1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/DataTypes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 if (B) 46 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 47 } 48 49 MachineBasicBlock::~MachineBasicBlock() { 50 } 51 52 /// Return the MCSymbol for this basic block. 53 MCSymbol *MachineBasicBlock::getSymbol() const { 54 if (!CachedMCSymbol) { 55 const MachineFunction *MF = getParent(); 56 MCContext &Ctx = MF->getContext(); 57 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 58 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 59 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 60 Twine(MF->getFunctionNumber()) + 61 "_" + Twine(getNumber())); 62 } 63 64 return CachedMCSymbol; 65 } 66 67 68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 69 MBB.print(OS); 70 return OS; 71 } 72 73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 74 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 75 } 76 77 /// When an MBB is added to an MF, we need to update the parent pointer of the 78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 79 /// operand list for registers. 80 /// 81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 82 /// gets the next available unique MBB number. If it is removed from a 83 /// MachineFunction, it goes back to being #-1. 84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 85 MachineBasicBlock *N) { 86 MachineFunction &MF = *N->getParent(); 87 N->Number = MF.addToMBBNumbering(N); 88 89 // Make sure the instructions have their operands in the reginfo lists. 90 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 91 for (MachineBasicBlock::instr_iterator 92 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 93 I->AddRegOperandsToUseLists(RegInfo); 94 } 95 96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 97 MachineBasicBlock *N) { 98 N->getParent()->removeFromMBBNumbering(N->Number); 99 N->Number = -1; 100 } 101 102 /// When we add an instruction to a basic block list, we update its parent 103 /// pointer and add its operands from reg use/def lists if appropriate. 104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 105 assert(!N->getParent() && "machine instruction already in a basic block"); 106 N->setParent(Parent); 107 108 // Add the instruction's register operands to their corresponding 109 // use/def lists. 110 MachineFunction *MF = Parent->getParent(); 111 N->AddRegOperandsToUseLists(MF->getRegInfo()); 112 } 113 114 /// When we remove an instruction from a basic block list, we update its parent 115 /// pointer and remove its operands from reg use/def lists if appropriate. 116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 117 assert(N->getParent() && "machine instruction not in a basic block"); 118 119 // Remove from the use/def lists. 120 if (MachineFunction *MF = N->getMF()) 121 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 122 123 N->setParent(nullptr); 124 } 125 126 /// When moving a range of instructions from one MBB list to another, we need to 127 /// update the parent pointers and the use/def lists. 128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 129 instr_iterator First, 130 instr_iterator Last) { 131 assert(Parent->getParent() == FromList.Parent->getParent() && 132 "MachineInstr parent mismatch!"); 133 assert(this != &FromList && "Called without a real transfer..."); 134 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 135 136 // If splicing between two blocks within the same function, just update the 137 // parent pointers. 138 for (; First != Last; ++First) 139 First->setParent(Parent); 140 } 141 142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 143 assert(!MI->getParent() && "MI is still in a block!"); 144 Parent->getParent()->DeleteMachineInstr(MI); 145 } 146 147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 148 instr_iterator I = instr_begin(), E = instr_end(); 149 while (I != E && I->isPHI()) 150 ++I; 151 assert((I == E || !I->isInsideBundle()) && 152 "First non-phi MI cannot be inside a bundle!"); 153 return I; 154 } 155 156 MachineBasicBlock::iterator 157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 158 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 159 160 iterator E = end(); 161 while (I != E && (I->isPHI() || I->isPosition() || 162 TII->isBasicBlockPrologue(*I))) 163 ++I; 164 // FIXME: This needs to change if we wish to bundle labels 165 // inside the bundle. 166 assert((I == E || !I->isInsideBundle()) && 167 "First non-phi / non-label instruction is inside a bundle!"); 168 return I; 169 } 170 171 MachineBasicBlock::iterator 172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 173 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 174 175 iterator E = end(); 176 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 177 TII->isBasicBlockPrologue(*I))) 178 ++I; 179 // FIXME: This needs to change if we wish to bundle labels / dbg_values 180 // inside the bundle. 181 assert((I == E || !I->isInsideBundle()) && 182 "First non-phi / non-label / non-debug " 183 "instruction is inside a bundle!"); 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 188 iterator B = begin(), E = end(), I = E; 189 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 190 ; /*noop */ 191 while (I != E && !I->isTerminator()) 192 ++I; 193 return I; 194 } 195 196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 197 instr_iterator B = instr_begin(), E = instr_end(), I = E; 198 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 199 ; /*noop */ 200 while (I != E && !I->isTerminator()) 201 ++I; 202 return I; 203 } 204 205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 206 // Skip over begin-of-block dbg_value instructions. 