xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision afad84e676123a4cdeffeed0062c8449c38bc6e3)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
43     : BB(B), Number(-1), xParent(&MF) {
44   Insts.Parent = this;
45   if (B)
46     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
47 }
48 
49 MachineBasicBlock::~MachineBasicBlock() {
50 }
51 
52 /// Return the MCSymbol for this basic block.
53 MCSymbol *MachineBasicBlock::getSymbol() const {
54   if (!CachedMCSymbol) {
55     const MachineFunction *MF = getParent();
56     MCContext &Ctx = MF->getContext();
57     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
58     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
59     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
60                                            Twine(MF->getFunctionNumber()) +
61                                            "_" + Twine(getNumber()));
62   }
63 
64   return CachedMCSymbol;
65 }
66 
67 
68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
69   MBB.print(OS);
70   return OS;
71 }
72 
73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
74   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
75 }
76 
77 /// When an MBB is added to an MF, we need to update the parent pointer of the
78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
79 /// operand list for registers.
80 ///
81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
82 /// gets the next available unique MBB number. If it is removed from a
83 /// MachineFunction, it goes back to being #-1.
84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
85     MachineBasicBlock *N) {
86   MachineFunction &MF = *N->getParent();
87   N->Number = MF.addToMBBNumbering(N);
88 
89   // Make sure the instructions have their operands in the reginfo lists.
90   MachineRegisterInfo &RegInfo = MF.getRegInfo();
91   for (MachineBasicBlock::instr_iterator
92          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
93     I->AddRegOperandsToUseLists(RegInfo);
94 }
95 
96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
97     MachineBasicBlock *N) {
98   N->getParent()->removeFromMBBNumbering(N->Number);
99   N->Number = -1;
100 }
101 
102 /// When we add an instruction to a basic block list, we update its parent
103 /// pointer and add its operands from reg use/def lists if appropriate.
104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
105   assert(!N->getParent() && "machine instruction already in a basic block");
106   N->setParent(Parent);
107 
108   // Add the instruction's register operands to their corresponding
109   // use/def lists.
110   MachineFunction *MF = Parent->getParent();
111   N->AddRegOperandsToUseLists(MF->getRegInfo());
112 }
113 
114 /// When we remove an instruction from a basic block list, we update its parent
115 /// pointer and remove its operands from reg use/def lists if appropriate.
116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
117   assert(N->getParent() && "machine instruction not in a basic block");
118 
119   // Remove from the use/def lists.
120   if (MachineFunction *MF = N->getMF())
121     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
122 
123   N->setParent(nullptr);
124 }
125 
126 /// When moving a range of instructions from one MBB list to another, we need to
127 /// update the parent pointers and the use/def lists.
128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
129                                                        instr_iterator First,
130                                                        instr_iterator Last) {
131   assert(Parent->getParent() == FromList.Parent->getParent() &&
132         "MachineInstr parent mismatch!");
133   assert(this != &FromList && "Called without a real transfer...");
134   assert(Parent != FromList.Parent && "Two lists have the same parent?");
135 
136   // If splicing between two blocks within the same function, just update the
137   // parent pointers.
138   for (; First != Last; ++First)
139     First->setParent(Parent);
140 }
141 
142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
143   assert(!MI->getParent() && "MI is still in a block!");
144   Parent->getParent()->DeleteMachineInstr(MI);
145 }
146 
147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
148   instr_iterator I = instr_begin(), E = instr_end();
149   while (I != E && I->isPHI())
150     ++I;
151   assert((I == E || !I->isInsideBundle()) &&
152          "First non-phi MI cannot be inside a bundle!");
153   return I;
154 }
155 
156 MachineBasicBlock::iterator
157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
158   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
159 
160   iterator E = end();
161   while (I != E && (I->isPHI() || I->isPosition() ||
162                     TII->isBasicBlockPrologue(*I)))
163     ++I;
164   // FIXME: This needs to change if we wish to bundle labels
165   // inside the bundle.
166   assert((I == E || !I->isInsideBundle()) &&
167          "First non-phi / non-label instruction is inside a bundle!");
168   return I;
169 }
170 
171 MachineBasicBlock::iterator
172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
173   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
174 
175   iterator E = end();
176   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() ||
177                     TII->isBasicBlockPrologue(*I)))
178     ++I;
179   // FIXME: This needs to change if we wish to bundle labels / dbg_values
180   // inside the bundle.
181   assert((I == E || !I->isInsideBundle()) &&
182          "First non-phi / non-label / non-debug "
183          "instruction is inside a bundle!");
184   return I;
185 }
186 
187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
188   iterator B = begin(), E = end(), I = E;
189   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
190     ; /*noop */
191   while (I != E && !I->isTerminator())
192     ++I;
193   return I;
194 }
195 
196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
197   instr_iterator B = instr_begin(), E = instr_end(), I = E;
198   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
199     ; /*noop */
200   while (I != E && !I->isTerminator())
201     ++I;
202   return I;
203 }
204 
205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
206   // Skip over begin-of-block dbg_value instructions.
207   return skipDebugInstructionsForward(begin(), end());
208 }
209 
210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
211   // Skip over end-of-block dbg_value instructions.
212   instr_iterator B = instr_begin(), I = instr_end();
213   while (I != B) {
214     --I;
215     // Return instruction that starts a bundle.
216     if (I->isDebugValue() || I->isInsideBundle())
217       continue;
218     return I;
219   }
220   // The block is all debug values.
