1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/LiveIntervals.h" 16 #include "llvm/CodeGen/LivePhysRegs.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineJumpTableInfo.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/TargetRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/DebugInfoMetadata.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCContext.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include <algorithm> 39 #include <cmath> 40 using namespace llvm; 41 42 #define DEBUG_TYPE "codegen" 43 44 static cl::opt<bool> PrintSlotIndexes( 45 "print-slotindexes", 46 cl::desc("When printing machine IR, annotate instructions and blocks with " 47 "SlotIndexes when available"), 48 cl::init(true), cl::Hidden); 49 50 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 51 : BB(B), Number(-1), xParent(&MF) { 52 Insts.Parent = this; 53 if (B) 54 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 55 } 56 57 MachineBasicBlock::~MachineBasicBlock() = default; 58 59 /// Return the MCSymbol for this basic block. 60 MCSymbol *MachineBasicBlock::getSymbol() const { 61 if (!CachedMCSymbol) { 62 const MachineFunction *MF = getParent(); 63 MCContext &Ctx = MF->getContext(); 64 65 // We emit a non-temporary symbol -- with a descriptive name -- if it begins 66 // a section (with basic block sections). Otherwise we fall back to use temp 67 // label. 68 if (MF->hasBBSections() && isBeginSection()) { 69 SmallString<5> Suffix; 70 if (SectionID == MBBSectionID::ColdSectionID) { 71 Suffix += ".cold"; 72 } else if (SectionID == MBBSectionID::ExceptionSectionID) { 73 Suffix += ".eh"; 74 } else { 75 // For symbols that represent basic block sections, we add ".__part." to 76 // allow tools like symbolizers to know that this represents a part of 77 // the original function. 78 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str(); 79 } 80 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix); 81 } else { 82 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 83 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 84 Twine(MF->getFunctionNumber()) + 85 "_" + Twine(getNumber())); 86 } 87 } 88 return CachedMCSymbol; 89 } 90 91 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const { 92 if (!CachedEHCatchretMCSymbol) { 93 const MachineFunction *MF = getParent(); 94 SmallString<128> SymbolName; 95 raw_svector_ostream(SymbolName) 96 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber(); 97 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName); 98 } 99 return CachedEHCatchretMCSymbol; 100 } 101 102 MCSymbol *MachineBasicBlock::getEndSymbol() const { 103 if (!CachedEndMCSymbol) { 104 const MachineFunction *MF = getParent(); 105 MCContext &Ctx = MF->getContext(); 106 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 107 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" + 108 Twine(MF->getFunctionNumber()) + 109 "_" + Twine(getNumber())); 110 } 111 return CachedEndMCSymbol; 112 } 113 114 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 115 MBB.print(OS); 116 return OS; 117 } 118 119 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 120 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 121 } 122 123 /// When an MBB is added to an MF, we need to update the parent pointer of the 124 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 125 /// operand list for registers. 126 /// 127 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 128 /// gets the next available unique MBB number. If it is removed from a 129 /// MachineFunction, it goes back to being #-1. 130 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 131 MachineBasicBlock *N) { 132 MachineFunction &MF = *N->getParent(); 133 N->Number = MF.addToMBBNumbering(N); 134 135 // Make sure the instructions have their operands in the reginfo lists. 136 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 137 for (MachineInstr &MI : N->instrs()) 138 MI.addRegOperandsToUseLists(RegInfo); 139 } 140 141 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 142 MachineBasicBlock *N) { 143 N->getParent()->removeFromMBBNumbering(N->Number); 144 N->Number = -1; 145 } 146 147 /// When we add an instruction to a basic block list, we update its parent 148 /// pointer and add its operands from reg use/def lists if appropriate. 