207 return skipDebugInstructionsForward(begin(), end()); 208 } 209 210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 211 // Skip over end-of-block dbg_value instructions. 212 instr_iterator B = instr_begin(), I = instr_end(); 213 while (I != B) { 214 --I; 215 // Return instruction that starts a bundle. 216 if (I->isDebugValue() || I->isInsideBundle()) 217 continue; 218 return I; 219 } 220 // The block is all debug values. 221 return end(); 222 } 223 224 bool MachineBasicBlock::hasEHPadSuccessor() const { 225 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 226 if ((*I)->isEHPad()) 227 return true; 228 return false; 229 } 230 231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 233 print(dbgs()); 234 } 235 #endif 236 237 bool MachineBasicBlock::isLegalToHoistInto() const { 238 if (isReturnBlock() || hasEHPadSuccessor()) 239 return false; 240 return true; 241 } 242 243 StringRef MachineBasicBlock::getName() const { 244 if (const BasicBlock *LBB = getBasicBlock()) 245 return LBB->getName(); 246 else 247 return StringRef("", 0); 248 } 249 250 /// Return a hopefully unique identifier for this block. 251 std::string MachineBasicBlock::getFullName() const { 252 std::string Name; 253 if (getParent()) 254 Name = (getParent()->getName() + ":").str(); 255 if (getBasicBlock()) 256 Name += getBasicBlock()->getName(); 257 else 258 Name += ("BB" + Twine(getNumber())).str(); 259 return Name; 260 } 261 262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 263 bool IsStandalone) const { 264 const MachineFunction *MF = getParent(); 265 if (!MF) { 266 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 267 << " is null\n"; 268 return; 269 } 270 const Function &F = MF->getFunction(); 271 const Module *M = F.getParent(); 272 ModuleSlotTracker MST(M); 273 MST.incorporateFunction(F); 274 print(OS, MST, Indexes, IsStandalone); 275 } 276 277 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 278 const SlotIndexes *Indexes, 279 bool IsStandalone) const { 280 const MachineFunction *MF = getParent(); 281 if (!MF) { 282 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 283 << " is null\n"; 284 return; 285 } 286 287 if (Indexes) 288 OS << Indexes->getMBBStartIdx(this) << '\t'; 289 290 OS << "bb." << getNumber(); 291 bool HasAttributes = false; 292 if (const auto *BB = getBasicBlock()) { 293 if (BB->hasName()) { 294 OS << "." << BB->getName(); 295 } else { 296 HasAttributes = true; 297 OS << " ("; 298 int Slot = MST.getLocalSlot(BB); 299 if (Slot == -1) 300 OS << "<ir-block badref>"; 301 else 302 OS << (Twine("%ir-block.") + Twine(Slot)).str(); 303 } 304 } 305 306 if (hasAddressTaken()) { 307 OS << (HasAttributes ? ", " : " ("); 308 OS << "address-taken"; 309 HasAttributes = true; 310 } 311 if (isEHPad()) { 312 OS << (HasAttributes ? ", " : " ("); 313 OS << "landing-pad"; 314 HasAttributes = true; 315 } 316 if (getAlignment()) { 317 OS << (HasAttributes ? ", " : " ("); 318 OS << "align " << getAlignment(); 319 HasAttributes = true; 320 } 321 if (HasAttributes) 322 OS << ")"; 323 OS << ":\n"; 324 325 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 326 if (!livein_empty()) { 327 if (Indexes) OS << '\t'; 328 OS << " Live Ins:"; 329 for (const auto &LI : LiveIns) { 330 OS << ' ' << printReg(LI.PhysReg, TRI); 331 if (!LI.LaneMask.all()) 332 OS << ':' << PrintLaneMask(LI.LaneMask); 333 } 334 OS << '\n'; 335 } 336 337 if (!succ_empty()) { 338 // Print the successors 339 OS.indent(2) << "successors: "; 340 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 341 if (I != succ_begin()) 342 OS << ", "; 343 OS << printMBBReference(**I); 344 OS << '(' << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 345 << ')'; 346 } 347 // Print human readable probabilities as comments. 348 OS << "; "; 349 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 350 const BranchProbability &BP = *getProbabilityIterator(I); 351 if (I != succ_begin()) 352 OS << ", "; 353 OS << printMBBReference(**I) << '(' 354 << format("%.2f%%", 355 rint(((double)BP.getNumerator() / BP.getDenominator()) * 356 100.0 * 100.0) / 357 100.0) 358 << ')'; 359 } 360 OS << '\n'; 361 } 362 363 // Print the preds of this block according to the CFG. 364 if (!pred_empty()) { 365 if (Indexes) OS << '\t'; 366 OS << " Predecessors according to CFG:"; 367 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 368 OS << " " << printMBBReference(*(*PI)); 369 OS << '\n'; 370 } 371 372 for (auto &I : instrs()) { 373 if (Indexes) { 374 if (Indexes->hasIndex(I)) 375 OS << Indexes->getInstructionIndex(I); 376 OS << '\t'; 377 } 378 OS << '\t'; 379 if (I.isInsideBundle()) 380 OS << " * "; 381 I.print(OS, MST, IsStandalone); 382 OS << '\n'; 383 } 384 385 if (IrrLoopHeaderWeight) { 386 if (Indexes) OS << '\t'; 387 OS << " Irreducible loop header weight: " 388 << IrrLoopHeaderWeight.getValue(); 389 OS << '\n'; 390 } 391 } 392 393 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 394 bool /*PrintType*/) const { 395 OS << "%bb." << getNumber(); 396 } 397 398 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 399 LiveInVector::iterator I = find_if( 400 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 401 if (I == LiveIns.end()) 402 return; 403 404 I->LaneMask &= ~LaneMask; 405 if (I->LaneMask.none()) 406 LiveIns.erase(I); 407 } 408 409 MachineBasicBlock::livein_iterator 410 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 411 // Get non-const version of iterator. 412 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 413 return LiveIns.erase(LI); 414 } 415 416 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 417 livein_iterator I = find_if( 418 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 419 return I != livein_end() && (I->LaneMask & LaneMask).any(); 420 } 421 422 void MachineBasicBlock::sortUniqueLiveIns() { 423 std::sort(LiveIns.begin(), LiveIns.end(), 424 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 425 return LI0.PhysReg < LI1.PhysReg; 426 }); 427 // Liveins are sorted by physreg now we can merge their lanemasks. 