xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision ac0b2814c34959ebaa8f054db019bd287fdff54d)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/StringExtras.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LivePhysRegs.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SlotIndexes.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/ModuleSlotTracker.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCContext.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <algorithm>
40 #include <cmath>
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "codegen"
44 
45 static cl::opt<bool> PrintSlotIndexes(
46     "print-slotindexes",
47     cl::desc("When printing machine IR, annotate instructions and blocks with "
48              "SlotIndexes when available"),
49     cl::init(true), cl::Hidden);
50 
51 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
52     : BB(B), Number(-1), xParent(&MF) {
53   Insts.Parent = this;
54   if (B)
55     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
56 }
57 
58 MachineBasicBlock::~MachineBasicBlock() = default;
59 
60 /// Return the MCSymbol for this basic block.
61 MCSymbol *MachineBasicBlock::getSymbol() const {
62   if (!CachedMCSymbol) {
63     const MachineFunction *MF = getParent();
64     MCContext &Ctx = MF->getContext();
65 
66     // We emit a non-temporary symbol -- with a descriptive name -- if it begins
67     // a section (with basic block sections). Otherwise we fall back to use temp
68     // label.
69     if (MF->hasBBSections() && isBeginSection()) {
70       SmallString<5> Suffix;
71       if (SectionID == MBBSectionID::ColdSectionID) {
72         Suffix += ".cold";
73       } else if (SectionID == MBBSectionID::ExceptionSectionID) {
74         Suffix += ".eh";
75       } else {
76         // For symbols that represent basic block sections, we add ".__part." to
77         // allow tools like symbolizers to know that this represents a part of
78         // the original function.
79         Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
80       }
81       CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
82     } else {
83       // If the block occurs as label in inline assembly, parsing the assembly
84       // needs an actual label name => set AlwaysEmit in these cases.
85       CachedMCSymbol = Ctx.createBlockSymbol(
86           "BB" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber()),
87           /*AlwaysEmit=*/hasLabelMustBeEmitted());
88     }
89   }
90   return CachedMCSymbol;
91 }
92 
93 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
94   if (!CachedEHCatchretMCSymbol) {
95     const MachineFunction *MF = getParent();
96     SmallString<128> SymbolName;
97     raw_svector_ostream(SymbolName)
98         << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
99     CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
100   }
101   return CachedEHCatchretMCSymbol;
102 }
103 
104 MCSymbol *MachineBasicBlock::getEndSymbol() const {
105   if (!CachedEndMCSymbol) {
106     const MachineFunction *MF = getParent();
107     MCContext &Ctx = MF->getContext();
108     CachedEndMCSymbol = Ctx.createBlockSymbol(
109         "BB_END" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber()),
110         /*AlwaysEmit=*/false);
111   }
112   return CachedEndMCSymbol;
113 }
114 
115 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
116   MBB.print(OS);
117   return OS;
118 }
119 
120 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
121   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
122 }
123 
124 /// When an MBB is added to an MF, we need to update the parent pointer of the
125 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
126 /// operand list for registers.
127 ///
128 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
129 /// gets the next available unique MBB number. If it is removed from a
130 /// MachineFunction, it goes back to being #-1.
131 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
132     MachineBasicBlock *N) {
133   MachineFunction &MF = *N->getParent();
134   N->Number = MF.addToMBBNumbering(N);
135 
136   // Make sure the instructions have their operands in the reginfo lists.
137   MachineRegisterInfo &RegInfo = MF.getRegInfo();
138   for (MachineInstr &MI : N->instrs())
139     MI.addRegOperandsToUseLists(RegInfo);
140 }
141 
142 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
143     MachineBasicBlock *N) {
144   N->getParent()->removeFromMBBNumbering(N->Number);
145   N->Number = -1;
146 }
147 
148 /// When we add an instruction to a basic block list, we update its parent
149 /// pointer and add its operands from reg use/def lists if appropriate.
150 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
151   assert(!N->getParent() && "machine instruction already in a basic block");
152   N->setParent(Parent);
153 
154   // Add the instruction's register operands to their corresponding
155   // use/def lists.
156   MachineFunction *MF = Parent->getParent();
157   N->addRegOperandsToUseLists(MF->getRegInfo());
158   MF->handleInsertion(*N);
159 }
160 
161 /// When we remove an instruction from a basic block list, we update its parent
162 /// pointer and remove its operands from reg use/def lists if appropriate.
163 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
164   assert(N->getParent() && "machine instruction not in a basic block");
165 
166   // Remove from the use/def lists.
167   if (MachineFunction *MF = N->getMF()) {
168     MF->handleRemoval(*N);
169     N->removeRegOperandsFromUseLists(MF->getRegInfo());
170   }
171 
172   N->setParent(nullptr);
173 }
174 
175 /// When moving a range of instructions from one MBB list to another, we need to
176 /// update the parent pointers and the use/def lists.
177 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
178                                                        instr_iterator First,
179                                                        instr_iterator Last) {
180   assert(Parent->getParent() == FromList.Parent->getParent() &&
181          "cannot transfer MachineInstrs between MachineFunctions");
182 
183   // If it's within the same BB, there's nothing to do.
184   if (this == &FromList)
185     return;
186 
187   assert(Parent != FromList.Parent && "Two lists have the same parent?");
188 
189   // If splicing between two blocks within the same function, just update the
190   // parent pointers.
191   for (; First != Last; ++First)
192     First->setParent(Parent);
193 }
194 
195 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
196   assert(!MI->getParent() && "MI is still in a block!");
197   Parent->getParent()->deleteMachineInstr(MI);
198 }
199 
200 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
201   instr_iterator I = instr_begin(), E = instr_end();
202   while (I != E && I->isPHI())
203     ++I;
204   assert((I == E || !I->isInsideBundle()) &&
205          "First non-phi MI cannot be inside a bundle!");
206   return I;
207 }
208 
209 MachineBasicBlock::iterator
210 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
211   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
212 
213   iterator E = end();
214   while (I != E && (I->isPHI() || I->isPosition() ||
215                     TII->isBasicBlockPrologue(*I)))
216     ++I;
217   // FIXME: This needs to change if we wish to bundle labels
218   // inside the bundle.
219   assert((I == E || !I->isInsideBundle()) &&
220          "First non-phi / non-label instruction is inside a bundle!");
221   return I;
222 }
223 
224 MachineBasicBlock::iterator
225 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
226                                           Register Reg, bool SkipPseudoOp) {
227   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
228 
229   iterator E = end();
230   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
231                     (SkipPseudoOp && I->isPseudoProbe()) ||
232                     TII->isBasicBlockPrologue(*I, Reg)))
233     ++I;
234   // FIXME: This needs to change if we wish to bundle labels / dbg_values
235   // inside the bundle.
236   assert((I == E || !I->isInsideBundle()) &&
237          "First non-phi / non-label / non-debug "
238          "instruction is inside a bundle!");
239   return I;
240 }
241 
242 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
243   iterator B = begin(), E = end(), I = E;
244   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
245     ; /*noop */
246   while (I != E && !I->isTerminator())
247     ++I;
248   return I;
249 }
250 
251 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
252   instr_iterator B = instr_begin(), E = instr_end(), I = E;
253   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
254     ; /*noop */
255   while (I != E && !I->isTerminator())
256     ++I;
257   return I;
258 }
259 
260 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() {
261   return find_if(instrs(), [](auto &II) { return II.isTerminator(); });
262 }
263 
264 MachineBasicBlock::iterator
265 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
266   // Skip over begin-of-block dbg_value instructions.