149 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 150 assert(!N->getParent() && "machine instruction already in a basic block"); 151 N->setParent(Parent); 152 153 // Add the instruction's register operands to their corresponding 154 // use/def lists. 155 MachineFunction *MF = Parent->getParent(); 156 N->addRegOperandsToUseLists(MF->getRegInfo()); 157 MF->handleInsertion(*N); 158 } 159 160 /// When we remove an instruction from a basic block list, we update its parent 161 /// pointer and remove its operands from reg use/def lists if appropriate. 162 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 163 assert(N->getParent() && "machine instruction not in a basic block"); 164 165 // Remove from the use/def lists. 166 if (MachineFunction *MF = N->getMF()) { 167 MF->handleRemoval(*N); 168 N->removeRegOperandsFromUseLists(MF->getRegInfo()); 169 } 170 171 N->setParent(nullptr); 172 } 173 174 /// When moving a range of instructions from one MBB list to another, we need to 175 /// update the parent pointers and the use/def lists. 176 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 177 instr_iterator First, 178 instr_iterator Last) { 179 assert(Parent->getParent() == FromList.Parent->getParent() && 180 "cannot transfer MachineInstrs between MachineFunctions"); 181 182 // If it's within the same BB, there's nothing to do. 183 if (this == &FromList) 184 return; 185 186 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 187 188 // If splicing between two blocks within the same function, just update the 189 // parent pointers. 190 for (; First != Last; ++First) 191 First->setParent(Parent); 192 } 193 194 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 195 assert(!MI->getParent() && "MI is still in a block!"); 196 Parent->getParent()->deleteMachineInstr(MI); 197 } 198 199 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 200 instr_iterator I = instr_begin(), E = instr_end(); 201 while (I != E && I->isPHI()) 202 ++I; 203 assert((I == E || !I->isInsideBundle()) && 204 "First non-phi MI cannot be inside a bundle!"); 205 return I; 206 } 207 208 MachineBasicBlock::iterator 209 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 210 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 211 212 iterator E = end(); 213 while (I != E && (I->isPHI() || I->isPosition() || 214 TII->isBasicBlockPrologue(*I))) 215 ++I; 216 // FIXME: This needs to change if we wish to bundle labels 217 // inside the bundle. 218 assert((I == E || !I->isInsideBundle()) && 219 "First non-phi / non-label instruction is inside a bundle!"); 220 return I; 221 } 222 223 MachineBasicBlock::iterator 224 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I, 225 bool SkipPseudoOp) { 226 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 227 228 iterator E = end(); 229 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 230 (SkipPseudoOp && I->isPseudoProbe()) || 231 TII->isBasicBlockPrologue(*I))) 232 ++I; 233 // FIXME: This needs to change if we wish to bundle labels / dbg_values 234 // inside the bundle. 235 assert((I == E || !I->isInsideBundle()) && 236 "First non-phi / non-label / non-debug " 237 "instruction is inside a bundle!"); 238 return I; 239 } 240 241 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 242 iterator B = begin(), E = end(), I = E; 243 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 244 ; /*noop */ 245 while (I != E && !I->isTerminator()) 246 ++I; 247 return I; 248 } 249 250 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 251 instr_iterator B = instr_begin(), E = instr_end(), I = E; 252 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 253 ; /*noop */ 254 while (I != E && !I->isTerminator()) 255 ++I; 256 return I; 257 } 258 259 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() { 260 return find_if(instrs(), [](auto &II) { return II.isTerminator(); }); 261 } 262 263 MachineBasicBlock::iterator 264 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) { 265 // Skip over begin-of-block dbg_value instructions. 266 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp); 267 } 268 269 MachineBasicBlock::iterator 270 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) { 271 // Skip over end-of-block dbg_value instructions. 