428 LiveInVector::const_iterator I = LiveIns.begin(); 429 LiveInVector::const_iterator J; 430 LiveInVector::iterator Out = LiveIns.begin(); 431 for (; I != LiveIns.end(); ++Out, I = J) { 432 unsigned PhysReg = I->PhysReg; 433 LaneBitmask LaneMask = I->LaneMask; 434 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 435 LaneMask |= J->LaneMask; 436 Out->PhysReg = PhysReg; 437 Out->LaneMask = LaneMask; 438 } 439 LiveIns.erase(Out, LiveIns.end()); 440 } 441 442 unsigned 443 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 444 assert(getParent() && "MBB must be inserted in function"); 445 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 446 assert(RC && "Register class is required"); 447 assert((isEHPad() || this == &getParent()->front()) && 448 "Only the entry block and landing pads can have physreg live ins"); 449 450 bool LiveIn = isLiveIn(PhysReg); 451 iterator I = SkipPHIsAndLabels(begin()), E = end(); 452 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 453 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 454 455 // Look for an existing copy. 456 if (LiveIn) 457 for (;I != E && I->isCopy(); ++I) 458 if (I->getOperand(1).getReg() == PhysReg) { 459 unsigned VirtReg = I->getOperand(0).getReg(); 460 if (!MRI.constrainRegClass(VirtReg, RC)) 461 llvm_unreachable("Incompatible live-in register class."); 462 return VirtReg; 463 } 464 465 // No luck, create a virtual register. 466 unsigned VirtReg = MRI.createVirtualRegister(RC); 467 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 468 .addReg(PhysReg, RegState::Kill); 469 if (!LiveIn) 470 addLiveIn(PhysReg); 471 return VirtReg; 472 } 473 474 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 475 getParent()->splice(NewAfter->getIterator(), getIterator()); 476 } 477 478 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 479 getParent()->splice(++NewBefore->getIterator(), getIterator()); 480 } 481 482 void MachineBasicBlock::updateTerminator() { 483 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 484 // A block with no successors has no concerns with fall-through edges. 485 if (this->succ_empty()) 486 return; 487 488 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 489 SmallVector<MachineOperand, 4> Cond; 490 DebugLoc DL = findBranchDebugLoc(); 491 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 492 (void) B; 493 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 494 if (Cond.empty()) { 495 if (TBB) { 496 // The block has an unconditional branch. If its successor is now its 497 // layout successor, delete the branch. 498 if (isLayoutSuccessor(TBB)) 499 TII->removeBranch(*this); 500 } else { 501 // The block has an unconditional fallthrough. If its successor is not its 502 // layout successor, insert a branch. First we have to locate the only 503 // non-landing-pad successor, as that is the fallthrough block. 504 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 505 if ((*SI)->isEHPad()) 506 continue; 507 assert(!TBB && "Found more than one non-landing-pad successor!"); 508 TBB = *SI; 509 } 510 511 // If there is no non-landing-pad successor, the block has no fall-through 512 // edges to be concerned with. 513 if (!TBB) 514 return; 515 516 // Finally update the unconditional successor to be reached via a branch 517 // if it would not be reached by fallthrough. 518 if (!isLayoutSuccessor(TBB)) 519 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 520 } 521 return; 522 } 523 524 if (FBB) { 525 // The block has a non-fallthrough conditional branch. If one of its 526 // successors is its layout successor, rewrite it to a fallthrough 527 // conditional branch. 528 if (isLayoutSuccessor(TBB)) { 529 if (TII->reverseBranchCondition(Cond)) 530 return; 531 TII->removeBranch(*this); 532 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 533 } else if (isLayoutSuccessor(FBB)) { 534 TII->removeBranch(*this); 535 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 536 } 537 return; 538 } 539 540 // Walk through the successors and find the successor which is not a landing 541 // pad and is not the conditional branch destination (in TBB) as the 542 // fallthrough successor. 543 MachineBasicBlock *FallthroughBB = nullptr; 544 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 545 if ((*SI)->isEHPad() || *SI == TBB) 546 continue; 547 assert(!FallthroughBB && "Found more than one fallthrough successor."); 548 FallthroughBB = *SI; 549 } 550 551 if (!FallthroughBB) { 552 if (canFallThrough()) { 553 // We fallthrough to the same basic block as the conditional jump targets. 554 // Remove the conditional jump, leaving unconditional fallthrough. 555 // FIXME: This does not seem like a reasonable pattern to support, but it 556 // has been seen in the wild coming out of degenerate ARM test cases. 557 TII->removeBranch(*this); 558 559 // Finally update the unconditional successor to be reached via a branch if 560 // it would not be reached by fallthrough. 561 if (!isLayoutSuccessor(TBB)) 562 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 563 return; 564 } 565 566 // We enter here iff exactly one successor is TBB which cannot fallthrough 567 // and the rest successors if any are EHPads. In this case, we need to 568 // change the conditional branch into unconditional branch. 569 TII->removeBranch(*this); 570 Cond.clear(); 571 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 572 return; 573 } 574 575 // The block has a fallthrough conditional branch. 576 if (isLayoutSuccessor(TBB)) { 577 if (TII->reverseBranchCondition(Cond)) { 578 // We can't reverse the condition, add an unconditional branch. 