221   return end();
222 }
223 
224 bool MachineBasicBlock::hasEHPadSuccessor() const {
225   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
226     if ((*I)->isEHPad())
227       return true;
228   return false;
229 }
230 
231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
233   print(dbgs());
234 }
235 #endif
236 
237 bool MachineBasicBlock::isLegalToHoistInto() const {
238   if (isReturnBlock() || hasEHPadSuccessor())
239     return false;
240   return true;
241 }
242 
243 StringRef MachineBasicBlock::getName() const {
244   if (const BasicBlock *LBB = getBasicBlock())
245     return LBB->getName();
246   else
247     return StringRef("", 0);
248 }
249 
250 /// Return a hopefully unique identifier for this block.
251 std::string MachineBasicBlock::getFullName() const {
252   std::string Name;
253   if (getParent())
254     Name = (getParent()->getName() + ":").str();
255   if (getBasicBlock())
256     Name += getBasicBlock()->getName();
257   else
258     Name += ("BB" + Twine(getNumber())).str();
259   return Name;
260 }
261 
262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
263                               bool IsStandalone) const {
264   const MachineFunction *MF = getParent();
265   if (!MF) {
266     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
267        << " is null\n";
268     return;
269   }
270   const Function &F = MF->getFunction();
271   const Module *M = F.getParent();
272   ModuleSlotTracker MST(M);
273   MST.incorporateFunction(F);
274   print(OS, MST, Indexes, IsStandalone);
275 }
276 
277 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
278                               const SlotIndexes *Indexes,
279                               bool IsStandalone) const {
280   const MachineFunction *MF = getParent();
281   if (!MF) {
282     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
283        << " is null\n";
284     return;
285   }
286 
287   if (Indexes)
288     OS << Indexes->getMBBStartIdx(this) << '\t';
289 
290   OS << "bb." << getNumber();
291   bool HasAttributes = false;
292   if (const auto *BB = getBasicBlock()) {
293     if (BB->hasName()) {
294       OS << "." << BB->getName();
295     } else {
296       HasAttributes = true;
297       OS << " (";
298       int Slot = MST.getLocalSlot(BB);
299       if (Slot == -1)
300         OS << "<ir-block badref>";
301       else
302         OS << (Twine("%ir-block.") + Twine(Slot)).str();
303     }
304   }
305 
306   if (hasAddressTaken()) {
307     OS << (HasAttributes ? ", " : " (");
308     OS << "address-taken";
309     HasAttributes = true;
310   }
311   if (isEHPad()) {
312     OS << (HasAttributes ? ", " : " (");
313     OS << "landing-pad";
314     HasAttributes = true;
315   }
316   if (getAlignment()) {
317     OS << (HasAttributes ? ", " : " (");
318     OS << "align " << getAlignment();
319     HasAttributes = true;
320   }
321   if (HasAttributes)
322     OS << ")";
323   OS << ":\n";
324 
325   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
326   const MachineRegisterInfo &MRI = MF->getRegInfo();
327   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
328 
329   // Print the preds of this block according to the CFG.
330   if (!pred_empty()) {
331     if (Indexes) OS << '\t';
332     // Don't indent(2), align with previous line attributes.
333     OS << "; predecessors: ";
334     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
335       if (I != pred_begin())
336         OS << ", ";
337       OS << printMBBReference(**I);
338     }
339     OS << '\n';
340   }
341 
342   if (!succ_empty()) {
343     if (Indexes) OS << '\t';
344     // Print the successors
345     OS.indent(2) << "successors: ";
346     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
347       if (I != succ_begin())
348         OS << ", ";
349       OS << printMBBReference(**I);
350       if (!Probs.empty())
351         OS << '('
352            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
353            << ')';
354     }
355     if (!Probs.empty()) {
356       // Print human readable probabilities as comments.
357       OS << "; ";
358       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
359         const BranchProbability &BP = *getProbabilityIterator(I);
360         if (I != succ_begin())
361           OS << ", ";
362         OS << printMBBReference(**I) << '('
363            << format("%.2f%%",
364                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
365                           100.0 * 100.0) /
366                          100.0)
367            << ')';
368       }
369       OS << '\n';
370     }
371   }
372 
373   if (!livein_empty() && MRI.tracksLiveness()) {
374     if (Indexes) OS << '\t';
375     OS.indent(2) << "liveins: ";
376 
377     bool First = true;
378     for (const auto &LI : liveins()) {
379       if (!First)
380         OS << ", ";
381       First = false;
382       OS << printReg(LI.PhysReg, TRI);
383       if (!LI.LaneMask.all())
384         OS << ":0x" << PrintLaneMask(LI.LaneMask);
385     }
386     OS << '\n';
387   }
388 
389   bool IsInBundle = false;
390   for (const MachineInstr &MI : instrs()) {
391     if (Indexes) {
392       if (Indexes->hasIndex(MI))
393         OS << Indexes->getInstructionIndex(MI);
394       OS << '\t';
395     }
396 
397     if (IsInBundle && !MI.isInsideBundle()) {
398       OS.indent(2) << "}\n";
399       IsInBundle = false;
400     }
401 
402     OS.indent(IsInBundle ? 4 : 2);
403     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
404              &TII);
405 
406     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
407       OS << " {";
408       IsInBundle = true;
409     }
410 
411     OS << '\n';
412   }
413 
414   if (IsInBundle)
415     OS.indent(2) << "}\n";
416 
417   if (IrrLoopHeaderWeight) {
418     if (Indexes) OS << '\t';
419     OS << "    Irreducible loop header weight: "
420        << IrrLoopHeaderWeight.getValue();
421     OS << '\n';
422   }
423 }
424 
425 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
426                                        bool /*PrintType*/) const {
427   OS << "%bb." << getNumber();
428 }
429 
430 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
431   LiveInVector::iterator I = find_if(
432       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
433   if (I == LiveIns.end())
434     return;
435 
436   I->LaneMask &= ~LaneMask;
437   if (I->LaneMask.none())
438     LiveIns.erase(I);
439 }
440 
441 MachineBasicBlock::livein_iterator
442 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
443   // Get non-const version of iterator.