272 instr_iterator B = instr_begin(), I = instr_end(); 273 while (I != B) { 274 --I; 275 // Return instruction that starts a bundle. 276 if (I->isDebugInstr() || I->isInsideBundle()) 277 continue; 278 if (SkipPseudoOp && I->isPseudoProbe()) 279 continue; 280 return I; 281 } 282 // The block is all debug values. 283 return end(); 284 } 285 286 bool MachineBasicBlock::hasEHPadSuccessor() const { 287 for (const MachineBasicBlock *Succ : successors()) 288 if (Succ->isEHPad()) 289 return true; 290 return false; 291 } 292 293 bool MachineBasicBlock::isEntryBlock() const { 294 return getParent()->begin() == getIterator(); 295 } 296 297 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 298 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 299 print(dbgs()); 300 } 301 #endif 302 303 bool MachineBasicBlock::mayHaveInlineAsmBr() const { 304 for (const MachineBasicBlock *Succ : successors()) { 305 if (Succ->isInlineAsmBrIndirectTarget()) 306 return true; 307 } 308 return false; 309 } 310 311 bool MachineBasicBlock::isLegalToHoistInto() const { 312 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr()) 313 return false; 314 return true; 315 } 316 317 StringRef MachineBasicBlock::getName() const { 318 if (const BasicBlock *LBB = getBasicBlock()) 319 return LBB->getName(); 320 else 321 return StringRef("", 0); 322 } 323 324 /// Return a hopefully unique identifier for this block. 325 std::string MachineBasicBlock::getFullName() const { 326 std::string Name; 327 if (getParent()) 328 Name = (getParent()->getName() + ":").str(); 329 if (getBasicBlock()) 330 Name += getBasicBlock()->getName(); 331 else 332 Name += ("BB" + Twine(getNumber())).str(); 333 return Name; 334 } 335 336 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 337 bool IsStandalone) const { 338 const MachineFunction *MF = getParent(); 339 if (!MF) { 340 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 341 << " is null\n"; 342 return; 343 } 344 const Function &F = MF->getFunction(); 345 const Module *M = F.getParent(); 346 ModuleSlotTracker MST(M); 347 MST.incorporateFunction(F); 348 print(OS, MST, Indexes, IsStandalone); 349 } 350 351 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 352 const SlotIndexes *Indexes, 353 bool IsStandalone) const { 354 const MachineFunction *MF = getParent(); 355 if (!MF) { 356 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 357 << " is null\n"; 358 return; 359 } 360 361 if (Indexes && PrintSlotIndexes) 362 OS << Indexes->getMBBStartIdx(this) << '\t'; 363 364 printName(OS, PrintNameIr | PrintNameAttributes, &MST); 365 OS << ":\n"; 366 367 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 368 const MachineRegisterInfo &MRI = MF->getRegInfo(); 369 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 370 bool HasLineAttributes = false; 371 372 // Print the preds of this block according to the CFG. 373 if (!pred_empty() && IsStandalone) { 374 if (Indexes) OS << '\t'; 375 // Don't indent(2), align with previous line attributes. 376 OS << "; predecessors: "; 377 ListSeparator LS; 378 for (auto *Pred : predecessors()) 379 OS << LS << printMBBReference(*Pred); 380 OS << '\n'; 381 HasLineAttributes = true; 382 } 383 384 if (!succ_empty()) { 385 if (Indexes) OS << '\t'; 386 // Print the successors 387 OS.indent(2) << "successors: "; 388 ListSeparator LS; 389 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 390 OS << LS << printMBBReference(**I); 391 if (!Probs.empty()) 392 OS << '(' 393 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 394 << ')'; 395 } 396 if (!Probs.empty() && IsStandalone) { 397 // Print human readable probabilities as comments. 398 OS << "; "; 399 ListSeparator LS; 400 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 401 const BranchProbability &BP = getSuccProbability(I); 402 OS << LS << printMBBReference(**I) << '(' 403 << format("%.2f%%", 404 rint(((double)BP.getNumerator() / BP.getDenominator()) * 405 100.0 * 100.0) / 406 100.0) 407 << ')'; 408 } 409 } 410 411 OS << '\n'; 412 HasLineAttributes = true; 413 } 414 415 if (!livein_empty() && MRI.tracksLiveness()) { 416 if (Indexes) OS << '\t'; 417 OS.indent(2) << "liveins: "; 418 419 ListSeparator LS; 420 for (const auto &LI : liveins()) { 421 OS << LS << printReg(LI.PhysReg, TRI); 422 if (!LI.LaneMask.all()) 423 OS << ":0x" << PrintLaneMask(LI.LaneMask); 424 } 425 HasLineAttributes = true; 426 } 427 428 if (HasLineAttributes) 429 OS << '\n'; 430 431 bool IsInBundle = false; 432 for (const MachineInstr &MI : instrs()) { 433 if (Indexes && PrintSlotIndexes) { 434 if (Indexes->hasIndex(MI)) 435 OS << Indexes->getInstructionIndex(MI); 436 OS << '\t'; 437 } 438 439 if (IsInBundle && !MI.isInsideBundle()) { 440 OS.indent(2) << "}\n"; 441 IsInBundle = false; 442 } 443 444 OS.indent(IsInBundle ? 