579 Cond.clear(); 580 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 581 return; 582 } 583 TII->removeBranch(*this); 584 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 585 } else if (!isLayoutSuccessor(FallthroughBB)) { 586 TII->removeBranch(*this); 587 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 588 } 589 } 590 591 void MachineBasicBlock::validateSuccProbs() const { 592 #ifndef NDEBUG 593 int64_t Sum = 0; 594 for (auto Prob : Probs) 595 Sum += Prob.getNumerator(); 596 // Due to precision issue, we assume that the sum of probabilities is one if 597 // the difference between the sum of their numerators and the denominator is 598 // no greater than the number of successors. 599 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 600 Probs.size() && 601 "The sum of successors's probabilities exceeds one."); 602 #endif // NDEBUG 603 } 604 605 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 606 BranchProbability Prob) { 607 // Probability list is either empty (if successor list isn't empty, this means 608 // disabled optimization) or has the same size as successor list. 609 if (!(Probs.empty() && !Successors.empty())) 610 Probs.push_back(Prob); 611 Successors.push_back(Succ); 612 Succ->addPredecessor(this); 613 } 614 615 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 616 // We need to make sure probability list is either empty or has the same size 617 // of successor list. When this function is called, we can safely delete all 618 // probability in the list. 619 Probs.clear(); 620 Successors.push_back(Succ); 621 Succ->addPredecessor(this); 622 } 623 624 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 625 bool NormalizeSuccProbs) { 626 succ_iterator I = find(Successors, Succ); 627 removeSuccessor(I, NormalizeSuccProbs); 628 } 629 630 MachineBasicBlock::succ_iterator 631 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 632 assert(I != Successors.end() && "Not a current successor!"); 633 634 // If probability list is empty it means we don't use it (disabled 635 // optimization). 636 if (!Probs.empty()) { 637 probability_iterator WI = getProbabilityIterator(I); 638 Probs.erase(WI); 639 if (NormalizeSuccProbs) 640 normalizeSuccProbs(); 641 } 642 643 (*I)->removePredecessor(this); 644 return Successors.erase(I); 645 } 646 647 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 648 MachineBasicBlock *New) { 649 if (Old == New) 650 return; 651 652 succ_iterator E = succ_end(); 653 succ_iterator NewI = E; 654 succ_iterator OldI = E; 655 for (succ_iterator I = succ_begin(); I != E; ++I) { 656 if (*I == Old) { 657 OldI = I; 658 if (NewI != E) 659 break; 660 } 661 if (*I == New) { 662 NewI = I; 663 if (OldI != E) 664 break; 665 } 666 } 667 assert(OldI != E && "Old is not a successor of this block"); 668 669 // If New isn't already a successor, let it take Old's place. 670 if (NewI == E) { 671 Old->removePredecessor(this); 672 New->addPredecessor(this); 673 *OldI = New; 674 return; 675 } 676 677 // New is already a successor. 678 // Update its probability instead of adding a duplicate edge. 679 if (!Probs.empty()) { 680 auto ProbIter = getProbabilityIterator(NewI); 681 if (!ProbIter->isUnknown()) 682 *ProbIter += *getProbabilityIterator(OldI); 683 } 684 removeSuccessor(OldI); 685 } 686 687 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 688 Predecessors.push_back(Pred); 689 } 690 691 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 692 pred_iterator I = find(Predecessors, Pred); 693 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 694 Predecessors.erase(I); 695 } 696 697 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 698 if (this == FromMBB) 699 return; 700 701 while (!FromMBB->succ_empty()) { 702 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 703 704 // If probability list is empty it means we don't use it (disabled optimization). 705 if (!FromMBB->Probs.empty()) { 706 auto Prob = *FromMBB->Probs.begin(); 707 addSuccessor(Succ, Prob); 708 } else 709 addSuccessorWithoutProb(Succ); 710 711 FromMBB->removeSuccessor(Succ); 712 } 713 } 714 715 void 716 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 717 if (this == FromMBB) 718 return; 719 720 while (!FromMBB->succ_empty()) { 721 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 722 if (!FromMBB->Probs.empty()) { 723 auto Prob = *FromMBB->Probs.begin(); 724 addSuccessor(Succ, Prob); 725 } else 726 addSuccessorWithoutProb(Succ); 727 FromMBB->removeSuccessor(Succ); 728 729 // Fix up any PHI nodes in the successor. 730 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 731 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 732 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 733 MachineOperand &MO = MI->getOperand(i); 734 if (MO.getMBB() == FromMBB) 735 MO.setMBB(this); 736 } 737 } 738 normalizeSuccProbs(); 739 } 740 741 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 742 return is_contained(predecessors(), MBB); 743 } 744 745 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 746 return is_contained(successors(), MBB); 747 } 748 749 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 750 MachineFunction::const_iterator I(this); 751 return std::next(I) == MachineFunction::const_iterator(MBB); 752 } 753 754 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 755 MachineFunction::iterator Fallthrough = getIterator(); 756 ++Fallthrough; 757 // If FallthroughBlock is off the end of the function, it can't fall through. 758 if (Fallthrough == getParent()->end()) 759 return nullptr; 760 761 // If FallthroughBlock isn't a successor, no fallthrough is possible. 762 if (!isSuccessor(&*Fallthrough)) 763 return nullptr; 764 765 // Analyze the branches, if any, at the end of the block. 