444   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
445   return LiveIns.erase(LI);
446 }
447 
448 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
449   livein_iterator I = find_if(
450       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
451   return I != livein_end() && (I->LaneMask & LaneMask).any();
452 }
453 
454 void MachineBasicBlock::sortUniqueLiveIns() {
455   std::sort(LiveIns.begin(), LiveIns.end(),
456             [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
457               return LI0.PhysReg < LI1.PhysReg;
458             });
459   // Liveins are sorted by physreg now we can merge their lanemasks.
460   LiveInVector::const_iterator I = LiveIns.begin();
461   LiveInVector::const_iterator J;
462   LiveInVector::iterator Out = LiveIns.begin();
463   for (; I != LiveIns.end(); ++Out, I = J) {
464     unsigned PhysReg = I->PhysReg;
465     LaneBitmask LaneMask = I->LaneMask;
466     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
467       LaneMask |= J->LaneMask;
468     Out->PhysReg = PhysReg;
469     Out->LaneMask = LaneMask;
470   }
471   LiveIns.erase(Out, LiveIns.end());
472 }
473 
474 unsigned
475 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
476   assert(getParent() && "MBB must be inserted in function");
477   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
478   assert(RC && "Register class is required");
479   assert((isEHPad() || this == &getParent()->front()) &&
480          "Only the entry block and landing pads can have physreg live ins");
481 
482   bool LiveIn = isLiveIn(PhysReg);
483   iterator I = SkipPHIsAndLabels(begin()), E = end();
484   MachineRegisterInfo &MRI = getParent()->getRegInfo();
485   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
486 
487   // Look for an existing copy.
488   if (LiveIn)
489     for (;I != E && I->isCopy(); ++I)
490       if (I->getOperand(1).getReg() == PhysReg) {
491         unsigned VirtReg = I->getOperand(0).getReg();
492         if (!MRI.constrainRegClass(VirtReg, RC))
493           llvm_unreachable("Incompatible live-in register class.");
494         return VirtReg;
495       }
496 
497   // No luck, create a virtual register.
498   unsigned VirtReg = MRI.createVirtualRegister(RC);
499   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
500     .addReg(PhysReg, RegState::Kill);
501   if (!LiveIn)
502     addLiveIn(PhysReg);
503   return VirtReg;
504 }
505 
506 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
507   getParent()->splice(NewAfter->getIterator(), getIterator());
508 }
509 
510 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
511   getParent()->splice(++NewBefore->getIterator(), getIterator());
512 }
513 
514 void MachineBasicBlock::updateTerminator() {
515   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
516   // A block with no successors has no concerns with fall-through edges.
517   if (this->succ_empty())
518     return;
519 
520   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
521   SmallVector<MachineOperand, 4> Cond;
522   DebugLoc DL = findBranchDebugLoc();
523   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
524   (void) B;
525   assert(!B && "UpdateTerminators requires analyzable predecessors!");
526   if (Cond.empty()) {
527     if (TBB) {
528       // The block has an unconditional branch. If its successor is now its
529       // layout successor, delete the branch.
530       if (isLayoutSuccessor(TBB))
531         TII->removeBranch(*this);
532     } else {
533       // The block has an unconditional fallthrough. If its successor is not its
534       // layout successor, insert a branch. First we have to locate the only
535       // non-landing-pad successor, as that is the fallthrough block.
536       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
537         if ((*SI)->isEHPad())
538           continue;
539         assert(!TBB && "Found more than one non-landing-pad successor!");
540         TBB = *SI;
541       }
542 
543       // If there is no non-landing-pad successor, the block has no fall-through
544       // edges to be concerned with.
545       if (!TBB)
546         return;
547 
548       // Finally update the unconditional successor to be reached via a branch
549       // if it would not be reached by fallthrough.
550       if (!isLayoutSuccessor(TBB))
551         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
552     }
553     return;
554   }
555 
556   if (FBB) {
557     // The block has a non-fallthrough conditional branch. If one of its
558     // successors is its layout successor, rewrite it to a fallthrough
559     // conditional branch.
560     if (isLayoutSuccessor(TBB)) {
561       if (TII->reverseBranchCondition(Cond))
562         return;
563       TII->removeBranch(*this);
564       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
565     } else if (isLayoutSuccessor(FBB)) {
566       TII->removeBranch(*this);
567       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
568     }
569     return;
570   }
571 
572   // Walk through the successors and find the successor which is not a landing
573   // pad and is not the conditional branch destination (in TBB) as the
574   // fallthrough successor.
575   MachineBasicBlock *FallthroughBB = nullptr;
576   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
577     if ((*SI)->isEHPad() || *SI == TBB)
578       continue;
579     assert(!FallthroughBB && "Found more than one fallthrough successor.");
580     FallthroughBB = *SI;
581   }
582 
583   if (!FallthroughBB) {
584     if (canFallThrough()) {
585       // We fallthrough to the same basic block as the conditional jump targets.
586       // Remove the conditional jump, leaving unconditional fallthrough.