4 : 2); 445 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 446 /*AddNewLine=*/false, &TII); 447 448 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 449 OS << " {"; 450 IsInBundle = true; 451 } 452 OS << '\n'; 453 } 454 455 if (IsInBundle) 456 OS.indent(2) << "}\n"; 457 458 if (IrrLoopHeaderWeight && IsStandalone) { 459 if (Indexes) OS << '\t'; 460 OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight 461 << '\n'; 462 } 463 } 464 465 /// Print the basic block's name as: 466 /// 467 /// bb.{number}[.{ir-name}] [(attributes...)] 468 /// 469 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed 470 /// (which is the default). If the IR block has no name, it is identified 471 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})". 472 /// 473 /// When the \ref PrintNameAttributes flag is passed, additional attributes 474 /// of the block are printed when set. 475 /// 476 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating 477 /// the parts to print. 478 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will 479 /// incorporate its own tracker when necessary to 480 /// determine the block's IR name. 481 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags, 482 ModuleSlotTracker *moduleSlotTracker) const { 483 os << "bb." << getNumber(); 484 bool hasAttributes = false; 485 486 auto PrintBBRef = [&](const BasicBlock *bb) { 487 os << "%ir-block."; 488 if (bb->hasName()) { 489 os << bb->getName(); 490 } else { 491 int slot = -1; 492 493 if (moduleSlotTracker) { 494 slot = moduleSlotTracker->getLocalSlot(bb); 495 } else if (bb->getParent()) { 496 ModuleSlotTracker tmpTracker(bb->getModule(), false); 497 tmpTracker.incorporateFunction(*bb->getParent()); 498 slot = tmpTracker.getLocalSlot(bb); 499 } 500 501 if (slot == -1) 502 os << "<ir-block badref>"; 503 else 504 os << slot; 505 } 506 }; 507 508 if (printNameFlags & PrintNameIr) { 509 if (const auto *bb = getBasicBlock()) { 510 if (bb->hasName()) { 511 os << '.' << bb->getName(); 512 } else { 513 hasAttributes = true; 514 os << " ("; 515 PrintBBRef(bb); 516 } 517 } 518 } 519 520 if (printNameFlags & PrintNameAttributes) { 521 if (isMachineBlockAddressTaken()) { 522 os << (hasAttributes ? ", " : " ("); 523 os << "machine-block-address-taken"; 524 hasAttributes = true; 525 } 526 if (isIRBlockAddressTaken()) { 527 os << (hasAttributes ? ", " : " ("); 528 os << "ir-block-address-taken "; 529 PrintBBRef(getAddressTakenIRBlock()); 530 hasAttributes = true; 531 } 532 if (isEHPad()) { 533 os << (hasAttributes ? ", " : " ("); 534 os << "landing-pad"; 535 hasAttributes = true; 536 } 537 if (isInlineAsmBrIndirectTarget()) { 538 os << (hasAttributes ? ", " : " ("); 539 os << "inlineasm-br-indirect-target"; 540 hasAttributes = true; 541 } 542 if (isEHFuncletEntry()) { 543 os << (hasAttributes ? ", " : " ("); 544 os << "ehfunclet-entry"; 545 hasAttributes = true; 546 } 547 if (getAlignment() != Align(1)) { 548 os << (hasAttributes ? ", " : " ("); 549 os << "align " << getAlignment().value(); 550 hasAttributes = true; 551 } 552 if (getSectionID() != MBBSectionID(0)) { 553 os << (hasAttributes ? ", " : " ("); 554 os << "bbsections "; 555 switch (getSectionID().Type) { 556 case MBBSectionID::SectionType::Exception: 557 os << "Exception"; 558 break; 559 case MBBSectionID::SectionType::Cold: 560 os << "Cold"; 561 break; 562 default: 563 os << getSectionID().Number; 564 } 565 hasAttributes = true; 566 } 567 if (getBBID().has_value()) { 568 os << (hasAttributes ? ", " : " ("); 569 os << "bb_id " << *getBBID(); 570 hasAttributes = true; 571 } 572 } 573 574 if (hasAttributes) 575 os << ')'; 576 } 577 578 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 579 bool /*PrintType*/) const { 580 OS << '%'; 581 printName(OS, 0); 582 } 583 584 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 585 LiveInVector::iterator I = find_if( 586 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 587 if (I == LiveIns.end()) 588 return; 589 590 I->LaneMask &= ~LaneMask; 591 if (I->LaneMask.none()) 592 LiveIns.erase(I); 593 } 594 595 MachineBasicBlock::livein_iterator 596 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 597 // Get non-const version of iterator. 