267   return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
268 }
269 
270 MachineBasicBlock::iterator
271 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
272   // Skip over end-of-block dbg_value instructions.
273   instr_iterator B = instr_begin(), I = instr_end();
274   while (I != B) {
275     --I;
276     // Return instruction that starts a bundle.
277     if (I->isDebugInstr() || I->isInsideBundle())
278       continue;
279     if (SkipPseudoOp && I->isPseudoProbe())
280       continue;
281     return I;
282   }
283   // The block is all debug values.
284   return end();
285 }
286 
287 bool MachineBasicBlock::hasEHPadSuccessor() const {
288   for (const MachineBasicBlock *Succ : successors())
289     if (Succ->isEHPad())
290       return true;
291   return false;
292 }
293 
294 bool MachineBasicBlock::isEntryBlock() const {
295   return getParent()->begin() == getIterator();
296 }
297 
298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
299 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
300   print(dbgs());
301 }
302 #endif
303 
304 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
305   for (const MachineBasicBlock *Succ : successors()) {
306     if (Succ->isInlineAsmBrIndirectTarget())
307       return true;
308   }
309   return false;
310 }
311 
312 bool MachineBasicBlock::isLegalToHoistInto() const {
313   if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
314     return false;
315   return true;
316 }
317 
318 bool MachineBasicBlock::hasName() const {
319   if (const BasicBlock *LBB = getBasicBlock())
320     return LBB->hasName();
321   return false;
322 }
323 
324 StringRef MachineBasicBlock::getName() const {
325   if (const BasicBlock *LBB = getBasicBlock())
326     return LBB->getName();
327   else
328     return StringRef("", 0);
329 }
330 
331 /// Return a hopefully unique identifier for this block.
332 std::string MachineBasicBlock::getFullName() const {
333   std::string Name;
334   if (getParent())
335     Name = (getParent()->getName() + ":").str();
336   if (getBasicBlock())
337     Name += getBasicBlock()->getName();
338   else
339     Name += ("BB" + Twine(getNumber())).str();
340   return Name;
341 }
342 
343 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
344                               bool IsStandalone) const {
345   const MachineFunction *MF = getParent();
346   if (!MF) {
347     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
348        << " is null\n";
349     return;
350   }
351   const Function &F = MF->getFunction();
352   const Module *M = F.getParent();
353   ModuleSlotTracker MST(M);
354   MST.incorporateFunction(F);
355   print(OS, MST, Indexes, IsStandalone);
356 }
357 
358 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
359                               const SlotIndexes *Indexes,
360                               bool IsStandalone) const {
361   const MachineFunction *MF = getParent();
362   if (!MF) {
363     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
364        << " is null\n";
365     return;
366   }
367 
368   if (Indexes && PrintSlotIndexes)
369     OS << Indexes->getMBBStartIdx(this) << '\t';
370 
371   printName(OS, PrintNameIr | PrintNameAttributes, &MST);
372   OS << ":\n";
373 
374   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
375   const MachineRegisterInfo &MRI = MF->getRegInfo();
376   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
377   bool HasLineAttributes = false;
378 
379   // Print the preds of this block according to the CFG.
380   if (!pred_empty() && IsStandalone) {
381     if (Indexes) OS << '\t';
382     // Don't indent(2), align with previous line attributes.
383     OS << "; predecessors: ";
384     ListSeparator LS;
385     for (auto *Pred : predecessors())
386       OS << LS << printMBBReference(*Pred);
387     OS << '\n';
388     HasLineAttributes = true;
389   }
390 
391   if (!succ_empty()) {
392     if (Indexes) OS << '\t';
393     // Print the successors
394     OS.indent(2) << "successors: ";
395     ListSeparator LS;
396     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
397       OS << LS << printMBBReference(**I);
398       if (!Probs.empty())
399         OS << '('
400            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
401            << ')';
402     }
403     if (!Probs.empty() && IsStandalone) {
404       // Print human readable probabilities as comments.
405       OS << "; ";
406       ListSeparator LS;
407       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
408         const BranchProbability &BP = getSuccProbability(I);
409         OS << LS << printMBBReference(**I) << '('
410            << format("%.2f%%",
411                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
412                           100.0 * 100.0) /
413                          100.0)
414            << ')';
415       }
416     }
417 
418     OS << '\n';
419     HasLineAttributes = true;
420   }
421 
422   if (!livein_empty() && MRI.tracksLiveness()) {
423     if (Indexes) OS << '\t';
424     OS.indent(2) << "liveins: ";
425 
426     ListSeparator LS;
427     for (const auto &LI : liveins()) {
428       OS << LS << printReg(LI.PhysReg, TRI);
429       if (!LI.LaneMask.all())
430         OS << ":0x" << PrintLaneMask(LI.LaneMask);
431     }
432     HasLineAttributes = true;
433   }
434 
435   if (HasLineAttributes)
436     OS << '\n';
437 
438   bool IsInBundle = false;
439   for (const MachineInstr &MI : instrs()) {
440     if (Indexes && PrintSlotIndexes) {
441       if (Indexes->hasIndex(MI))
442         OS << Indexes->getInstructionIndex(MI);
443       OS << '\t';
444     }
445 
446     if (IsInBundle && !MI.isInsideBundle()) {
447       OS.indent(2) << "}\n";
448       IsInBundle = false;
449     }
450 
451     OS.indent(IsInBundle ? 4 : 2);
452     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
453              /*AddNewLine=*/false, &TII);
454 
455     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
456       OS << " {";
457       IsInBundle = true;
458     }
459     OS << '\n';
460   }
461 
462   if (IsInBundle)
463     OS.indent(2) << "}\n";
464 
465   if (IrrLoopHeaderWeight && IsStandalone) {
466     if (Indexes) OS << '\t';
467     OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight
468                  << '\n';
469   }
470 }
471 
472 /// Print the basic block's name as:
473 ///
474 ///    bb.{number}[.{ir-name}] [(attributes...)]
475 ///
476 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
477 /// (which is the default). If the IR block has no name, it is identified
478 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
479 ///
480 /// When the \ref PrintNameAttributes flag is passed, additional attributes
481 /// of the block are printed when set.
482 ///
483 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
484 ///                       the parts to print.
485 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
486 ///                          incorporate its own tracker when necessary to
487 ///                          determine the block's IR name.
