else
644       addSuccessorWithoutProb(Succ);
645     FromMBB->removeSuccessor(Succ);
646 
647     // Fix up any PHI nodes in the successor.
648     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
649            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
650       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
651         MachineOperand &MO = MI->getOperand(i);
652         if (MO.getMBB() == FromMBB)
653           MO.setMBB(this);
654       }
655   }
656   normalizeSuccProbs();
657 }
658 
659 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
660   return std::find(pred_begin(), pred_end(), MBB) != pred_end();
661 }
662 
663 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
664   return std::find(succ_begin(), succ_end(), MBB) != succ_end();
665 }
666 
667 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
668   MachineFunction::const_iterator I(this);
669   return std::next(I) == MachineFunction::const_iterator(MBB);
670 }
671 
672 bool MachineBasicBlock::canFallThrough() {
673   MachineFunction::iterator Fallthrough = getIterator();
674   ++Fallthrough;
675   // If FallthroughBlock is off the end of the function, it can't fall through.
676   if (Fallthrough == getParent()->end())
677     return false;
678 
679   // If FallthroughBlock isn't a successor, no fallthrough is possible.
680   if (!isSuccessor(&*Fallthrough))
681     return false;
682 
683   // Analyze the branches, if any, at the end of the block.
684   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
685   SmallVector<MachineOperand, 4> Cond;
686   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
687   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
688     // If we couldn't analyze the branch, examine the last instruction.
689     // If the block doesn't end in a known control barrier, assume fallthrough
690     // is possible. The isPredicated check is needed because this code can be
691     // called during IfConversion, where an instruction which is normally a
692     // Barrier is predicated and thus no longer an actual control barrier.
693     return empty() || !back().isBarrier() || TII->isPredicated(back());
694   }
695 
696   // If there is no branch, control always falls through.
697   if (!TBB) return true;
698 
699   // If there is some explicit branch to the fallthrough block, it can obviously
700   // reach, even though the branch should get folded to fall through implicitly.
701   if (MachineFunction::iterator(TBB) == Fallthrough ||
702       MachineFunction::iterator(FBB) == Fallthrough)
703     return true;
704 
705   // If it's an unconditional branch to some block not the fall through, it
706   // doesn't fall through.
707   if (Cond.empty()) return false;
708 
709   // Otherwise, if it is conditional and has no explicit false block, it falls
710   // through.
711   return FBB == nullptr;
712 }
713 
714 MachineBasicBlock *
715 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
716   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
717   // it in this generic function.
718   if (Succ->isEHPad())
719     return nullptr;
720 
721   MachineFunction *MF = getParent();
722   DebugLoc DL;  // FIXME: this is nowhere
723 
724   // Performance might be harmed on HW that implements branching using exec mask
725   // where both sides of the branches are always executed.
726   if (MF->getTarget().requiresStructuredCFG())
727     return nullptr;
728 
729   // We may need to update this's terminator, but we can't do that if
730   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
731   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
732   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
733   SmallVector<MachineOperand, 4> Cond;
734   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
735     return nullptr;
736 
737   // Avoid bugpoint weirdness: A block may end with a conditional branch but
738   // jumps to the same MBB is either case. We have duplicate CFG edges in that
739   // case that we can't handle. Since this never happens in properly optimized
740   // code, just skip those edges.
741   if (TBB && TBB == FBB) {
742     DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
743                  << getNumber() << '\n');
744     return nullptr;
745   }
746 
747   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
748   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
749   DEBUG(dbgs() << "Splitting critical edge:"
750         " BB#" << getNumber()
751         << " -- BB#" << NMBB->getNumber()
752         << " -- BB#" << Succ->getNumber() << '\n');
753 
754   LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
755   SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
756   if (LIS)
757     LIS->insertMBBInMaps(NMBB);
758   else if (Indexes)
759     Indexes->insertMBBInMaps(NMBB);
760 
761   // On some targets like Mips, branches may kill virtual registers. Make sure
762   // that LiveVariables is properly updated after updateTerminator replaces the
763   // terminators.
764   LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
765 
766   // Collect a list of virtual registers killed by the terminators.