598 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 599 return LiveIns.erase(LI); 600 } 601 602 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 603 livein_iterator I = find_if( 604 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 605 return I != livein_end() && (I->LaneMask & LaneMask).any(); 606 } 607 608 void MachineBasicBlock::sortUniqueLiveIns() { 609 llvm::sort(LiveIns, 610 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 611 return LI0.PhysReg < LI1.PhysReg; 612 }); 613 // Liveins are sorted by physreg now we can merge their lanemasks. 614 LiveInVector::const_iterator I = LiveIns.begin(); 615 LiveInVector::const_iterator J; 616 LiveInVector::iterator Out = LiveIns.begin(); 617 for (; I != LiveIns.end(); ++Out, I = J) { 618 MCRegister PhysReg = I->PhysReg; 619 LaneBitmask LaneMask = I->LaneMask; 620 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 621 LaneMask |= J->LaneMask; 622 Out->PhysReg = PhysReg; 623 Out->LaneMask = LaneMask; 624 } 625 LiveIns.erase(Out, LiveIns.end()); 626 } 627 628 Register 629 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 630 assert(getParent() && "MBB must be inserted in function"); 631 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg"); 632 assert(RC && "Register class is required"); 633 assert((isEHPad() || this == &getParent()->front()) && 634 "Only the entry block and landing pads can have physreg live ins"); 635 636 bool LiveIn = isLiveIn(PhysReg); 637 iterator I = SkipPHIsAndLabels(begin()), E = end(); 638 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 639 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 640 641 // Look for an existing copy. 642 if (LiveIn) 643 for (;I != E && I->isCopy(); ++I) 644 if (I->getOperand(1).getReg() == PhysReg) { 645 Register VirtReg = I->getOperand(0).getReg(); 646 if (!MRI.constrainRegClass(VirtReg, RC)) 647 llvm_unreachable("Incompatible live-in register class."); 648 return VirtReg; 649 } 650 651 // No luck, create a virtual register. 652 Register VirtReg = MRI.createVirtualRegister(RC); 653 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 654 .addReg(PhysReg, RegState::Kill); 655 if (!LiveIn) 656 addLiveIn(PhysReg); 657 return VirtReg; 658 } 659 660 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 661 getParent()->splice(NewAfter->getIterator(), getIterator()); 662 } 663 664 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 665 getParent()->splice(++NewBefore->getIterator(), getIterator()); 666 } 667 668 static int findJumpTableIndex(const MachineBasicBlock &MBB) { 669 MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator(); 670 if (TerminatorI == MBB.end()) 671 return -1; 672 const MachineInstr &Terminator = *TerminatorI; 673 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 674 return TII->getJumpTableIndex(Terminator); 675 } 676 677 void MachineBasicBlock::updateTerminator( 678 MachineBasicBlock *PreviousLayoutSuccessor) { 679 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this) 680 << "\n"); 681 682 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 683 // A block with no successors has no concerns with fall-through edges. 684 if (this->succ_empty()) 685 return; 686 687 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 688 SmallVector<MachineOperand, 4> Cond; 689 DebugLoc DL = findBranchDebugLoc(); 690 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 691 (void) B; 692 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 693 if (Cond.empty()) { 694 if (TBB) { 695 // The block has an unconditional branch. If its successor is now its 696 // layout successor, delete the branch. 697 if (isLayoutSuccessor(TBB)) 698 TII->removeBranch(*this); 699 } else { 700 // The block has an unconditional fallthrough, or the end of the block is 701 // unreachable. 