587       // FIXME: This does not seem like a reasonable pattern to support, but it
588       // has been seen in the wild coming out of degenerate ARM test cases.
589       TII->removeBranch(*this);
590 
591       // Finally update the unconditional successor to be reached via a branch if
592       // it would not be reached by fallthrough.
593       if (!isLayoutSuccessor(TBB))
594         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
595       return;
596     }
597 
598     // We enter here iff exactly one successor is TBB which cannot fallthrough
599     // and the rest successors if any are EHPads.  In this case, we need to
600     // change the conditional branch into unconditional branch.
601     TII->removeBranch(*this);
602     Cond.clear();
603     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
604     return;
605   }
606 
607   // The block has a fallthrough conditional branch.
608   if (isLayoutSuccessor(TBB)) {
609     if (TII->reverseBranchCondition(Cond)) {
610       // We can't reverse the condition, add an unconditional branch.
611       Cond.clear();
612       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
613       return;
614     }
615     TII->removeBranch(*this);
616     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
617   } else if (!isLayoutSuccessor(FallthroughBB)) {
618     TII->removeBranch(*this);
619     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
620   }
621 }
622 
623 void MachineBasicBlock::validateSuccProbs() const {
624 #ifndef NDEBUG
625   int64_t Sum = 0;
626   for (auto Prob : Probs)
627     Sum += Prob.getNumerator();
628   // Due to precision issue, we assume that the sum of probabilities is one if
629   // the difference between the sum of their numerators and the denominator is
630   // no greater than the number of successors.
631   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
632              Probs.size() &&
633          "The sum of successors's probabilities exceeds one.");
634 #endif // NDEBUG
635 }
636 
637 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
638                                      BranchProbability Prob) {
639   // Probability list is either empty (if successor list isn't empty, this means
640   // disabled optimization) or has the same size as successor list.
641   if (!(Probs.empty() && !Successors.empty()))
642     Probs.push_back(Prob);
643   Successors.push_back(Succ);
644   Succ->addPredecessor(this);
645 }
646 
647 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
648   // We need to make sure probability list is either empty or has the same size
649   // of successor list. When this function is called, we can safely delete all
650   // probability in the list.
651   Probs.clear();
652   Successors.push_back(Succ);
653   Succ->addPredecessor(this);
654 }
655 
656 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
657                                         bool NormalizeSuccProbs) {
658   succ_iterator I = find(Successors, Succ);
659   removeSuccessor(I, NormalizeSuccProbs);
660 }
661 
662 MachineBasicBlock::succ_iterator
663 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
664   assert(I != Successors.end() && "Not a current successor!");
665 
666   // If probability list is empty it means we don't use it (disabled
667   // optimization).
668   if (!Probs.empty()) {
669     probability_iterator WI = getProbabilityIterator(I);
670     Probs.erase(WI);
671     if (NormalizeSuccProbs)
672       normalizeSuccProbs();
673   }
674 
675   (*I)->removePredecessor(this);
676   return Successors.erase(I);
677 }
678 
679 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
680                                          MachineBasicBlock *New) {
681   if (Old == New)
682     return;
683 
684   succ_iterator E = succ_end();
685   succ_iterator NewI = E;
686   succ_iterator OldI = E;
687   for (succ_iterator I = succ_begin(); I != E; ++I) {
688     if (*I == Old) {
689       OldI = I;
690       if (NewI != E)
691         break;
692     }
693     if (*I == New) {
694       NewI = I;
695       if (OldI != E)
696         break;
697     }
698   }
699   assert(OldI != E && "Old is not a successor of this block");
700 
701   // If New isn't already a successor, let it take Old's place.
702   if (NewI == E) {
703     Old->removePredecessor(this);
704     New->addPredecessor(this);
705     *OldI = New;
706     return;
707   }
708 
709   // New is already a successor.
710   // Update its probability instead of adding a duplicate edge.
711   if (!Probs.empty()) {
712     auto ProbIter = getProbabilityIterator(NewI);
713     if (!ProbIter->isUnknown())
714       *ProbIter += *getProbabilityIterator(OldI);
715   }
716   removeSuccessor(OldI);
717 }
718 
719 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
720   Predecessors.push_back(Pred);
721 }
722 
723 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
724   pred_iterator I = find(Predecessors, Pred);
725   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
726   Predecessors.erase(I);
727 }
728 
729 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
730   if (this == FromMBB)
731     return;
732 
733   while (!FromMBB->succ_empty()) {
734     MachineBasicBlock *Succ = *FromMBB->succ_begin();
735 
736     // If probability list is empty it means we don't use it (disabled optimization).
737     if (!FromMBB->Probs.empty()) {
738       auto Prob = *FromMBB->Probs.begin();
739       addSuccessor(Succ, Prob);
740     } else
741       addSuccessorWithoutProb(Succ);
742 
743     FromMBB->removeSuccessor(Succ);
744   }
745 }
746 
747 void
748 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
749   if (this == FromMBB)
750     return;
751 
752   while (!FromMBB->succ_empty()) {
753     MachineBasicBlock *Succ = *FromMBB->succ_begin();
754     if (!FromMBB->Probs.empty()) {
755       auto Prob = *FromMBB->Probs.begin();
756       addSuccessor(Succ, Prob);
757     } else
758       addSuccessorWithoutProb(Succ);
759     FromMBB->removeSuccessor(Succ);
760 
761     // Fix up any PHI nodes in the successor.