488 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
489                                   ModuleSlotTracker *moduleSlotTracker) const {
490   os << "bb." << getNumber();
491   bool hasAttributes = false;
492 
493   auto PrintBBRef = [&](const BasicBlock *bb) {
494     os << "%ir-block.";
495     if (bb->hasName()) {
496       os << bb->getName();
497     } else {
498       int slot = -1;
499 
500       if (moduleSlotTracker) {
501         slot = moduleSlotTracker->getLocalSlot(bb);
502       } else if (bb->getParent()) {
503         ModuleSlotTracker tmpTracker(bb->getModule(), false);
504         tmpTracker.incorporateFunction(*bb->getParent());
505         slot = tmpTracker.getLocalSlot(bb);
506       }
507 
508       if (slot == -1)
509         os << "<ir-block badref>";
510       else
511         os << slot;
512     }
513   };
514 
515   if (printNameFlags & PrintNameIr) {
516     if (const auto *bb = getBasicBlock()) {
517       if (bb->hasName()) {
518         os << '.' << bb->getName();
519       } else {
520         hasAttributes = true;
521         os << " (";
522         PrintBBRef(bb);
523       }
524     }
525   }
526 
527   if (printNameFlags & PrintNameAttributes) {
528     if (isMachineBlockAddressTaken()) {
529       os << (hasAttributes ? ", " : " (");
530       os << "machine-block-address-taken";
531       hasAttributes = true;
532     }
533     if (isIRBlockAddressTaken()) {
534       os << (hasAttributes ? ", " : " (");
535       os << "ir-block-address-taken ";
536       PrintBBRef(getAddressTakenIRBlock());
537       hasAttributes = true;
538     }
539     if (isEHPad()) {
540       os << (hasAttributes ? ", " : " (");
541       os << "landing-pad";
542       hasAttributes = true;
543     }
544     if (isInlineAsmBrIndirectTarget()) {
545       os << (hasAttributes ? ", " : " (");
546       os << "inlineasm-br-indirect-target";
547       hasAttributes = true;
548     }
549     if (isEHFuncletEntry()) {
550       os << (hasAttributes ? ", " : " (");
551       os << "ehfunclet-entry";
552       hasAttributes = true;
553     }
554     if (getAlignment() != Align(1)) {
555       os << (hasAttributes ? ", " : " (");
556       os << "align " << getAlignment().value();
557       hasAttributes = true;
558     }
559     if (getSectionID() != MBBSectionID(0)) {
560       os << (hasAttributes ? ", " : " (");
561       os << "bbsections ";
562       switch (getSectionID().Type) {
563       case MBBSectionID::SectionType::Exception:
564         os << "Exception";
565         break;
566       case MBBSectionID::SectionType::Cold:
567         os << "Cold";
568         break;
569       default:
570         os << getSectionID().Number;
571       }
572       hasAttributes = true;
573     }
574     if (getBBID().has_value()) {
575       os << (hasAttributes ? ", " : " (");
576       os << "bb_id " << getBBID()->BaseID;
577       if (getBBID()->CloneID != 0)
578         os << " " << getBBID()->CloneID;
579       hasAttributes = true;
580     }
581     if (CallFrameSize != 0) {
582       os << (hasAttributes ? ", " : " (");
583       os << "call-frame-size " << CallFrameSize;
584       hasAttributes = true;
585     }
586   }
587 
588   if (hasAttributes)
589     os << ')';
590 }
591 
592 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
593                                        bool /*PrintType*/) const {
594   OS << '%';
595   printName(OS, 0);
596 }
597 
598 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
599   LiveInVector::iterator I = find_if(
600       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
601   if (I == LiveIns.end())
602     return;
603 
604   I->LaneMask &= ~LaneMask;
605   if (I->LaneMask.none())
606     LiveIns.erase(I);
607 }
608 
609 MachineBasicBlock::livein_iterator
610 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
611   // Get non-const version of iterator.
612   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
613   return LiveIns.erase(LI);
614 }
615 
616 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
617   livein_iterator I = find_if(
618       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
619   return I != livein_end() && (I->LaneMask & LaneMask).any();
620 }
621 
622 void MachineBasicBlock::sortUniqueLiveIns() {
623   llvm::sort(LiveIns,
624              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
625                return LI0.PhysReg < LI1.PhysReg;
626              });
627   // Liveins are sorted by physreg now we can merge their lanemasks.
628   LiveInVector::const_iterator I = LiveIns.begin();
629   LiveInVector::const_iterator J;
630   LiveInVector::iterator Out = LiveIns.begin();
631   for (; I != LiveIns.end(); ++Out, I = J) {
632     MCRegister PhysReg = I->PhysReg;
633     LaneBitmask LaneMask = I->LaneMask;
634     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
635       LaneMask |= J->LaneMask;
636     Out->PhysReg = PhysReg;
637     Out->LaneMask = LaneMask;
638   }
639   LiveIns.erase(Out, LiveIns.end());
640 }
641 
642 Register
643 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
644   assert(getParent() && "MBB must be inserted in function");
645   assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
646   assert(RC && "Register class is required");
647   assert((isEHPad() || this == &getParent()->front()) &&
648          "Only the entry block and landing pads can have physreg live ins");
649 
650   bool LiveIn = isLiveIn(PhysReg);
651   iterator I = SkipPHIsAndLabels(begin()), E = end();
652   MachineRegisterInfo &MRI = getParent()->getRegInfo();
653   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
654 
655   // Look for an existing copy.
656   if (LiveIn)
657     for (;I != E && I->isCopy(); ++I)
658       if (I->getOperand(1).getReg() == PhysReg) {
659         Register VirtReg = I->getOperand(0).getReg();
660         if (!MRI.constrainRegClass(VirtReg, RC))
661           llvm_unreachable("Incompatible live-in register class.");
662         return VirtReg;
663       }
664 
665   // No luck, create a virtual register.
666   Register VirtReg = MRI.createVirtualRegister(RC);
667   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
668     .addReg(PhysReg, RegState::Kill);
669   if (!LiveIn)
670     addLiveIn(PhysReg);
671   return VirtReg;
672 }
673 
674 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
675   getParent()->splice(NewAfter->getIterator(), getIterator());
676 }
677 
678 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
679   getParent()->splice(++NewBefore->getIterator(), getIterator());
680 }
681 
682 static int findJumpTableIndex(const MachineBasicBlock &MBB) {
683   MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator();
684   if (TerminatorI == MBB.end())
685     return -1;
686   const MachineInstr &Terminator = *TerminatorI;
687   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
688   return TII->getJumpTableIndex(Terminator);
689 }
690 
691 void MachineBasicBlock::updateTerminator(
692     MachineBasicBlock *PreviousLayoutSuccessor) {
693   LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
694                     << "\n");
695 
696   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
697   // A block with no successors has no concerns with fall-through edges.
698   if (this->succ_empty())
699     return;
700 
701   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
702   SmallVector<MachineOperand, 4> Cond;
703   DebugLoc DL = findBranchDebugLoc();
704   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
705   (void) B;
706   assert(!B && "UpdateTerminators requires analyzable predecessors!");
707   if (Cond.empty()) {
708     if (TBB) {
709       // The block has an unconditional branch. If its successor is now its
710       // layout successor, delete the branch.
711       if (isLayoutSuccessor(TBB))
712         TII->removeBranch(*this);
713     } else {
714       // The block has an unconditional fallthrough, or the end of the block is
715       // unreachable.
716 
717       // Unfortunately, whether the end of the block is unreachable is not
718       // immediately obvious; we must fall back to checking the successor list,
719       // and assuming that if the passed in block is in the succesor list and
720       // not an EHPad, it must be the intended target.