702 703 // Unfortunately, whether the end of the block is unreachable is not 704 // immediately obvious; we must fall back to checking the successor list, 705 // and assuming that if the passed in block is in the succesor list and 706 // not an EHPad, it must be the intended target. 707 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) || 708 PreviousLayoutSuccessor->isEHPad()) 709 return; 710 711 // If the unconditional successor block is not the current layout 712 // successor, insert a branch to jump to it. 713 if (!isLayoutSuccessor(PreviousLayoutSuccessor)) 714 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 715 } 716 return; 717 } 718 719 if (FBB) { 720 // The block has a non-fallthrough conditional branch. If one of its 721 // successors is its layout successor, rewrite it to a fallthrough 722 // conditional branch. 723 if (isLayoutSuccessor(TBB)) { 724 if (TII->reverseBranchCondition(Cond)) 725 return; 726 TII->removeBranch(*this); 727 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 728 } else if (isLayoutSuccessor(FBB)) { 729 TII->removeBranch(*this); 730 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 731 } 732 return; 733 } 734 735 // We now know we're going to fallthrough to PreviousLayoutSuccessor. 736 assert(PreviousLayoutSuccessor); 737 assert(!PreviousLayoutSuccessor->isEHPad()); 738 assert(isSuccessor(PreviousLayoutSuccessor)); 739 740 if (PreviousLayoutSuccessor == TBB) { 741 // We had a fallthrough to the same basic block as the conditional jump 742 // targets. Remove the conditional jump, leaving an unconditional 743 // fallthrough or an unconditional jump. 744 TII->removeBranch(*this); 745 if (!isLayoutSuccessor(TBB)) { 746 Cond.clear(); 747 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 748 } 749 return; 750 } 751 752 // The block has a fallthrough conditional branch. 753 if (isLayoutSuccessor(TBB)) { 754 if (TII->reverseBranchCondition(Cond)) { 755 // We can't reverse the condition, add an unconditional branch. 756 Cond.clear(); 757 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 758 return; 759 } 760 TII->removeBranch(*this); 761 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 762 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) { 763 TII->removeBranch(*this); 764 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL); 765 } 766 } 767 768 void MachineBasicBlock::validateSuccProbs() const { 769 #ifndef NDEBUG 770 int64_t Sum = 0; 771 for (auto Prob : Probs) 772 Sum += Prob.getNumerator(); 773 // Due to precision issue, we assume that the sum of probabilities is one if 774 // the difference between the sum of their numerators and the denominator is 775 // no greater than the number of successors. 776 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 777 Probs.size() && 778 "The sum of successors's probabilities exceeds one."); 779 #endif // NDEBUG 780 } 781 782 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 783 BranchProbability Prob) { 784 // Probability list is either empty (if successor list isn't empty, this means 785 // disabled optimization) or has the same size as successor list. 786 if (!(Probs.empty() && !Successors.empty())) 787 Probs.push_back(Prob); 788 Successors.push_back(Succ); 789 Succ->addPredecessor(this); 790 } 791 792 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 793 // We need to make sure probability list is either empty or has the same size 794 // of successor list. When this function is called, we can safely delete all 795 // probability in the list. 796 Probs.clear(); 797 Successors.push_back(Succ); 798 Succ->addPredecessor(this); 799 } 800 801 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 802 MachineBasicBlock *New, 803 bool NormalizeSuccProbs) { 804 succ_iterator OldI = llvm::find(successors(), Old); 805 assert(OldI != succ_end() && "Old is not a successor of this block!"); 806 assert(!llvm::is_contained(successors(), New) && 807 "New is already a successor of this block!"); 808 809 // Add a new successor with equal probability as the original one. Note 810 // that we directly copy the probability using the iterator rather than 811 // getting a potentially synthetic probability computed when unknown. This 812 // preserves the probabilities as-is and then we can renormalize them and 813 // query them effectively afterward. 