766 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 767 SmallVector<MachineOperand, 4> Cond; 768 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 769 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 770 // If we couldn't analyze the branch, examine the last instruction. 771 // If the block doesn't end in a known control barrier, assume fallthrough 772 // is possible. The isPredicated check is needed because this code can be 773 // called during IfConversion, where an instruction which is normally a 774 // Barrier is predicated and thus no longer an actual control barrier. 775 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 776 ? &*Fallthrough 777 : nullptr; 778 } 779 780 // If there is no branch, control always falls through. 781 if (!TBB) return &*Fallthrough; 782 783 // If there is some explicit branch to the fallthrough block, it can obviously 784 // reach, even though the branch should get folded to fall through implicitly. 785 if (MachineFunction::iterator(TBB) == Fallthrough || 786 MachineFunction::iterator(FBB) == Fallthrough) 787 return &*Fallthrough; 788 789 // If it's an unconditional branch to some block not the fall through, it 790 // doesn't fall through. 791 if (Cond.empty()) return nullptr; 792 793 // Otherwise, if it is conditional and has no explicit false block, it falls 794 // through. 795 return (FBB == nullptr) ? &*Fallthrough : nullptr; 796 } 797 798 bool MachineBasicBlock::canFallThrough() { 799 return getFallThrough() != nullptr; 800 } 801 802 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 803 Pass &P) { 804 if (!canSplitCriticalEdge(Succ)) 805 return nullptr; 806 807 MachineFunction *MF = getParent(); 808 DebugLoc DL; // FIXME: this is nowhere 809 810 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 811 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 812 DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 813 << " -- " << printMBBReference(*NMBB) << " -- " 814 << printMBBReference(*Succ) << '\n'); 815 816 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 817 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 818 if (LIS) 819 LIS->insertMBBInMaps(NMBB); 820 else if (Indexes) 821 Indexes->insertMBBInMaps(NMBB); 822 823 // On some targets like Mips, branches may kill virtual registers. Make sure 824 // that LiveVariables is properly updated after updateTerminator replaces the 825 // terminators. 826 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 827 828 // Collect a list of virtual registers killed by the terminators. 829 SmallVector<unsigned, 4> KilledRegs; 830 if (LV) 831 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 832 I != E; ++I) { 833 MachineInstr *MI = &*I; 834 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 835 OE = MI->operands_end(); OI != OE; ++OI) { 836 if (!OI->isReg() || OI->getReg() == 0 || 837 !OI->isUse() || !OI->isKill() || OI->isUndef()) 838 continue; 839 unsigned Reg = OI->getReg(); 840 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 841 LV->getVarInfo(Reg).removeKill(*MI)) { 842 KilledRegs.push_back(Reg); 843 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 844 OI->setIsKill(false); 845 } 846 } 847 } 848 849 SmallVector<unsigned, 4> UsedRegs; 850 if (LIS) { 851 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 852 I != E; ++I) { 853 MachineInstr *MI = &*I; 854 855 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 856 OE = MI->operands_end(); OI != OE; ++OI) { 857 if (!OI->isReg() || OI->getReg() == 0) 858 continue; 859 860 unsigned Reg = OI->getReg(); 861 if (!is_contained(UsedRegs, Reg)) 862 UsedRegs.push_back(Reg); 863 } 864 } 865 } 866 867 ReplaceUsesOfBlockWith(Succ, NMBB); 868 869 // If updateTerminator() removes instructions, we need to remove them from 870 // SlotIndexes. 871 SmallVector<MachineInstr*, 4> Terminators; 872 if (Indexes) { 873 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 874 I != E; ++I) 875 Terminators.push_back(&*I); 876 } 877 878 updateTerminator(); 879 880 if (Indexes) { 881 SmallVector<MachineInstr*, 4> NewTerminators; 882 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 883 I != E; ++I) 884 NewTerminators.push_back(&*I); 885 886 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 887 E = Terminators.end(); I != E; ++I) { 888 if (!is_contained(NewTerminators, *I)) 889 Indexes->removeMachineInstrFromMaps(**I); 890 } 891 } 892 893 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 894 NMBB->addSuccessor(Succ); 895 if (!NMBB->isLayoutSuccessor(Succ)) { 896 SmallVector<MachineOperand, 4> Cond; 897 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 898 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 899 900 if (Indexes) { 901 for (MachineInstr &MI : NMBB->instrs()) { 902 // Some instructions may have been moved to NMBB by updateTerminator(), 903 // so we first remove any instruction that already has an index. 904 if (Indexes->hasIndex(MI)) 905 Indexes->removeMachineInstrFromMaps(MI); 906 Indexes->insertMachineInstrInMaps(MI); 907 } 908 } 909 } 910 911 // Fix PHI nodes in Succ so they refer to NMBB instead of this 912 for (MachineBasicBlock::instr_iterator 913 i = Succ->instr_begin(),e = Succ->instr_end(); 914 i != e && i->isPHI(); ++i) 915 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 916 if (i->getOperand(ni+1).getMBB() == this) 917 i->getOperand(ni+1).setMBB(NMBB); 918 919 // Inherit live-ins from the successor 920 for (const auto &LI : Succ->liveins()) 921 NMBB->addLiveIn(LI); 922 923 // Update LiveVariables. 924 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 925 if (LV) { 926 // Restore kills of virtual registers that were killed by the terminators. 