762     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
763            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
764       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
765         MachineOperand &MO = MI->getOperand(i);
766         if (MO.getMBB() == FromMBB)
767           MO.setMBB(this);
768       }
769   }
770   normalizeSuccProbs();
771 }
772 
773 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
774   return is_contained(predecessors(), MBB);
775 }
776 
777 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
778   return is_contained(successors(), MBB);
779 }
780 
781 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
782   MachineFunction::const_iterator I(this);
783   return std::next(I) == MachineFunction::const_iterator(MBB);
784 }
785 
786 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
787   MachineFunction::iterator Fallthrough = getIterator();
788   ++Fallthrough;
789   // If FallthroughBlock is off the end of the function, it can't fall through.
790   if (Fallthrough == getParent()->end())
791     return nullptr;
792 
793   // If FallthroughBlock isn't a successor, no fallthrough is possible.
794   if (!isSuccessor(&*Fallthrough))
795     return nullptr;
796 
797   // Analyze the branches, if any, at the end of the block.
798   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
799   SmallVector<MachineOperand, 4> Cond;
800   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
801   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
802     // If we couldn't analyze the branch, examine the last instruction.
803     // If the block doesn't end in a known control barrier, assume fallthrough
804     // is possible. The isPredicated check is needed because this code can be
805     // called during IfConversion, where an instruction which is normally a
806     // Barrier is predicated and thus no longer an actual control barrier.
807     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
808                ? &*Fallthrough
809                : nullptr;
810   }
811 
812   // If there is no branch, control always falls through.
813   if (!TBB) return &*Fallthrough;
814 
815   // If there is some explicit branch to the fallthrough block, it can obviously
816   // reach, even though the branch should get folded to fall through implicitly.
817   if (MachineFunction::iterator(TBB) == Fallthrough ||
818       MachineFunction::iterator(FBB) == Fallthrough)
819     return &*Fallthrough;
820 
821   // If it's an unconditional branch to some block not the fall through, it
822   // doesn't fall through.
823   if (Cond.empty()) return nullptr;
824 
825   // Otherwise, if it is conditional and has no explicit false block, it falls
826   // through.
827   return (FBB == nullptr) ? &*Fallthrough : nullptr;
828 }
829 
830 bool MachineBasicBlock::canFallThrough() {
831   return getFallThrough() != nullptr;
832 }
833 
834 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
835                                                         Pass &P) {
836   if (!canSplitCriticalEdge(Succ))
837     return nullptr;
838 
839   MachineFunction *MF = getParent();
840   DebugLoc DL;  // FIXME: this is nowhere
841 
842   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
843   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
844   DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
845                << " -- " << printMBBReference(*NMBB) << " -- "
846                << printMBBReference(*Succ) << '\n');
847 
848   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
849   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
850   if (LIS)
851     LIS->insertMBBInMaps(NMBB);
852   else if (Indexes)
853     Indexes->insertMBBInMaps(NMBB);
854 
855   // On some targets like Mips, branches may kill virtual registers. Make sure
856   // that LiveVariables is properly updated after updateTerminator replaces the
857   // terminators.
858   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
859 
860   // Collect a list of virtual registers killed by the terminators.
861   SmallVector<unsigned, 4> KilledRegs;
862   if (LV)
863     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
864          I != E; ++I) {
865       MachineInstr *MI = &*I;
866       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
867            OE = MI->operands_end(); OI != OE; ++OI) {
868         if (!OI->isReg() || OI->getReg() == 0 ||
869             !OI->isUse() || !OI->isKill() || OI->isUndef())
870           continue;
871         unsigned Reg = OI->getReg();
872         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
873             LV->getVarInfo(Reg).removeKill(*MI)) {
874           KilledRegs.push_back(Reg);
875           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
876           OI->setIsKill(false);
877         }
878       }
879     }
880 
881   SmallVector<unsigned, 4> UsedRegs;
882   if (LIS) {
883     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
884          I != E; ++I) {
885       MachineInstr *MI = &*I;
886 
887       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
888            OE = MI->operands_end(); OI != OE; ++OI) {
889         if (!OI->isReg() || OI->getReg() == 0)
890           continue;
891 
892         unsigned Reg = OI->getReg();
893         if (!is_contained(UsedRegs, Reg))
894           UsedRegs.push_back(Reg);
895       }
896     }
897   }
898 
899   ReplaceUsesOfBlockWith(Succ, NMBB);
900 
901   // If updateTerminator() removes instructions, we need to remove them from
902   // SlotIndexes.
903   SmallVector<MachineInstr*, 4> Terminators;
904   if (Indexes) {
905     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
906          I != E; ++I)
907       Terminators.push_back(&*I);
908   }
909 
910   updateTerminator();
911 
912   if (Indexes) {
913     SmallVector<MachineInstr*, 4> NewTerminators;
914     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
915          I != E; ++I)
916       NewTerminators.push_back(&*I);
917 
918     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
919         E = Terminators.end(); I != E; ++I) {
920       if (!is_contained(NewTerminators, *I))
921         Indexes->removeMachineInstrFromMaps(**I);
922     }
923   }
924 
925   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
926   NMBB->addSuccessor(Succ);
927   if (!NMBB->isLayoutSuccessor(Succ)) {
928     SmallVector<MachineOperand, 4> Cond;
929     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
930     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
931 
932     if (Indexes) {
933       for (MachineInstr &MI : NMBB->instrs()) {
934         // Some instructions may have been moved to NMBB by updateTerminator(),
935         // so we first remove any instruction that already has an index.