814 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 815 : *getProbabilityIterator(OldI)); 816 if (NormalizeSuccProbs) 817 normalizeSuccProbs(); 818 } 819 820 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 821 bool NormalizeSuccProbs) { 822 succ_iterator I = find(Successors, Succ); 823 removeSuccessor(I, NormalizeSuccProbs); 824 } 825 826 MachineBasicBlock::succ_iterator 827 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 828 assert(I != Successors.end() && "Not a current successor!"); 829 830 // If probability list is empty it means we don't use it (disabled 831 // optimization). 832 if (!Probs.empty()) { 833 probability_iterator WI = getProbabilityIterator(I); 834 Probs.erase(WI); 835 if (NormalizeSuccProbs) 836 normalizeSuccProbs(); 837 } 838 839 (*I)->removePredecessor(this); 840 return Successors.erase(I); 841 } 842 843 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 844 MachineBasicBlock *New) { 845 if (Old == New) 846 return; 847 848 succ_iterator E = succ_end(); 849 succ_iterator NewI = E; 850 succ_iterator OldI = E; 851 for (succ_iterator I = succ_begin(); I != E; ++I) { 852 if (*I == Old) { 853 OldI = I; 854 if (NewI != E) 855 break; 856 } 857 if (*I == New) { 858 NewI = I; 859 if (OldI != E) 860 break; 861 } 862 } 863 assert(OldI != E && "Old is not a successor of this block"); 864 865 // If New isn't already a successor, let it take Old's place. 866 if (NewI == E) { 867 Old->removePredecessor(this); 868 New->addPredecessor(this); 869 *OldI = New; 870 return; 871 } 872 873 // New is already a successor. 874 // Update its probability instead of adding a duplicate edge. 875 if (!Probs.empty()) { 876 auto ProbIter = getProbabilityIterator(NewI); 877 if (!ProbIter->isUnknown()) 878 *ProbIter += *getProbabilityIterator(OldI); 879 } 880 removeSuccessor(OldI); 881 } 882 883 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 884 succ_iterator I) { 885 if (!Orig->Probs.empty()) 886 addSuccessor(*I, Orig->getSuccProbability(I)); 887 else 888 addSuccessorWithoutProb(*I); 889 } 890 891 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 892 Predecessors.push_back(Pred); 893 } 894 895 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 896 pred_iterator I = find(Predecessors, Pred); 897 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 898 Predecessors.erase(I); 899 } 900 901 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 902 if (this == FromMBB) 903 return; 904 905 while (!FromMBB->succ_empty()) { 906 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 907 908 // If probability list is empty it means we don't use it (disabled 909 // optimization). 910 if (!FromMBB->Probs.empty()) { 911 auto Prob = *FromMBB->Probs.begin(); 912 addSuccessor(Succ, Prob); 913 } else 914 addSuccessorWithoutProb(Succ); 915 916 FromMBB->removeSuccessor(Succ); 917 } 918 } 919 920 void 921 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 922 if (this == FromMBB) 923 return; 924 925 while (!FromMBB->succ_empty()) { 926 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 927 if (!FromMBB->Probs.empty()) { 928 auto Prob = *FromMBB->Probs.begin(); 929 addSuccessor(Succ, Prob); 930 } else 931 addSuccessorWithoutProb(Succ); 932 FromMBB->removeSuccessor(Succ); 933 934 // Fix up any PHI nodes in the successor. 935 Succ->replacePhiUsesWith(FromMBB, this); 936 } 937 normalizeSuccProbs(); 938 } 939 940 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 941 return is_contained(predecessors(), MBB); 942 } 943 944 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 945 return is_contained(successors(), MBB); 946 } 947 948 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 949 MachineFunction::const_iterator I(this); 950 return std::next(I) == MachineFunction::const_iterator(MBB); 951 } 952 953 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const { 954 return Successors.size() == 1 ? Successors[0] : nullptr; 955 } 956 957 MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) { 958 MachineFunction::iterator Fallthrough = getIterator(); 959 ++Fallthrough; 960 // If FallthroughBlock is off the end of the function, it can't fall through. 