721       if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
722           PreviousLayoutSuccessor->isEHPad())
723         return;
724 
725       // If the unconditional successor block is not the current layout
726       // successor, insert a branch to jump to it.
727       if (!isLayoutSuccessor(PreviousLayoutSuccessor))
728         TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
729     }
730     return;
731   }
732 
733   if (FBB) {
734     // The block has a non-fallthrough conditional branch. If one of its
735     // successors is its layout successor, rewrite it to a fallthrough
736     // conditional branch.
737     if (isLayoutSuccessor(TBB)) {
738       if (TII->reverseBranchCondition(Cond))
739         return;
740       TII->removeBranch(*this);
741       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
742     } else if (isLayoutSuccessor(FBB)) {
743       TII->removeBranch(*this);
744       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
745     }
746     return;
747   }
748 
749   // We now know we're going to fallthrough to PreviousLayoutSuccessor.
750   assert(PreviousLayoutSuccessor);
751   assert(!PreviousLayoutSuccessor->isEHPad());
752   assert(isSuccessor(PreviousLayoutSuccessor));
753 
754   if (PreviousLayoutSuccessor == TBB) {
755     // We had a fallthrough to the same basic block as the conditional jump
756     // targets.  Remove the conditional jump, leaving an unconditional
757     // fallthrough or an unconditional jump.
758     TII->removeBranch(*this);
759     if (!isLayoutSuccessor(TBB)) {
760       Cond.clear();
761       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
762     }
763     return;
764   }
765 
766   // The block has a fallthrough conditional branch.
767   if (isLayoutSuccessor(TBB)) {
768     if (TII->reverseBranchCondition(Cond)) {
769       // We can't reverse the condition, add an unconditional branch.
770       Cond.clear();
771       TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
772       return;
773     }
774     TII->removeBranch(*this);
775     TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
776   } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
777     TII->removeBranch(*this);
778     TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
779   }
780 }
781 
782 void MachineBasicBlock::validateSuccProbs() const {
783 #ifndef NDEBUG
784   int64_t Sum = 0;
785   for (auto Prob : Probs)
786     Sum += Prob.getNumerator();
787   // Due to precision issue, we assume that the sum of probabilities is one if
788   // the difference between the sum of their numerators and the denominator is
789   // no greater than the number of successors.
790   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
791              Probs.size() &&
792          "The sum of successors's probabilities exceeds one.");
793 #endif // NDEBUG
794 }
795 
796 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
797                                      BranchProbability Prob) {
798   // Probability list is either empty (if successor list isn't empty, this means
799   // disabled optimization) or has the same size as successor list.
800   if (!(Probs.empty() && !Successors.empty()))
801     Probs.push_back(Prob);
802   Successors.push_back(Succ);
803   Succ->addPredecessor(this);
804 }
805 
806 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
807   // We need to make sure probability list is either empty or has the same size
808   // of successor list. When this function is called, we can safely delete all
809   // probability in the list.
810   Probs.clear();
811   Successors.push_back(Succ);
812   Succ->addPredecessor(this);
813 }
814 
815 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
816                                        MachineBasicBlock *New,
817                                        bool NormalizeSuccProbs) {
818   succ_iterator OldI = llvm::find(successors(), Old);
819   assert(OldI != succ_end() && "Old is not a successor of this block!");
820   assert(!llvm::is_contained(successors(), New) &&
821          "New is already a successor of this block!");
822 
823   // Add a new successor with equal probability as the original one. Note
824   // that we directly copy the probability using the iterator rather than
825   // getting a potentially synthetic probability computed when unknown. This
826   // preserves the probabilities as-is and then we can renormalize them and
827   // query them effectively afterward.
828   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
829                                   : *getProbabilityIterator(OldI));
830   if (NormalizeSuccProbs)
831     normalizeSuccProbs();
832 }
833 
834 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
835                                         bool NormalizeSuccProbs) {
836   succ_iterator I = find(Successors, Succ);
837   removeSuccessor(I, NormalizeSuccProbs);
838 }
839 
840 MachineBasicBlock::succ_iterator
841 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
842   assert(I != Successors.end() && "Not a current successor!");
843 
844   // If probability list is empty it means we don't use it (disabled
845   // optimization).
846   if (!Probs.empty()) {
847     probability_iterator WI = getProbabilityIterator(I);
848     Probs.erase(WI);
849     if (NormalizeSuccProbs)
850       normalizeSuccProbs();
851   }
852 
853   (*I)->removePredecessor(this);
854   return Successors.erase(I);
855 }
856 
857 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
858                                          MachineBasicBlock *New) {
859   if (Old == New)
860     return;
861 
862   succ_iterator E = succ_end();
863   succ_iterator NewI = E;
864   succ_iterator OldI = E;
865   for (succ_iterator I = succ_begin(); I != E; ++I) {
866     if (*I == Old) {
867       OldI = I;
868       if (NewI != E)
869         break;
870     }
871     if (*I == New) {
872       NewI = I;
873       if (OldI != E)
874         break;
875     }
876   }
877   assert(OldI != E && "Old is not a successor of this block");
878 
879   // If New isn't already a successor, let it take Old's place.
880   if (NewI == E) {
881     Old->removePredecessor(this);
882     New->addPredecessor(this);
883     *OldI = New;
884     return;
885   }
886 
887   // New is already a successor.
888   // Update its probability instead of adding a duplicate edge.
889   if (!Probs.empty()) {
890     auto ProbIter = getProbabilityIterator(NewI);
891     if (!ProbIter->isUnknown())
892       *ProbIter += *getProbabilityIterator(OldI);
893   }
894   removeSuccessor(OldI);
895 }
896 
897 void MachineBasicBlock::copySuccessor(const MachineBasicBlock *Orig,
898                                       succ_iterator I) {
899   if (!Orig->Probs.empty())
900     addSuccessor(*I, Orig->getSuccProbability(I));
901   else
902     addSuccessorWithoutProb(*I);
903 }
904 
905 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
906   Predecessors.push_back(Pred);
907 }
908 
909 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
910   pred_iterator I = find(Predecessors, Pred);
911   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
912   Predecessors.erase(I);
913 }
914 
915 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
916   if (this == FromMBB)
917     return;
918 
919   while (!FromMBB->succ_empty()) {
920     MachineBasicBlock *Succ = *FromMBB->succ_begin();
921 
922     // If probability list is empty it means we don't use it (disabled
923     // optimization).
924     if (!FromMBB->Probs.empty()) {
925       auto Prob = *FromMBB->Probs.begin();
926       addSuccessor(Succ, Prob);
927     } else
928       addSuccessorWithoutProb(Succ);
929 
930     FromMBB->removeSuccessor(Succ);
931   }
932 }
933 
934 void
935 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
936   if (this == FromMBB)
937     return;
938 
939   while (!FromMBB->succ_empty()) {
940     MachineBasicBlock *Succ = *FromMBB->succ_begin();
941     if (!FromMBB->Probs.empty()) {
942       auto Prob = *FromMBB->Probs.begin();
943       addSuccessor(Succ, Prob);
944     } else
945       addSuccessorWithoutProb(Succ);
946     FromMBB->removeSuccessor(Succ);
947 
948     // Fix up any PHI nodes in the successor.