936         if (Indexes->hasIndex(MI))
937           Indexes->removeMachineInstrFromMaps(MI);
938         Indexes->insertMachineInstrInMaps(MI);
939       }
940     }
941   }
942 
943   // Fix PHI nodes in Succ so they refer to NMBB instead of this
944   for (MachineBasicBlock::instr_iterator
945          i = Succ->instr_begin(),e = Succ->instr_end();
946        i != e && i->isPHI(); ++i)
947     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
948       if (i->getOperand(ni+1).getMBB() == this)
949         i->getOperand(ni+1).setMBB(NMBB);
950 
951   // Inherit live-ins from the successor
952   for (const auto &LI : Succ->liveins())
953     NMBB->addLiveIn(LI);
954 
955   // Update LiveVariables.
956   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
957   if (LV) {
958     // Restore kills of virtual registers that were killed by the terminators.
959     while (!KilledRegs.empty()) {
960       unsigned Reg = KilledRegs.pop_back_val();
961       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
962         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
963           continue;
964         if (TargetRegisterInfo::isVirtualRegister(Reg))
965           LV->getVarInfo(Reg).Kills.push_back(&*I);
966         DEBUG(dbgs() << "Restored terminator kill: " << *I);
967         break;
968       }
969     }
970     // Update relevant live-through information.
971     LV->addNewBlock(NMBB, this, Succ);
972   }
973 
974   if (LIS) {
975     // After splitting the edge and updating SlotIndexes, live intervals may be
976     // in one of two situations, depending on whether this block was the last in
977     // the function. If the original block was the last in the function, all
978     // live intervals will end prior to the beginning of the new split block. If
979     // the original block was not at the end of the function, all live intervals
980     // will extend to the end of the new split block.
981 
982     bool isLastMBB =
983       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
984 
985     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
986     SlotIndex PrevIndex = StartIndex.getPrevSlot();
987     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
988 
989     // Find the registers used from NMBB in PHIs in Succ.
990     SmallSet<unsigned, 8> PHISrcRegs;
991     for (MachineBasicBlock::instr_iterator
992          I = Succ->instr_begin(), E = Succ->instr_end();
993          I != E && I->isPHI(); ++I) {
994       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
995         if (I->getOperand(ni+1).getMBB() == NMBB) {
996           MachineOperand &MO = I->getOperand(ni);
997           unsigned Reg = MO.getReg();
998           PHISrcRegs.insert(Reg);
999           if (MO.isUndef())
1000             continue;
1001 
1002           LiveInterval &LI = LIS->getInterval(Reg);
1003           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1004           assert(VNI &&
1005                  "PHI sources should be live out of their predecessors.");
1006           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1007         }
1008       }
1009     }
1010 
1011     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1012     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1013       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1014       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1015         continue;
1016 
1017       LiveInterval &LI = LIS->getInterval(Reg);
1018       if (!LI.liveAt(PrevIndex))
1019         continue;
1020 
1021       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1022       if (isLiveOut && isLastMBB) {
1023         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1024         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1025         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1026       } else if (!isLiveOut && !isLastMBB) {
1027         LI.removeSegment(StartIndex, EndIndex);
1028       }
1029     }
1030 
1031     // Update all intervals for registers whose uses may have been modified by
1032     // updateTerminator().
1033     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1034   }
1035 
1036   if (MachineDominatorTree *MDT =
1037           P.getAnalysisIfAvailable<MachineDominatorTree>())
1038     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1039 
1040   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1041     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1042       // If one or the other blocks were not in a loop, the new block is not
1043       // either, and thus LI doesn't need to be updated.
1044       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1045         if (TIL == DestLoop) {
1046           // Both in the same loop, the NMBB joins loop.
1047           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1048         } else if (TIL->contains(DestLoop)) {
1049           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1050           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1051         } else if (DestLoop->contains(TIL)) {
1052           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1053           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1054         } else {
1055           // Edge from two loops with no containment relation.  Because these
1056           // are natural loops, we know that the destination block must be the
1057           // header of its loop (adding a branch into a loop elsewhere would
1058           // create an irreducible loop).
1059           assert(DestLoop->getHeader() == Succ &&
1060                  "Should not create irreducible loops!");
1061           if (MachineLoop *P = DestLoop->getParentLoop())
1062             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1063         }
1064       }
1065     }
1066 
1067   return NMBB;
1068 }
1069 
1070 bool MachineBasicBlock::canSplitCriticalEdge(
1071     const MachineBasicBlock *Succ) const {
1072   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1073   // it in this generic function.
1074   if (Succ->isEHPad())
1075     return false;
1076 
1077   const MachineFunction *MF = getParent();
1078 
1079   // Performance might be harmed on HW that implements branching using exec mask
1080   // where both sides of the branches are always executed.
1081   if (MF->getTarget().requiresStructuredCFG())
1082     return false;
1083 
1084   // We may need to update this's terminator, but we can't do that if
1085   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1086   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1087   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1088   SmallVector<MachineOperand, 4> Cond;
1089   // AnalyzeBanch should modify this, since we did not allow modification.
1090   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1091                          /*AllowModify*/ false))
1092     return false;
1093 
1094   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1095   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1096   // case that we can't handle. Since this never happens in properly optimized
1097   // code, just skip those edges.
1098   if (TBB && TBB == FBB) {
1099     DEBUG(dbgs() << "Won't split critical edge after degenerate "
1100                  << printMBBReference(*this) << '\n');
1101     return false;
1102   }
1103   return true;
1104 }
1105 
1106 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1107 /// neighboring instructions so the bundle won't be broken by removing MI.