767   SmallVector<unsigned, 4> KilledRegs;
768   if (LV)
769     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
770          I != E; ++I) {
771       MachineInstr *MI = &*I;
772       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
773            OE = MI->operands_end(); OI != OE; ++OI) {
774         if (!OI->isReg() || OI->getReg() == 0 ||
775             !OI->isUse() || !OI->isKill() || OI->isUndef())
776           continue;
777         unsigned Reg = OI->getReg();
778         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
779             LV->getVarInfo(Reg).removeKill(MI)) {
780           KilledRegs.push_back(Reg);
781           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
782           OI->setIsKill(false);
783         }
784       }
785     }
786 
787   SmallVector<unsigned, 4> UsedRegs;
788   if (LIS) {
789     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
790          I != E; ++I) {
791       MachineInstr *MI = &*I;
792 
793       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
794            OE = MI->operands_end(); OI != OE; ++OI) {
795         if (!OI->isReg() || OI->getReg() == 0)
796           continue;
797 
798         unsigned Reg = OI->getReg();
799         if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
800           UsedRegs.push_back(Reg);
801       }
802     }
803   }
804 
805   ReplaceUsesOfBlockWith(Succ, NMBB);
806 
807   // If updateTerminator() removes instructions, we need to remove them from
808   // SlotIndexes.
809   SmallVector<MachineInstr*, 4> Terminators;
810   if (Indexes) {
811     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
812          I != E; ++I)
813       Terminators.push_back(&*I);
814   }
815 
816   updateTerminator();
817 
818   if (Indexes) {
819     SmallVector<MachineInstr*, 4> NewTerminators;
820     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
821          I != E; ++I)
822       NewTerminators.push_back(&*I);
823 
824     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
825         E = Terminators.end(); I != E; ++I) {
826       if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
827           NewTerminators.end())
828        Indexes->removeMachineInstrFromMaps(**I);
829     }
830   }
831 
832   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
833   NMBB->addSuccessor(Succ);
834   if (!NMBB->isLayoutSuccessor(Succ)) {
835     Cond.clear();
836     TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL);
837 
838     if (Indexes) {
839       for (MachineInstr &MI : NMBB->instrs()) {
840         // Some instructions may have been moved to NMBB by updateTerminator(),
841         // so we first remove any instruction that already has an index.
842         if (Indexes->hasIndex(MI))
843           Indexes->removeMachineInstrFromMaps(MI);
844         Indexes->insertMachineInstrInMaps(MI);
845       }
846     }
847   }
848 
849   // Fix PHI nodes in Succ so they refer to NMBB instead of this
850   for (MachineBasicBlock::instr_iterator
851          i = Succ->instr_begin(),e = Succ->instr_end();
852        i != e && i->isPHI(); ++i)
853     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
854       if (i->getOperand(ni+1).getMBB() == this)
855         i->getOperand(ni+1).setMBB(NMBB);
856 
857   // Inherit live-ins from the successor
858   for (const auto &LI : Succ->liveins())
859     NMBB->addLiveIn(LI);
860 
861   // Update LiveVariables.
862   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
863   if (LV) {
864     // Restore kills of virtual registers that were killed by the terminators.
865     while (!KilledRegs.empty()) {
866       unsigned Reg = KilledRegs.pop_back_val();
867       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
868         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
869           continue;
870         if (TargetRegisterInfo::isVirtualRegister(Reg))
871           LV->getVarInfo(Reg).Kills.push_back(&*I);
872         DEBUG(dbgs() << "Restored terminator kill: " << *I);
873         break;
874       }
875     }
876     // Update relevant live-through information.
877     LV->addNewBlock(NMBB, this, Succ);
878   }
879 
880   if (LIS) {
881     // After splitting the edge and updating SlotIndexes, live intervals may be
882     // in one of two situations, depending on whether this block was the last in
883     // the function. If the original block was the last in the function, all
884     // live intervals will end prior to the beginning of the new split block. If
885     // the original block was not at the end of the function, all live intervals
886     // will extend to the end of the new split block.
887 
888     bool isLastMBB =
889       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
890 
891     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
892     SlotIndex PrevIndex = StartIndex.getPrevSlot();
893     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
894 
895     // Find the registers used from NMBB in PHIs in Succ.