949     Succ->replacePhiUsesWith(FromMBB, this);
950   }
951   normalizeSuccProbs();
952 }
953 
954 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
955   return is_contained(predecessors(), MBB);
956 }
957 
958 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
959   return is_contained(successors(), MBB);
960 }
961 
962 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
963   MachineFunction::const_iterator I(this);
964   return std::next(I) == MachineFunction::const_iterator(MBB);
965 }
966 
967 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const {
968   return Successors.size() == 1 ? Successors[0] : nullptr;
969 }
970 
971 const MachineBasicBlock *MachineBasicBlock::getSinglePredecessor() const {
972   return Predecessors.size() == 1 ? Predecessors[0] : nullptr;
973 }
974 
975 MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) {
976   MachineFunction::iterator Fallthrough = getIterator();
977   ++Fallthrough;
978   // If FallthroughBlock is off the end of the function, it can't fall through.
979   if (Fallthrough == getParent()->end())
980     return nullptr;
981 
982   // If FallthroughBlock isn't a successor, no fallthrough is possible.
983   if (!isSuccessor(&*Fallthrough))
984     return nullptr;
985 
986   // Analyze the branches, if any, at the end of the block.
987   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
988   SmallVector<MachineOperand, 4> Cond;
989   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
990   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
991     // If we couldn't analyze the branch, examine the last instruction.
992     // If the block doesn't end in a known control barrier, assume fallthrough
993     // is possible. The isPredicated check is needed because this code can be
994     // called during IfConversion, where an instruction which is normally a
995     // Barrier is predicated and thus no longer an actual control barrier.
996     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
997                ? &*Fallthrough
998                : nullptr;
999   }
1000 
1001   // If there is no branch, control always falls through.
1002   if (!TBB) return &*Fallthrough;
1003 
1004   // If there is some explicit branch to the fallthrough block, it can obviously
1005   // reach, even though the branch should get folded to fall through implicitly.
1006   if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough ||
1007                             MachineFunction::iterator(FBB) == Fallthrough))
1008     return &*Fallthrough;
1009 
1010   // If it's an unconditional branch to some block not the fall through, it
1011   // doesn't fall through.
1012   if (Cond.empty()) return nullptr;
1013 
1014   // Otherwise, if it is conditional and has no explicit false block, it falls
1015   // through.
1016   return (FBB == nullptr) ? &*Fallthrough : nullptr;
1017 }
1018 
1019 bool MachineBasicBlock::canFallThrough() {
1020   return getFallThrough() != nullptr;
1021 }
1022 
1023 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
1024                                               bool UpdateLiveIns,
1025                                               LiveIntervals *LIS) {
1026   MachineBasicBlock::iterator SplitPoint(&MI);
1027   ++SplitPoint;
1028 
1029   if (SplitPoint == end()) {
1030     // Don't bother with a new block.
1031     return this;
1032   }
1033 
1034   MachineFunction *MF = getParent();
1035 
1036   LivePhysRegs LiveRegs;
1037   if (UpdateLiveIns) {
1038     // Make sure we add any physregs we define in the block as liveins to the
1039     // new block.
1040     MachineBasicBlock::iterator Prev(&MI);
1041     LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
1042     LiveRegs.addLiveOuts(*this);
1043     for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
1044       LiveRegs.stepBackward(*I);
1045   }
1046 
1047   MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
1048 
1049   MF->insert(++MachineFunction::iterator(this), SplitBB);
1050   SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
1051 
1052   SplitBB->transferSuccessorsAndUpdatePHIs(this);
1053   addSuccessor(SplitBB);
1054 
1055   if (UpdateLiveIns)
1056     addLiveIns(*SplitBB, LiveRegs);
1057 
1058   if (LIS)
1059     LIS->insertMBBInMaps(SplitBB);
1060 
1061   return SplitBB;
1062 }
1063 
1064 // Returns `true` if there are possibly other users of the jump table at
1065 // `JumpTableIndex` except for the ones in `IgnoreMBB`.
1066 static bool jumpTableHasOtherUses(const MachineFunction &MF,
1067                                   const MachineBasicBlock &IgnoreMBB,
1068                                   int JumpTableIndex) {
1069   assert(JumpTableIndex >= 0 && "need valid index");
1070   const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo();
1071   const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex];
1072   // Take any basic block from the table; every user of the jump table must
1073   // show up in the predecessor list.
1074   const MachineBasicBlock *MBB = nullptr;
1075   for (MachineBasicBlock *B : MJTE.MBBs) {
1076     if (B != nullptr) {
1077       MBB = B;
1078       break;
1079     }
1080   }
1081   if (MBB == nullptr)
1082     return true; // can't rule out other users if there isn't any block.
1083   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1084   SmallVector<MachineOperand, 4> Cond;
1085   for (MachineBasicBlock *Pred : MBB->predecessors()) {
1086     if (Pred == &IgnoreMBB)
1087       continue;
1088     MachineBasicBlock *DummyT = nullptr;
1089     MachineBasicBlock *DummyF = nullptr;
1090     Cond.clear();
1091     if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond,
1092                            /*AllowModify=*/false)) {
1093       // analyzable direct jump
1094       continue;
1095     }
1096     int PredJTI = findJumpTableIndex(*Pred);
1097     if (PredJTI >= 0) {
1098       if (PredJTI == JumpTableIndex)
1099         return true;
1100       continue;
1101     }
1102     // Be conservative for unanalyzable jumps.
1103     return true;
1104   }
1105   return false;
1106 }
1107 
1108 class SlotIndexUpdateDelegate : public MachineFunction::Delegate {
1109 private:
1110   MachineFunction &MF;
1111   SlotIndexes *Indexes;
1112   SmallSetVector<MachineInstr *, 2> Insertions;
1113 
1114 public:
1115   SlotIndexUpdateDelegate(MachineFunction &MF, SlotIndexes *Indexes)
1116       : MF(MF), Indexes(Indexes) {
1117     MF.setDelegate(this);
1118   }
1119 
1120   ~SlotIndexUpdateDelegate() {
1121     MF.resetDelegate(this);
1122     for (auto MI : Insertions)
1123       Indexes->insertMachineInstrInMaps(*MI);
1124   }
1125 
1126   void MF_HandleInsertion(MachineInstr &MI) override {
1127     // This is called before MI is inserted into block so defer index update.
1128     if (Indexes)
1129       Insertions.insert(&MI);
1130   }
1131 
1132   void MF_HandleRemoval(MachineInstr &MI) override {
1133     if (Indexes && !Insertions.remove(&MI))
1134       Indexes->removeMachineInstrFromMaps(MI);
1135   }
1136 };
1137 
1138 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1139     MachineBasicBlock *Succ, Pass &P,
1140     std::vector<SparseBitVector<>> *LiveInSets) {
1141   if (!canSplitCriticalEdge(Succ))
1142     return nullptr;
1143 
1144   MachineFunction *MF = getParent();
1145   MachineBasicBlock *PrevFallthrough = getNextNode();
1146 
1147   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1148   NMBB->setCallFrameSize(Succ->getCallFrameSize());
1149 
1150   // Is there an indirect jump with jump table?