1108 static void unbundleSingleMI(MachineInstr *MI) {
1109   // Removing the first instruction in a bundle.
1110   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1111     MI->unbundleFromSucc();
1112   // Removing the last instruction in a bundle.
1113   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1114     MI->unbundleFromPred();
1115   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1116   // are already fine.
1117 }
1118 
1119 MachineBasicBlock::instr_iterator
1120 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1121   unbundleSingleMI(&*I);
1122   return Insts.erase(I);
1123 }
1124 
1125 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1126   unbundleSingleMI(MI);
1127   MI->clearFlag(MachineInstr::BundledPred);
1128   MI->clearFlag(MachineInstr::BundledSucc);
1129   return Insts.remove(MI);
1130 }
1131 
1132 MachineBasicBlock::instr_iterator
1133 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1134   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1135          "Cannot insert instruction with bundle flags");
1136   // Set the bundle flags when inserting inside a bundle.
1137   if (I != instr_end() && I->isBundledWithPred()) {
1138     MI->setFlag(MachineInstr::BundledPred);
1139     MI->setFlag(MachineInstr::BundledSucc);
1140   }
1141   return Insts.insert(I, MI);
1142 }
1143 
1144 /// This method unlinks 'this' from the containing function, and returns it, but
1145 /// does not delete it.
1146 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1147   assert(getParent() && "Not embedded in a function!");
1148   getParent()->remove(this);
1149   return this;
1150 }
1151 
1152 /// This method unlinks 'this' from the containing function, and deletes it.
1153 void MachineBasicBlock::eraseFromParent() {
1154   assert(getParent() && "Not embedded in a function!");
1155   getParent()->erase(this);
1156 }
1157 
1158 /// Given a machine basic block that branched to 'Old', change the code and CFG
1159 /// so that it branches to 'New' instead.
1160 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1161                                                MachineBasicBlock *New) {
1162   assert(Old != New && "Cannot replace self with self!");
1163 
1164   MachineBasicBlock::instr_iterator I = instr_end();
1165   while (I != instr_begin()) {
1166     --I;
1167     if (!I->isTerminator()) break;
1168 
1169     // Scan the operands of this machine instruction, replacing any uses of Old
1170     // with New.
1171     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1172       if (I->getOperand(i).isMBB() &&
1173           I->getOperand(i).getMBB() == Old)
1174         I->getOperand(i).setMBB(New);
1175   }
1176 
1177   // Update the successor information.
1178   replaceSuccessor(Old, New);
1179 }
1180 
1181 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1182 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1183 /// MBB successors from the CFG.  DestA and DestB can be null.
1184 ///
1185 /// Besides DestA and DestB, retain other edges leading to LandingPads
1186 /// (currently there can be only one; we don't check or require that here).
1187 /// Note it is possible that DestA and/or DestB are LandingPads.
1188 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1189                                              MachineBasicBlock *DestB,
1190                                              bool IsCond) {
1191   // The values of DestA and DestB frequently come from a call to the
1192   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1193   // values from there.
1194   //
1195   // 1. If both DestA and DestB are null, then the block ends with no branches
1196   //    (it falls through to its successor).
1197   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1198   //    with only an unconditional branch.
1199   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1200   //    with a conditional branch that falls through to a successor (DestB).
1201   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1202   //    conditional branch followed by an unconditional branch. DestA is the
1203   //    'true' destination and DestB is the 'false' destination.
1204 
1205   bool Changed = false;
1206 
1207   MachineBasicBlock *FallThru = getNextNode();
1208 
1209   if (!DestA && !DestB) {
1210     // Block falls through to successor.
1211     DestA = FallThru;
1212     DestB = FallThru;
1213   } else if (DestA && !DestB) {
1214     if (IsCond)
1215       // Block ends in conditional jump that falls through to successor.
1216       DestB = FallThru;
1217   } else {
1218     assert(DestA && DestB && IsCond &&
1219            "CFG in a bad state. Cannot correct CFG edges");
1220   }
1221 
1222   // Remove superfluous edges. I.e., those which aren't destinations of this
1223   // basic block, duplicate edges, or landing pads.
1224   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1225   MachineBasicBlock::succ_iterator SI = succ_begin();
1226   while (SI != succ_end()) {
1227     const MachineBasicBlock *MBB = *SI;
1228     if (!SeenMBBs.insert(MBB).second ||
1229         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1230       // This is a superfluous edge, remove it.
1231       SI = removeSuccessor(SI);
1232       Changed = true;
1233     } else {
1234       ++SI;
1235     }
1236   }
1237 
1238   if (Changed)
1239     normalizeSuccProbs();
1240   return Changed;
1241 }
1242 
1243 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1244 /// instructions.  Return UnknownLoc if there is none.
1245 DebugLoc
1246 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1247   // Skip debug declarations, we don't want a DebugLoc from them.
1248   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1249   if (MBBI != instr_end())
1250     return MBBI->getDebugLoc();
1251   return {};
1252 }
1253 
1254 /// Find and return the merged DebugLoc of the branch instructions of the block.
1255 /// Return UnknownLoc if there is none.
1256 DebugLoc
1257 MachineBasicBlock::findBranchDebugLoc() {
1258   DebugLoc DL;
1259   auto TI = getFirstTerminator();
1260   while (TI != end() && !TI->isBranch())
1261     ++TI;
1262 
1263   if (TI != end()) {
1264     DL = TI->getDebugLoc();
1265     for (++TI ; TI != end() ; ++TI)
1266       if (TI->isBranch())
1267         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1268   }
1269   return DL;
1270 }
1271 
1272 /// Return probability of the edge from this block to MBB.