927 while (!KilledRegs.empty()) { 928 unsigned Reg = KilledRegs.pop_back_val(); 929 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 930 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 931 continue; 932 if (TargetRegisterInfo::isVirtualRegister(Reg)) 933 LV->getVarInfo(Reg).Kills.push_back(&*I); 934 DEBUG(dbgs() << "Restored terminator kill: " << *I); 935 break; 936 } 937 } 938 // Update relevant live-through information. 939 LV->addNewBlock(NMBB, this, Succ); 940 } 941 942 if (LIS) { 943 // After splitting the edge and updating SlotIndexes, live intervals may be 944 // in one of two situations, depending on whether this block was the last in 945 // the function. If the original block was the last in the function, all 946 // live intervals will end prior to the beginning of the new split block. If 947 // the original block was not at the end of the function, all live intervals 948 // will extend to the end of the new split block. 949 950 bool isLastMBB = 951 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 952 953 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 954 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 955 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 956 957 // Find the registers used from NMBB in PHIs in Succ. 958 SmallSet<unsigned, 8> PHISrcRegs; 959 for (MachineBasicBlock::instr_iterator 960 I = Succ->instr_begin(), E = Succ->instr_end(); 961 I != E && I->isPHI(); ++I) { 962 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 963 if (I->getOperand(ni+1).getMBB() == NMBB) { 964 MachineOperand &MO = I->getOperand(ni); 965 unsigned Reg = MO.getReg(); 966 PHISrcRegs.insert(Reg); 967 if (MO.isUndef()) 968 continue; 969 970 LiveInterval &LI = LIS->getInterval(Reg); 971 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 972 assert(VNI && 973 "PHI sources should be live out of their predecessors."); 974 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 975 } 976 } 977 } 978 979 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 980 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 981 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 982 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 983 continue; 984 985 LiveInterval &LI = LIS->getInterval(Reg); 986 if (!LI.liveAt(PrevIndex)) 987 continue; 988 989 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 990 if (isLiveOut && isLastMBB) { 991 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 992 assert(VNI && "LiveInterval should have VNInfo where it is live."); 993 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 994 } else if (!isLiveOut && !isLastMBB) { 995 LI.removeSegment(StartIndex, EndIndex); 996 } 997 } 998 999 // Update all intervals for registers whose uses may have been modified by 1000 // updateTerminator(). 1001 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1002 } 1003 1004 if (MachineDominatorTree *MDT = 1005 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1006 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1007 1008 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1009 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1010 // If one or the other blocks were not in a loop, the new block is not 1011 // either, and thus LI doesn't need to be updated. 1012 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1013 if (TIL == DestLoop) { 1014 // Both in the same loop, the NMBB joins loop. 1015 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1016 } else if (TIL->contains(DestLoop)) { 1017 // Edge from an outer loop to an inner loop. Add to the outer loop. 1018 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1019 } else if (DestLoop->contains(TIL)) { 1020 // Edge from an inner loop to an outer loop. Add to the outer loop. 1021 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1022 } else { 1023 // Edge from two loops with no containment relation. Because these 1024 // are natural loops, we know that the destination block must be the 1025 // header of its loop (adding a branch into a loop elsewhere would 1026 // create an irreducible loop). 1027 assert(DestLoop->getHeader() == Succ && 1028 "Should not create irreducible loops!"); 1029 if (MachineLoop *P = DestLoop->getParentLoop()) 1030 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1031 } 1032 } 1033 } 1034 1035 return NMBB; 1036 } 1037 1038 bool MachineBasicBlock::canSplitCriticalEdge( 1039 const MachineBasicBlock *Succ) const { 1040 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1041 // it in this generic function. 1042 if (Succ->isEHPad()) 1043 return false; 1044 1045 const MachineFunction *MF = getParent(); 1046 1047 // Performance might be harmed on HW that implements branching using exec mask 1048 // where both sides of the branches are always executed. 1049 if (MF->getTarget().requiresStructuredCFG()) 1050 return false; 1051 1052 // We may need to update this's terminator, but we can't do that if 1053 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1054 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1055 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1056 SmallVector<MachineOperand, 4> Cond; 1057 // AnalyzeBanch should modify this, since we did not allow modification. 1058 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1059 /*AllowModify*/ false)) 1060 return false; 1061 1062 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1063 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1064 // case that we can't handle. Since this never happens in properly optimized 1065 // code, just skip those edges. 1066 if (TBB && TBB == FBB) { 1067 DEBUG(dbgs() << "Won't split critical edge after degenerate " 1068 << printMBBReference(*this) << '\n'); 1069 return false; 1070 } 1071 return true; 1072 } 1073 1074 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1075 /// neighboring instructions so the bundle won't be broken by removing MI. 1076 static void unbundleSingleMI(MachineInstr *MI) { 1077 // Removing the first instruction in a bundle. 