1151   bool ChangedIndirectJump = false;
1152   int JTI = findJumpTableIndex(*this);
1153   if (JTI >= 0) {
1154     MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo();
1155     MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB);
1156     ChangedIndirectJump = true;
1157   }
1158 
1159   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1160   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1161                     << " -- " << printMBBReference(*NMBB) << " -- "
1162                     << printMBBReference(*Succ) << '\n');
1163 
1164   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1165   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1166   if (LIS)
1167     LIS->insertMBBInMaps(NMBB);
1168   else if (Indexes)
1169     Indexes->insertMBBInMaps(NMBB);
1170 
1171   // On some targets like Mips, branches may kill virtual registers. Make sure
1172   // that LiveVariables is properly updated after updateTerminator replaces the
1173   // terminators.
1174   auto *LVWrapper = P.getAnalysisIfAvailable<LiveVariablesWrapperPass>();
1175   LiveVariables *LV = LVWrapper ? &LVWrapper->getLV() : nullptr;
1176 
1177   // Collect a list of virtual registers killed by the terminators.
1178   SmallVector<Register, 4> KilledRegs;
1179   if (LV)
1180     for (MachineInstr &MI :
1181          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1182       for (MachineOperand &MO : MI.all_uses()) {
1183         if (MO.getReg() == 0 || !MO.isKill() || MO.isUndef())
1184           continue;
1185         Register Reg = MO.getReg();
1186         if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) {
1187           KilledRegs.push_back(Reg);
1188           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1189           MO.setIsKill(false);
1190         }
1191       }
1192     }
1193 
1194   SmallVector<Register, 4> UsedRegs;
1195   if (LIS) {
1196     for (MachineInstr &MI :
1197          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1198       for (const MachineOperand &MO : MI.operands()) {
1199         if (!MO.isReg() || MO.getReg() == 0)
1200           continue;
1201 
1202         Register Reg = MO.getReg();
1203         if (!is_contained(UsedRegs, Reg))
1204           UsedRegs.push_back(Reg);
1205       }
1206     }
1207   }
1208 
1209   ReplaceUsesOfBlockWith(Succ, NMBB);
1210 
1211   // Since we replaced all uses of Succ with NMBB, that should also be treated
1212   // as the fallthrough successor
1213   if (Succ == PrevFallthrough)
1214     PrevFallthrough = NMBB;
1215 
1216   if (!ChangedIndirectJump) {
1217     SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes);
1218     updateTerminator(PrevFallthrough);
1219   }
1220 
1221   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1222   NMBB->addSuccessor(Succ);
1223   if (!NMBB->isLayoutSuccessor(Succ)) {
1224     SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes);
1225     SmallVector<MachineOperand, 4> Cond;
1226     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1227 
1228     // In original 'this' BB, there must be a branch instruction targeting at
1229     // Succ. We can not find it out since currently getBranchDestBlock was not
1230     // implemented for all targets. However, if the merged DL has column or line
1231     // number, the scope and non-zero column and line number is same with that
1232     // branch instruction so we can safely use it.
1233     DebugLoc DL, MergedDL = findBranchDebugLoc();
1234     if (MergedDL && (MergedDL.getLine() || MergedDL.getCol()))
1235       DL = MergedDL;
1236     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1237   }
1238 
1239   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1240   Succ->replacePhiUsesWith(this, NMBB);
1241 
1242   // Inherit live-ins from the successor
1243   for (const auto &LI : Succ->liveins())
1244     NMBB->addLiveIn(LI);
1245 
1246   // Update LiveVariables.
1247   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1248   if (LV) {
1249     // Restore kills of virtual registers that were killed by the terminators.
1250     while (!KilledRegs.empty()) {
1251       Register Reg = KilledRegs.pop_back_val();
1252       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1253         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1254           continue;
1255         if (Reg.isVirtual())
1256           LV->getVarInfo(Reg).Kills.push_back(&*I);
1257         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1258         break;
1259       }
1260     }
1261     // Update relevant live-through information.
1262     if (LiveInSets != nullptr)
1263       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1264     else
1265       LV->addNewBlock(NMBB, this, Succ);
1266   }
1267 
1268   if (LIS) {
1269     // After splitting the edge and updating SlotIndexes, live intervals may be
1270     // in one of two situations, depending on whether this block was the last in
1271     // the function. If the original block was the last in the function, all
1272     // live intervals will end prior to the beginning of the new split block. If
1273     // the original block was not at the end of the function, all live intervals
1274     // will extend to the end of the new split block.
1275 
1276     bool isLastMBB =
1277       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1278 
1279     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1280     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1281     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1282 
1283     // Find the registers used from NMBB in PHIs in Succ.
1284     SmallSet<Register, 8> PHISrcRegs;
1285     for (MachineBasicBlock::instr_iterator
1286          I = Succ->instr_begin(), E = Succ->instr_end();
1287          I != E && I->isPHI(); ++I) {
1288       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1289         if (I->getOperand(ni+1).getMBB() == NMBB) {
1290           MachineOperand &MO = I->getOperand(ni);
1291           Register Reg = MO.getReg();
1292           PHISrcRegs.insert(Reg);
1293           if (MO.isUndef())
1294             continue;
1295 
1296           LiveInterval &LI = LIS->getInterval(Reg);
1297           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1298           assert(VNI &&
1299                  "PHI sources should be live out of their predecessors.");
1300           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1301           for (auto &SR : LI.subranges())
1302             SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1303         }
1304       }
1305     }
1306 
1307     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1308     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1309       Register Reg = Register::index2VirtReg(i);
1310       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1311         continue;
1312 
1313       LiveInterval &LI = LIS->getInterval(Reg);
1314       if (!LI.liveAt(PrevIndex))
1315         continue;
1316 
1317       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1318       if (isLiveOut && isLastMBB) {
1319         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1320         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1321         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1322         // Update subranges with live values
1323         for (auto &SR : LI.subranges()) {
1324           VNInfo *VNI = SR.getVNInfoAt(PrevIndex);
1325           if (VNI)
1326             SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1327         }
1328       } else if (!isLiveOut && !isLastMBB) {
1329         LI.removeSegment(StartIndex, EndIndex);
1330         for (auto &SR : LI.subranges())
1331           SR.removeSegment(StartIndex, EndIndex);
1332       }
1333     }
1334 
1335     // Update all intervals for registers whose uses may have been modified by
1336     // updateTerminator().
1337     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1338   }
1339 
1340   if (auto *MDTWrapper =
1341           P.getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>())
1342     MDTWrapper->getDomTree().recordSplitCriticalEdge(this, Succ, NMBB);
1343 
1344   auto *MLIWrapper = P.getAnalysisIfAvailable<MachineLoopInfoWrapperPass>();
1345   if (MachineLoopInfo *MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr)
1346     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1347       // If one or the other blocks were not in a loop, the new block is not
1348       // either, and thus LI doesn't need to be updated.
1349       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1350         if (TIL == DestLoop) {
1351           // Both in the same loop, the NMBB joins loop.