1273 BranchProbability
1274 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1275   if (Probs.empty())
1276     return BranchProbability(1, succ_size());
1277 
1278   const auto &Prob = *getProbabilityIterator(Succ);
1279   if (Prob.isUnknown()) {
1280     // For unknown probabilities, collect the sum of all known ones, and evenly
1281     // ditribute the complemental of the sum to each unknown probability.
1282     unsigned KnownProbNum = 0;
1283     auto Sum = BranchProbability::getZero();
1284     for (auto &P : Probs) {
1285       if (!P.isUnknown()) {
1286         Sum += P;
1287         KnownProbNum++;
1288       }
1289     }
1290     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1291   } else
1292     return Prob;
1293 }
1294 
1295 /// Set successor probability of a given iterator.
1296 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1297                                            BranchProbability Prob) {
1298   assert(!Prob.isUnknown());
1299   if (Probs.empty())
1300     return;
1301   *getProbabilityIterator(I) = Prob;
1302 }
1303 
1304 /// Return probability iterator corresonding to the I successor iterator
1305 MachineBasicBlock::const_probability_iterator
1306 MachineBasicBlock::getProbabilityIterator(
1307     MachineBasicBlock::const_succ_iterator I) const {
1308   assert(Probs.size() == Successors.size() && "Async probability list!");
1309   const size_t index = std::distance(Successors.begin(), I);
1310   assert(index < Probs.size() && "Not a current successor!");
1311   return Probs.begin() + index;
1312 }
1313 
1314 /// Return probability iterator corresonding to the I successor iterator.
1315 MachineBasicBlock::probability_iterator
1316 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1317   assert(Probs.size() == Successors.size() && "Async probability list!");
1318   const size_t index = std::distance(Successors.begin(), I);
1319   assert(index < Probs.size() && "Not a current successor!");
1320   return Probs.begin() + index;
1321 }
1322 
1323 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1324 /// as of just before "MI".
1325 ///
1326 /// Search is localised to a neighborhood of
1327 /// Neighborhood instructions before (searching for defs or kills) and N
1328 /// instructions after (searching just for defs) MI.
1329 MachineBasicBlock::LivenessQueryResult
1330 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1331                                            unsigned Reg, const_iterator Before,
1332                                            unsigned Neighborhood) const {
1333   unsigned N = Neighborhood;
1334 
1335   // Start by searching backwards from Before, looking for kills, reads or defs.
1336   const_iterator I(Before);
1337   // If this is the first insn in the block, don't search backwards.
1338   if (I != begin()) {
1339     do {
1340       --I;
1341 
1342       MachineOperandIteratorBase::PhysRegInfo Info =
1343           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1344 
1345       // Defs happen after uses so they take precedence if both are present.
1346 
1347       // Register is dead after a dead def of the full register.
1348       if (Info.DeadDef)
1349         return LQR_Dead;
1350       // Register is (at least partially) live after a def.
1351       if (Info.Defined) {
1352         if (!Info.PartialDeadDef)
1353           return LQR_Live;
1354         // As soon as we saw a partial definition (dead or not),
1355         // we cannot tell if the value is partial live without
1356         // tracking the lanemasks. We are not going to do this,
1357         // so fall back on the remaining of the analysis.
1358         break;
1359       }
1360       // Register is dead after a full kill or clobber and no def.
1361       if (Info.Killed || Info.Clobbered)
1362         return LQR_Dead;
1363       // Register must be live if we read it.
1364       if (Info.Read)
1365         return LQR_Live;
1366     } while (I != begin() && --N > 0);
1367   }
1368 
1369   // Did we get to the start of the block?
1370   if (I == begin()) {
1371     // If so, the register's state is definitely defined by the live-in state.
1372     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
1373          ++RAI)
1374       if (isLiveIn(*RAI))
1375         return LQR_Live;
1376 
1377     return LQR_Dead;
1378   }
1379 
1380   N = Neighborhood;
1381 
1382   // Try searching forwards from Before, looking for reads or defs.
1383   I = const_iterator(Before);
1384   // If this is the last insn in the block, don't search forwards.
1385   if (I != end()) {
1386     for (++I; I != end() && N > 0; ++I, --N) {
1387       MachineOperandIteratorBase::PhysRegInfo Info =
1388           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1389 
1390       // Register is live when we read it here.
1391       if (Info.Read)
1392         return LQR_Live;
1393       // Register is dead if we can fully overwrite or clobber it here.
1394       if (Info.FullyDefined || Info.Clobbered)
1395         return LQR_Dead;
1396     }
1397   }
1398 
1399   // At this point we have no idea of the liveness of the register.
1400   return LQR_Unknown;
1401 }
1402 
1403 const uint32_t *
1404 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1405   // EH funclet entry does not preserve any registers.
1406   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1407 }
1408 
1409 const uint32_t *
1410 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1411   // If we see a return block with successors, this must be a funclet return,
1412   // which does not preserve any registers. If there are no successors, we don't
1413   // care what kind of return it is, putting a mask after it is a no-op.
1414   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1415 }
1416 
1417 void MachineBasicBlock::clearLiveIns() {
1418   LiveIns.clear();
1419 }
1420 
1421 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1422   assert(getParent()->getProperties().hasProperty(
1423       MachineFunctionProperties::Property::TracksLiveness) &&
1424       "Liveness information is accurate");
1425   return LiveIns.begin();
1426 }
1427