1078 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1079 MI->unbundleFromSucc(); 1080 // Removing the last instruction in a bundle. 1081 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1082 MI->unbundleFromPred(); 1083 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1084 // are already fine. 1085 } 1086 1087 MachineBasicBlock::instr_iterator 1088 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1089 unbundleSingleMI(&*I); 1090 return Insts.erase(I); 1091 } 1092 1093 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1094 unbundleSingleMI(MI); 1095 MI->clearFlag(MachineInstr::BundledPred); 1096 MI->clearFlag(MachineInstr::BundledSucc); 1097 return Insts.remove(MI); 1098 } 1099 1100 MachineBasicBlock::instr_iterator 1101 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1102 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1103 "Cannot insert instruction with bundle flags"); 1104 // Set the bundle flags when inserting inside a bundle. 1105 if (I != instr_end() && I->isBundledWithPred()) { 1106 MI->setFlag(MachineInstr::BundledPred); 1107 MI->setFlag(MachineInstr::BundledSucc); 1108 } 1109 return Insts.insert(I, MI); 1110 } 1111 1112 /// This method unlinks 'this' from the containing function, and returns it, but 1113 /// does not delete it. 1114 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1115 assert(getParent() && "Not embedded in a function!"); 1116 getParent()->remove(this); 1117 return this; 1118 } 1119 1120 /// This method unlinks 'this' from the containing function, and deletes it. 1121 void MachineBasicBlock::eraseFromParent() { 1122 assert(getParent() && "Not embedded in a function!"); 1123 getParent()->erase(this); 1124 } 1125 1126 /// Given a machine basic block that branched to 'Old', change the code and CFG 1127 /// so that it branches to 'New' instead. 1128 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1129 MachineBasicBlock *New) { 1130 assert(Old != New && "Cannot replace self with self!"); 1131 1132 MachineBasicBlock::instr_iterator I = instr_end(); 1133 while (I != instr_begin()) { 1134 --I; 1135 if (!I->isTerminator()) break; 1136 1137 // Scan the operands of this machine instruction, replacing any uses of Old 1138 // with New. 1139 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1140 if (I->getOperand(i).isMBB() && 1141 I->getOperand(i).getMBB() == Old) 1142 I->getOperand(i).setMBB(New); 1143 } 1144 1145 // Update the successor information. 1146 replaceSuccessor(Old, New); 1147 } 1148 1149 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1150 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1151 /// MBB successors from the CFG. DestA and DestB can be null. 1152 /// 1153 /// Besides DestA and DestB, retain other edges leading to LandingPads 1154 /// (currently there can be only one; we don't check or require that here). 1155 /// Note it is possible that DestA and/or DestB are LandingPads. 1156 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1157 MachineBasicBlock *DestB, 1158 bool IsCond) { 1159 // The values of DestA and DestB frequently come from a call to the 1160 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1161 // values from there. 1162 // 1163 // 1. If both DestA and DestB are null, then the block ends with no branches 1164 // (it falls through to its successor). 1165 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1166 // with only an unconditional branch. 1167 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1168 // with a conditional branch that falls through to a successor (DestB). 1169 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1170 // conditional branch followed by an unconditional branch. DestA is the 1171 // 'true' destination and DestB is the 'false' destination. 1172 1173 bool Changed = false; 1174 1175 MachineBasicBlock *FallThru = getNextNode(); 1176 1177 if (!DestA && !DestB) { 1178 // Block falls through to successor. 1179 DestA = FallThru; 1180 DestB = FallThru; 1181 } else if (DestA && !DestB) { 1182 if (IsCond) 1183 // Block ends in conditional jump that falls through to successor. 1184 DestB = FallThru; 1185 } else { 1186 assert(DestA && DestB && IsCond && 1187 "CFG in a bad state. Cannot correct CFG edges"); 1188 } 1189 1190 // Remove superfluous edges. I.e., those which aren't destinations of this 1191 // basic block, duplicate edges, or landing pads. 1192 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1193 MachineBasicBlock::succ_iterator SI = succ_begin(); 1194 while (SI != succ_end()) { 1195 const MachineBasicBlock *MBB = *SI; 1196 if (!SeenMBBs.insert(MBB).second || 1197 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1198 // This is a superfluous edge, remove it. 1199 SI = removeSuccessor(SI); 1200 Changed = true; 1201 } else { 1202 ++SI; 1203 } 1204 } 1205 1206 if (Changed) 1207 normalizeSuccProbs(); 1208 return Changed; 1209 } 1210 1211 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1212 /// instructions. Return UnknownLoc if there is none. 1213 DebugLoc 1214 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1215 // Skip debug declarations, we don't want a DebugLoc from them. 1216 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1217 if (MBBI != instr_end()) 1218 return MBBI->getDebugLoc(); 1219 return {}; 1220 } 1221 1222 /// Find and return the merged DebugLoc of the branch instructions of the block. 