896     SmallSet<unsigned, 8> PHISrcRegs;
897     for (MachineBasicBlock::instr_iterator
898          I = Succ->instr_begin(), E = Succ->instr_end();
899          I != E && I->isPHI(); ++I) {
900       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
901         if (I->getOperand(ni+1).getMBB() == NMBB) {
902           MachineOperand &MO = I->getOperand(ni);
903           unsigned Reg = MO.getReg();
904           PHISrcRegs.insert(Reg);
905           if (MO.isUndef())
906             continue;
907 
908           LiveInterval &LI = LIS->getInterval(Reg);
909           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
910           assert(VNI &&
911                  "PHI sources should be live out of their predecessors.");
912           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
913         }
914       }
915     }
916 
917     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
918     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
919       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
920       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
921         continue;
922 
923       LiveInterval &LI = LIS->getInterval(Reg);
924       if (!LI.liveAt(PrevIndex))
925         continue;
926 
927       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
928       if (isLiveOut && isLastMBB) {
929         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
930         assert(VNI && "LiveInterval should have VNInfo where it is live.");
931         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
932       } else if (!isLiveOut && !isLastMBB) {
933         LI.removeSegment(StartIndex, EndIndex);
934       }
935     }
936 
937     // Update all intervals for registers whose uses may have been modified by
938     // updateTerminator().
939     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
940   }
941 
942   if (MachineDominatorTree *MDT =
943       P->getAnalysisIfAvailable<MachineDominatorTree>())
944     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
945 
946   if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
947     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
948       // If one or the other blocks were not in a loop, the new block is not
949       // either, and thus LI doesn't need to be updated.
950       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
951         if (TIL == DestLoop) {
952           // Both in the same loop, the NMBB joins loop.
953           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
954         } else if (TIL->contains(DestLoop)) {
955           // Edge from an outer loop to an inner loop.  Add to the outer loop.
956           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
957         } else if (DestLoop->contains(TIL)) {
958           // Edge from an inner loop to an outer loop.  Add to the outer loop.
959           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
960         } else {
961           // Edge from two loops with no containment relation.  Because these
962           // are natural loops, we know that the destination block must be the
963           // header of its loop (adding a branch into a loop elsewhere would
964           // create an irreducible loop).
965           assert(DestLoop->getHeader() == Succ &&
966                  "Should not create irreducible loops!");
967           if (MachineLoop *P = DestLoop->getParentLoop())
968             P->addBasicBlockToLoop(NMBB, MLI->getBase());
969         }
970       }
971     }
972 
973   return NMBB;
974 }
975 
976 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
977 /// neighboring instructions so the bundle won't be broken by removing MI.
978 static void unbundleSingleMI(MachineInstr *MI) {
979   // Removing the first instruction in a bundle.
980   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
981     MI->unbundleFromSucc();
982   // Removing the last instruction in a bundle.
983   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
984     MI->unbundleFromPred();
985   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
986   // are already fine.
987 }
988 
989 MachineBasicBlock::instr_iterator
990 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
991   unbundleSingleMI(&*I);
992   return Insts.erase(I);
993 }
994 
995 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
996   unbundleSingleMI(MI);
997   MI->clearFlag(MachineInstr::BundledPred);
998   MI->clearFlag(MachineInstr::BundledSucc);
999   return Insts.remove(MI);
1000 }
1001 
1002 MachineBasicBlock::instr_iterator
1003 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1004   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1005          "Cannot insert instruction with bundle flags");
1006   // Set the bundle flags when inserting inside a bundle.
1007   if (I != instr_end() && I->isBundledWithPred()) {
1008     MI->setFlag(MachineInstr::BundledPred);
1009     MI->setFlag(MachineInstr::BundledSucc);
1010   }
1011   return Insts.insert(I, MI);
1012 }
1013 
1014 /// This method unlinks 'this' from the containing function, and returns it, but
1015 /// does not delete it.
1016 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1017   assert(getParent() && "Not embedded in a function!");
1018   getParent()->remove(this);
1019   return this;
1020 }
1021 
1022 /// This method unlinks 'this' from the containing function, and deletes it.