1352           DestLoop->addBasicBlockToLoop(NMBB, *MLI);
1353         } else if (TIL->contains(DestLoop)) {
1354           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1355           TIL->addBasicBlockToLoop(NMBB, *MLI);
1356         } else if (DestLoop->contains(TIL)) {
1357           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1358           DestLoop->addBasicBlockToLoop(NMBB, *MLI);
1359         } else {
1360           // Edge from two loops with no containment relation.  Because these
1361           // are natural loops, we know that the destination block must be the
1362           // header of its loop (adding a branch into a loop elsewhere would
1363           // create an irreducible loop).
1364           assert(DestLoop->getHeader() == Succ &&
1365                  "Should not create irreducible loops!");
1366           if (MachineLoop *P = DestLoop->getParentLoop())
1367             P->addBasicBlockToLoop(NMBB, *MLI);
1368         }
1369       }
1370     }
1371 
1372   return NMBB;
1373 }
1374 
1375 bool MachineBasicBlock::canSplitCriticalEdge(
1376     const MachineBasicBlock *Succ) const {
1377   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1378   // it in this generic function.
1379   if (Succ->isEHPad())
1380     return false;
1381 
1382   // Splitting the critical edge to a callbr's indirect block isn't advised.
1383   // Don't do it in this generic function.
1384   if (Succ->isInlineAsmBrIndirectTarget())
1385     return false;
1386 
1387   const MachineFunction *MF = getParent();
1388   // Performance might be harmed on HW that implements branching using exec mask
1389   // where both sides of the branches are always executed.
1390   if (MF->getTarget().requiresStructuredCFG())
1391     return false;
1392 
1393   // Do we have an Indirect jump with a jumptable that we can rewrite?
1394   int JTI = findJumpTableIndex(*this);
1395   if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI))
1396     return true;
1397 
1398   // We may need to update this's terminator, but we can't do that if
1399   // analyzeBranch fails.
1400   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1401   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1402   SmallVector<MachineOperand, 4> Cond;
1403   // AnalyzeBanch should modify this, since we did not allow modification.
1404   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1405                          /*AllowModify*/ false))
1406     return false;
1407 
1408   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1409   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1410   // case that we can't handle. Since this never happens in properly optimized
1411   // code, just skip those edges.
1412   if (TBB && TBB == FBB) {
1413     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1414                       << printMBBReference(*this) << '\n');
1415     return false;
1416   }
1417   return true;
1418 }
1419 
1420 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1421 /// neighboring instructions so the bundle won't be broken by removing MI.
1422 static void unbundleSingleMI(MachineInstr *MI) {
1423   // Removing the first instruction in a bundle.
1424   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1425     MI->unbundleFromSucc();
1426   // Removing the last instruction in a bundle.
1427   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1428     MI->unbundleFromPred();
1429   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1430   // are already fine.
1431 }
1432 
1433 MachineBasicBlock::instr_iterator
1434 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1435   unbundleSingleMI(&*I);
1436   return Insts.erase(I);
1437 }
1438 
1439 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1440   unbundleSingleMI(MI);
1441   MI->clearFlag(MachineInstr::BundledPred);
1442   MI->clearFlag(MachineInstr::BundledSucc);
1443   return Insts.remove(MI);
1444 }
1445 
1446 MachineBasicBlock::instr_iterator
1447 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1448   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1449          "Cannot insert instruction with bundle flags");
1450   // Set the bundle flags when inserting inside a bundle.
1451   if (I != instr_end() && I->isBundledWithPred()) {
1452     MI->setFlag(MachineInstr::BundledPred);
1453     MI->setFlag(MachineInstr::BundledSucc);
1454   }
1455   return Insts.insert(I, MI);
1456 }
1457 
1458 /// This method unlinks 'this' from the containing function, and returns it, but
1459 /// does not delete it.
1460 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1461   assert(getParent() && "Not embedded in a function!");
1462   getParent()->remove(this);
1463   return this;
1464 }
1465 
1466 /// This method unlinks 'this' from the containing function, and deletes it.
1467 void MachineBasicBlock::eraseFromParent() {
1468   assert(getParent() && "Not embedded in a function!");
1469   getParent()->erase(this);
1470 }
1471 
1472 /// Given a machine basic block that branched to 'Old', change the code and CFG
1473 /// so that it branches to 'New' instead.
1474 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1475                                                MachineBasicBlock *New) {
1476   assert(Old != New && "Cannot replace self with self!");
1477 
1478   MachineBasicBlock::instr_iterator I = instr_end();
1479   while (I != instr_begin()) {
1480     --I;
1481     if (!I->isTerminator()) break;
1482 
1483     // Scan the operands of this machine instruction, replacing any uses of Old
1484     // with New.
1485     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1486       if (I->getOperand(i).isMBB() &&
1487           I->getOperand(i).getMBB() == Old)
1488         I->getOperand(i).setMBB(New);
1489   }
1490 
1491   // Update the successor information.
1492   replaceSuccessor(Old, New);
1493 }
1494 
1495 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1496                                            MachineBasicBlock *New) {
1497   for (MachineInstr &MI : phis())
1498     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1499       MachineOperand &MO = MI.getOperand(i);
1500       if (MO.getMBB() == Old)
1501         MO.setMBB(New);
1502     }
1503 }
1504 
1505 /// Find the next valid DebugLoc starting at MBBI, skipping any debug
1506 /// instructions.  Return UnknownLoc if there is none.
1507 DebugLoc
1508 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1509   // Skip debug declarations, we don't want a DebugLoc from them.
1510   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1511   if (MBBI != instr_end())
1512     return MBBI->getDebugLoc();
1513   return {};
1514 }
1515 
1516 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1517   if (MBBI == instr_rend())
1518     return findDebugLoc(instr_begin());
1519   // Skip debug declarations, we don't want a DebugLoc from them.
1520   MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1521   if (!MBBI->isDebugInstr())
1522     return MBBI->getDebugLoc();
1523   return {};
1524 }
1525 
1526 /// Find the previous valid DebugLoc preceding MBBI, skipping any debug
1527 /// instructions.  Return UnknownLoc if there is none.
1528 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1529   if (MBBI == instr_begin())
1530     return {};
1531   // Skip debug instructions, we don't want a DebugLoc from them.
1532   MBBI = prev_nodbg(MBBI, instr_begin());
1533   if (!MBBI->isDebugInstr())
1534     return MBBI->getDebugLoc();
1535   return {};
1536 }
1537 
1538 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1539   if (MBBI == instr_rend())
1540     return {};
1541   // Skip debug declarations, we don't want a DebugLoc from them.
1542   MBBI = next_nodbg(MBBI, instr_rend());
1543   if (MBBI != instr_rend())
1544     return MBBI->getDebugLoc();
1545   return {};
1546 }
1547 
1548 /// Find and return the merged DebugLoc of the branch instructions of the block.
1549 /// Return UnknownLoc if there is none.
1550 DebugLoc
1551 MachineBasicBlock::findBranchDebugLoc() {
1552   DebugLoc DL;
1553   auto TI = getFirstTerminator();
1554   while (TI != end() && !TI->isBranch())
1555     ++TI;
1556 
1557   if (TI != end()) {
1558     DL = TI->getDebugLoc();
1559     for (++TI ; TI != end() ; ++TI)
1560       if (TI->isBranch())
1561         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1562   }
1563   return DL;
1564 }
1565 
1566 /// Return probability of the edge from this block to MBB.