1223 /// Return UnknownLoc if there is none. 1224 DebugLoc 1225 MachineBasicBlock::findBranchDebugLoc() { 1226 DebugLoc DL; 1227 auto TI = getFirstTerminator(); 1228 while (TI != end() && !TI->isBranch()) 1229 ++TI; 1230 1231 if (TI != end()) { 1232 DL = TI->getDebugLoc(); 1233 for (++TI ; TI != end() ; ++TI) 1234 if (TI->isBranch()) 1235 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1236 } 1237 return DL; 1238 } 1239 1240 /// Return probability of the edge from this block to MBB. 1241 BranchProbability 1242 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1243 if (Probs.empty()) 1244 return BranchProbability(1, succ_size()); 1245 1246 const auto &Prob = *getProbabilityIterator(Succ); 1247 if (Prob.isUnknown()) { 1248 // For unknown probabilities, collect the sum of all known ones, and evenly 1249 // ditribute the complemental of the sum to each unknown probability. 1250 unsigned KnownProbNum = 0; 1251 auto Sum = BranchProbability::getZero(); 1252 for (auto &P : Probs) { 1253 if (!P.isUnknown()) { 1254 Sum += P; 1255 KnownProbNum++; 1256 } 1257 } 1258 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1259 } else 1260 return Prob; 1261 } 1262 1263 /// Set successor probability of a given iterator. 1264 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1265 BranchProbability Prob) { 1266 assert(!Prob.isUnknown()); 1267 if (Probs.empty()) 1268 return; 1269 *getProbabilityIterator(I) = Prob; 1270 } 1271 1272 /// Return probability iterator corresonding to the I successor iterator 1273 MachineBasicBlock::const_probability_iterator 1274 MachineBasicBlock::getProbabilityIterator( 1275 MachineBasicBlock::const_succ_iterator I) const { 1276 assert(Probs.size() == Successors.size() && "Async probability list!"); 1277 const size_t index = std::distance(Successors.begin(), I); 1278 assert(index < Probs.size() && "Not a current successor!"); 1279 return Probs.begin() + index; 1280 } 1281 1282 /// Return probability iterator corresonding to the I successor iterator. 1283 MachineBasicBlock::probability_iterator 1284 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1285 assert(Probs.size() == Successors.size() && "Async probability list!"); 1286 const size_t index = std::distance(Successors.begin(), I); 1287 assert(index < Probs.size() && "Not a current successor!"); 1288 return Probs.begin() + index; 1289 } 1290 1291 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1292 /// as of just before "MI". 1293 /// 1294 /// Search is localised to a neighborhood of 1295 /// Neighborhood instructions before (searching for defs or kills) and N 1296 /// instructions after (searching just for defs) MI. 1297 MachineBasicBlock::LivenessQueryResult 1298 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1299 unsigned Reg, const_iterator Before, 1300 unsigned Neighborhood) const { 1301 unsigned N = Neighborhood; 1302 1303 // Start by searching backwards from Before, looking for kills, reads or defs. 1304 const_iterator I(Before); 1305 // If this is the first insn in the block, don't search backwards. 1306 if (I != begin()) { 1307 do { 1308 --I; 1309 1310 MachineOperandIteratorBase::PhysRegInfo Info = 1311 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1312 1313 // Defs happen after uses so they take precedence if both are present. 1314 1315 // Register is dead after a dead def of the full register. 1316 if (Info.DeadDef) 1317 return LQR_Dead; 1318 // Register is (at least partially) live after a def. 1319 if (Info.Defined) { 1320 if (!Info.PartialDeadDef) 1321 return LQR_Live; 1322 // As soon as we saw a partial definition (dead or not), 1323 // we cannot tell if the value is partial live without 1324 // tracking the lanemasks. We are not going to do this, 1325 // so fall back on the remaining of the analysis. 1326 break; 1327 } 1328 // Register is dead after a full kill or clobber and no def. 1329 if (Info.Killed || Info.Clobbered) 1330 return LQR_Dead; 1331 // Register must be live if we read it. 1332 if (Info.Read) 1333 return LQR_Live; 1334 } while (I != begin() && --N > 0); 1335 } 1336 1337 // Did we get to the start of the block? 1338 if (I == begin()) { 1339 // If so, the register's state is definitely defined by the live-in state. 1340 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1341 ++RAI) 1342 if (isLiveIn(*RAI)) 1343 return LQR_Live; 1344 1345 return LQR_Dead; 1346 } 1347 1348 N = Neighborhood; 1349 1350 // Try searching forwards from Before, looking for reads or defs. 1351 I = const_iterator(Before); 1352 // If this is the last insn in the block, don't search forwards. 1353 if (I != end()) { 1354 for (++I; I != end() && N > 0; ++I, --N) { 1355 MachineOperandIteratorBase::PhysRegInfo Info = 1356 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1357 1358 // Register is live when we read it here. 1359 if (Info.Read) 1360 return LQR_Live; 1361 // Register is dead if we can fully overwrite or clobber it here. 1362 if (Info.FullyDefined || Info.Clobbered) 1363 return LQR_Dead; 1364 } 1365 } 1366 1367 // At this point we have no idea of the liveness of the register. 1368 return LQR_Unknown; 1369 } 1370 1371 const uint32_t * 1372 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1373 // EH funclet entry does not preserve any registers. 1374 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1375 } 1376 1377 const uint32_t * 1378 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1379 // If we see a return block with successors, this must be a funclet return, 1380 // which does not preserve any registers. If there are no successors, we don't 1381 // care what kind of return it is, putting a mask after it is a no-op. 1382 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1383 } 1384 1385 void MachineBasicBlock::clearLiveIns() { 1386 LiveIns.clear(); 1387 } 1388 1389 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1390 assert(getParent()->getProperties().hasProperty( 1391 MachineFunctionProperties::Property::TracksLiveness) && 1392 "Liveness information is accurate"); 1393 return LiveIns.begin(); 1394 } 1395