1023 void MachineBasicBlock::eraseFromParent() {
1024   assert(getParent() && "Not embedded in a function!");
1025   getParent()->erase(this);
1026 }
1027 
1028 /// Given a machine basic block that branched to 'Old', change the code and CFG
1029 /// so that it branches to 'New' instead.
1030 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1031                                                MachineBasicBlock *New) {
1032   assert(Old != New && "Cannot replace self with self!");
1033 
1034   MachineBasicBlock::instr_iterator I = instr_end();
1035   while (I != instr_begin()) {
1036     --I;
1037     if (!I->isTerminator()) break;
1038 
1039     // Scan the operands of this machine instruction, replacing any uses of Old
1040     // with New.
1041     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1042       if (I->getOperand(i).isMBB() &&
1043           I->getOperand(i).getMBB() == Old)
1044         I->getOperand(i).setMBB(New);
1045   }
1046 
1047   // Update the successor information.
1048   replaceSuccessor(Old, New);
1049 }
1050 
1051 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1052 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1053 /// MBB successors from the CFG.  DestA and DestB can be null.
1054 ///
1055 /// Besides DestA and DestB, retain other edges leading to LandingPads
1056 /// (currently there can be only one; we don't check or require that here).
1057 /// Note it is possible that DestA and/or DestB are LandingPads.
1058 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1059                                              MachineBasicBlock *DestB,
1060                                              bool IsCond) {
1061   // The values of DestA and DestB frequently come from a call to the
1062   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1063   // values from there.
1064   //
1065   // 1. If both DestA and DestB are null, then the block ends with no branches
1066   //    (it falls through to its successor).
1067   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1068   //    with only an unconditional branch.
1069   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1070   //    with a conditional branch that falls through to a successor (DestB).
1071   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1072   //    conditional branch followed by an unconditional branch. DestA is the
1073   //    'true' destination and DestB is the 'false' destination.
1074 
1075   bool Changed = false;
1076 
1077   MachineFunction::iterator FallThru = std::next(getIterator());
1078 
1079   if (!DestA && !DestB) {
1080     // Block falls through to successor.
1081     DestA = &*FallThru;
1082     DestB = &*FallThru;
1083   } else if (DestA && !DestB) {
1084     if (IsCond)
1085       // Block ends in conditional jump that falls through to successor.
1086       DestB = &*FallThru;
1087   } else {
1088     assert(DestA && DestB && IsCond &&
1089            "CFG in a bad state. Cannot correct CFG edges");
1090   }
1091 
1092   // Remove superfluous edges. I.e., those which aren't destinations of this
1093   // basic block, duplicate edges, or landing pads.
1094   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1095   MachineBasicBlock::succ_iterator SI = succ_begin();
1096   while (SI != succ_end()) {
1097     const MachineBasicBlock *MBB = *SI;
1098     if (!SeenMBBs.insert(MBB).second ||
1099         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1100       // This is a superfluous edge, remove it.
1101       SI = removeSuccessor(SI);
1102       Changed = true;
1103     } else {
1104       ++SI;
1105     }
1106   }
1107 
1108   if (Changed)
1109     normalizeSuccProbs();
1110   return Changed;
1111 }
1112 
1113 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1114 /// instructions.  Return UnknownLoc if there is none.
1115 DebugLoc
1116 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1117   DebugLoc DL;
1118   instr_iterator E = instr_end();
1119   if (MBBI == E)
1120     return DL;
1121 
1122   // Skip debug declarations, we don't want a DebugLoc from them.
1123   while (MBBI != E && MBBI->isDebugValue())
1124     MBBI++;
1125   if (MBBI != E)
1126     DL = MBBI->getDebugLoc();
1127   return DL;
1128 }
1129 
1130 /// Return probability of the edge from this block to MBB.
1131 BranchProbability
1132 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1133   if (Probs.empty())
1134     return BranchProbability(1, succ_size());
1135 
1136   const auto &Prob = *getProbabilityIterator(Succ);
1137   if (Prob.isUnknown()) {
1138     // For unknown probabilities, collect the sum of all known ones, and evenly
1139     // ditribute the complemental of the sum to each unknown probability.
1140     unsigned KnownProbNum = 0;
1141     auto Sum = BranchProbability::getZero();
1142     for (auto &P : Probs) {
1143       if (!P.isUnknown()) {
1144         Sum += P;
1145         KnownProbNum++;
1146       }
1147     }
1148     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1149   } else
1150     return Prob;
1151 }
1152 
1153 /// Set successor probability of a given iterator.