1567 BranchProbability
1568 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1569   if (Probs.empty())
1570     return BranchProbability(1, succ_size());
1571 
1572   const auto &Prob = *getProbabilityIterator(Succ);
1573   if (Prob.isUnknown()) {
1574     // For unknown probabilities, collect the sum of all known ones, and evenly
1575     // ditribute the complemental of the sum to each unknown probability.
1576     unsigned KnownProbNum = 0;
1577     auto Sum = BranchProbability::getZero();
1578     for (const auto &P : Probs) {
1579       if (!P.isUnknown()) {
1580         Sum += P;
1581         KnownProbNum++;
1582       }
1583     }
1584     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1585   } else
1586     return Prob;
1587 }
1588 
1589 /// Set successor probability of a given iterator.
1590 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1591                                            BranchProbability Prob) {
1592   assert(!Prob.isUnknown());
1593   if (Probs.empty())
1594     return;
1595   *getProbabilityIterator(I) = Prob;
1596 }
1597 
1598 /// Return probability iterator corresonding to the I successor iterator
1599 MachineBasicBlock::const_probability_iterator
1600 MachineBasicBlock::getProbabilityIterator(
1601     MachineBasicBlock::const_succ_iterator I) const {
1602   assert(Probs.size() == Successors.size() && "Async probability list!");
1603   const size_t index = std::distance(Successors.begin(), I);
1604   assert(index < Probs.size() && "Not a current successor!");
1605   return Probs.begin() + index;
1606 }
1607 
1608 /// Return probability iterator corresonding to the I successor iterator.
1609 MachineBasicBlock::probability_iterator
1610 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1611   assert(Probs.size() == Successors.size() && "Async probability list!");
1612   const size_t index = std::distance(Successors.begin(), I);
1613   assert(index < Probs.size() && "Not a current successor!");
1614   return Probs.begin() + index;
1615 }
1616 
1617 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1618 /// as of just before "MI".
1619 ///
1620 /// Search is localised to a neighborhood of
1621 /// Neighborhood instructions before (searching for defs or kills) and N
1622 /// instructions after (searching just for defs) MI.
1623 MachineBasicBlock::LivenessQueryResult
1624 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1625                                            MCRegister Reg, const_iterator Before,
1626                                            unsigned Neighborhood) const {
1627   unsigned N = Neighborhood;
1628 
1629   // Try searching forwards from Before, looking for reads or defs.
1630   const_iterator I(Before);
1631   for (; I != end() && N > 0; ++I) {
1632     if (I->isDebugOrPseudoInstr())
1633       continue;
1634 
1635     --N;
1636 
1637     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1638 
1639     // Register is live when we read it here.
1640     if (Info.Read)
1641       return LQR_Live;
1642     // Register is dead if we can fully overwrite or clobber it here.
1643     if (Info.FullyDefined || Info.Clobbered)
1644       return LQR_Dead;
1645   }
1646 
1647   // If we reached the end, it is safe to clobber Reg at the end of a block of
1648   // no successor has it live in.
1649   if (I == end()) {
1650     for (MachineBasicBlock *S : successors()) {
1651       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1652         if (TRI->regsOverlap(LI.PhysReg, Reg))
1653           return LQR_Live;
1654       }
1655     }
1656 
1657     return LQR_Dead;
1658   }
1659 
1660 
1661   N = Neighborhood;
1662 
1663   // Start by searching backwards from Before, looking for kills, reads or defs.
1664   I = const_iterator(Before);
1665   // If this is the first insn in the block, don't search backwards.
1666   if (I != begin()) {
1667     do {
1668       --I;
1669 
1670       if (I->isDebugOrPseudoInstr())
1671         continue;
1672 
1673       --N;
1674 
1675       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1676 
1677       // Defs happen after uses so they take precedence if both are present.
1678 
1679       // Register is dead after a dead def of the full register.
1680       if (Info.DeadDef)
1681         return LQR_Dead;
1682       // Register is (at least partially) live after a def.
1683       if (Info.Defined) {
1684         if (!Info.PartialDeadDef)
1685           return LQR_Live;
1686         // As soon as we saw a partial definition (dead or not),
1687         // we cannot tell if the value is partial live without
1688         // tracking the lanemasks. We are not going to do this,
1689         // so fall back on the remaining of the analysis.
1690         break;
1691       }
1692       // Register is dead after a full kill or clobber and no def.
1693       if (Info.Killed || Info.Clobbered)
1694         return LQR_Dead;
1695       // Register must be live if we read it.
1696       if (Info.Read)
1697         return LQR_Live;
1698 
1699     } while (I != begin() && N > 0);
1700   }
1701 
1702   // If all the instructions before this in the block are debug instructions,
1703   // skip over them.
1704   while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1705     --I;
1706 
1707   // Did we get to the start of the block?
1708   if (I == begin()) {
1709     // If so, the register's state is definitely defined by the live-in state.
1710     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1711       if (TRI->regsOverlap(LI.PhysReg, Reg))
1712         return LQR_Live;
1713 
1714     return LQR_Dead;
1715   }
1716 
1717   // At this point we have no idea of the liveness of the register.
1718   return LQR_Unknown;
1719 }
1720 
1721 const uint32_t *
1722 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1723   // EH funclet entry does not preserve any registers.
1724   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1725 }
1726 
1727 const uint32_t *
1728 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1729   // If we see a return block with successors, this must be a funclet return,
1730   // which does not preserve any registers. If there are no successors, we don't
1731   // care what kind of return it is, putting a mask after it is a no-op.
1732   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1733 }
1734 
1735 void MachineBasicBlock::clearLiveIns() {
1736   LiveIns.clear();
1737 }
1738 
1739 void MachineBasicBlock::clearLiveIns(
1740     std::vector<RegisterMaskPair> &OldLiveIns) {
1741   assert(OldLiveIns.empty() && "Vector must be empty");
1742   std::swap(LiveIns, OldLiveIns);
1743 }
1744 
1745 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1746   assert(getParent()->getProperties().hasProperty(
1747       MachineFunctionProperties::Property::TracksLiveness) &&
1748       "Liveness information is accurate");
1749   return LiveIns.begin();
1750 }
1751 
1752 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1753   const MachineFunction &MF = *getParent();
1754   assert(MF.getProperties().hasProperty(
1755       MachineFunctionProperties::Property::TracksLiveness) &&
1756       "Liveness information is accurate");
1757 
1758   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1759   MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1760   if (MF.getFunction().hasPersonalityFn()) {
1761     auto PersonalityFn = MF.getFunction().getPersonalityFn();
1762     ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1763     ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1764   }
1765 
1766   return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1767 }
1768 
1769 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const {
1770   unsigned Cntr = 0;
1771   auto R = instructionsWithoutDebug(begin(), end());
1772   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1773     if (++Cntr > Limit)
1774       return true;
1775   }
1776   return false;
1777 }
1778 
1779 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1780 const MBBSectionID
1781     MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1782