1154 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1155                                            BranchProbability Prob) {
1156   assert(!Prob.isUnknown());
1157   if (Probs.empty())
1158     return;
1159   *getProbabilityIterator(I) = Prob;
1160 }
1161 
1162 /// Return probability iterator corresonding to the I successor iterator
1163 MachineBasicBlock::const_probability_iterator
1164 MachineBasicBlock::getProbabilityIterator(
1165     MachineBasicBlock::const_succ_iterator I) const {
1166   assert(Probs.size() == Successors.size() && "Async probability list!");
1167   const size_t index = std::distance(Successors.begin(), I);
1168   assert(index < Probs.size() && "Not a current successor!");
1169   return Probs.begin() + index;
1170 }
1171 
1172 /// Return probability iterator corresonding to the I successor iterator.
1173 MachineBasicBlock::probability_iterator
1174 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1175   assert(Probs.size() == Successors.size() && "Async probability list!");
1176   const size_t index = std::distance(Successors.begin(), I);
1177   assert(index < Probs.size() && "Not a current successor!");
1178   return Probs.begin() + index;
1179 }
1180 
1181 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1182 /// as of just before "MI".
1183 ///
1184 /// Search is localised to a neighborhood of
1185 /// Neighborhood instructions before (searching for defs or kills) and N
1186 /// instructions after (searching just for defs) MI.
1187 MachineBasicBlock::LivenessQueryResult
1188 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1189                                            unsigned Reg, const_iterator Before,
1190                                            unsigned Neighborhood) const {
1191   unsigned N = Neighborhood;
1192 
1193   // Start by searching backwards from Before, looking for kills, reads or defs.
1194   const_iterator I(Before);
1195   // If this is the first insn in the block, don't search backwards.
1196   if (I != begin()) {
1197     do {
1198       --I;
1199 
1200       MachineOperandIteratorBase::PhysRegInfo Info =
1201           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1202 
1203       // Defs happen after uses so they take precedence if both are present.
1204 
1205       // Register is dead after a dead def of the full register.
1206       if (Info.DeadDef)
1207         return LQR_Dead;
1208       // Register is (at least partially) live after a def.
1209       if (Info.Defined)
1210         return LQR_Live;
1211       // Register is dead after a full kill or clobber and no def.
1212       if (Info.Killed || Info.Clobbered)
1213         return LQR_Dead;
1214       // Register must be live if we read it.
1215       if (Info.Read)
1216         return LQR_Live;
1217     } while (I != begin() && --N > 0);
1218   }
1219 
1220   // Did we get to the start of the block?
1221   if (I == begin()) {
1222     // If so, the register's state is definitely defined by the live-in state.
1223     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
1224          ++RAI)
1225       if (isLiveIn(*RAI))
1226         return LQR_Live;
1227 
1228     return LQR_Dead;
1229   }
1230 
1231   N = Neighborhood;
1232 
1233   // Try searching forwards from Before, looking for reads or defs.
1234   I = const_iterator(Before);
1235   // If this is the last insn in the block, don't search forwards.
1236   if (I != end()) {
1237     for (++I; I != end() && N > 0; ++I, --N) {
1238       MachineOperandIteratorBase::PhysRegInfo Info =
1239           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1240 
1241       // Register is live when we read it here.
1242       if (Info.Read)
1243         return LQR_Live;
1244       // Register is dead if we can fully overwrite or clobber it here.
1245       if (Info.FullyDefined || Info.Clobbered)
1246         return LQR_Dead;
1247     }
1248   }
1249 
1250   // At this point we have no idea of the liveness of the register.
1251   return LQR_Unknown;
1252 }
1253 
1254 const uint32_t *
1255 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1256   // EH funclet entry does not preserve any registers.
1257   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1258 }
1259 
1260 const uint32_t *
1261 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1262   // If we see a return block with successors, this must be a funclet return,
1263   // which does not preserve any registers. If there are no successors, we don't
1264   // care what kind of return it is, putting a mask after it is a no-op.
1265   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1266 }
1267