961 if (Fallthrough == getParent()->end()) 962 return nullptr; 963 964 // If FallthroughBlock isn't a successor, no fallthrough is possible. 965 if (!isSuccessor(&*Fallthrough)) 966 return nullptr; 967 968 // Analyze the branches, if any, at the end of the block. 969 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 970 SmallVector<MachineOperand, 4> Cond; 971 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 972 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 973 // If we couldn't analyze the branch, examine the last instruction. 974 // If the block doesn't end in a known control barrier, assume fallthrough 975 // is possible. The isPredicated check is needed because this code can be 976 // called during IfConversion, where an instruction which is normally a 977 // Barrier is predicated and thus no longer an actual control barrier. 978 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 979 ? &*Fallthrough 980 : nullptr; 981 } 982 983 // If there is no branch, control always falls through. 984 if (!TBB) return &*Fallthrough; 985 986 // If there is some explicit branch to the fallthrough block, it can obviously 987 // reach, even though the branch should get folded to fall through implicitly. 988 if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough || 989 MachineFunction::iterator(FBB) == Fallthrough)) 990 return &*Fallthrough; 991 992 // If it's an unconditional branch to some block not the fall through, it 993 // doesn't fall through. 994 if (Cond.empty()) return nullptr; 995 996 // Otherwise, if it is conditional and has no explicit false block, it falls 997 // through. 998 return (FBB == nullptr) ? &*Fallthrough : nullptr; 999 } 1000 1001 bool MachineBasicBlock::canFallThrough() { 1002 return getFallThrough() != nullptr; 1003 } 1004 1005 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI, 1006 bool UpdateLiveIns, 1007 LiveIntervals *LIS) { 1008 MachineBasicBlock::iterator SplitPoint(&MI); 1009 ++SplitPoint; 1010 1011 if (SplitPoint == end()) { 1012 // Don't bother with a new block. 1013 return this; 1014 } 1015 1016 MachineFunction *MF = getParent(); 1017 1018 LivePhysRegs LiveRegs; 1019 if (UpdateLiveIns) { 1020 // Make sure we add any physregs we define in the block as liveins to the 1021 // new block. 1022 MachineBasicBlock::iterator Prev(&MI); 1023 LiveRegs.init(*MF->getSubtarget().getRegisterInfo()); 1024 LiveRegs.addLiveOuts(*this); 1025 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I) 1026 LiveRegs.stepBackward(*I); 1027 } 1028 1029 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock()); 1030 1031 MF->insert(++MachineFunction::iterator(this), SplitBB); 1032 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end()); 1033 1034 SplitBB->transferSuccessorsAndUpdatePHIs(this); 1035 addSuccessor(SplitBB); 1036 1037 if (UpdateLiveIns) 1038 addLiveIns(*SplitBB, LiveRegs); 1039 1040 if (LIS) 1041 LIS->insertMBBInMaps(SplitBB); 1042 1043 return SplitBB; 1044 } 1045 1046 // Returns `true` if there are possibly other users of the jump table at 1047 // `JumpTableIndex` except for the ones in `IgnoreMBB`. 1048 static bool jumpTableHasOtherUses(const MachineFunction &MF, 1049 const MachineBasicBlock &IgnoreMBB, 1050 int JumpTableIndex) { 1051 assert(JumpTableIndex >= 0 && "need valid index"); 1052 const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo(); 1053 const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex]; 1054 // Take any basic block from the table; every user of the jump table must 1055 // show up in the predecessor list. 1056 const MachineBasicBlock *MBB = nullptr; 1057 for (MachineBasicBlock *B : MJTE.MBBs) { 1058 if (B != nullptr) { 1059 MBB = B; 1060 break; 1061 } 1062 } 1063 if (MBB == nullptr) 1064 return true; // can't rule out other users if there isn't any block. 1065 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1066 SmallVector<MachineOperand, 4> Cond; 1067 for (MachineBasicBlock *Pred : MBB->predecessors()) { 1068 if (Pred == &IgnoreMBB) 1069 continue; 1070 MachineBasicBlock *DummyT = nullptr; 1071 MachineBasicBlock *DummyF = nullptr; 1072 Cond.clear(); 1073 if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond, 1074 /*AllowModify=*/false)) { 1075 // analyzable direct jump 1076 continue; 1077 } 1078 int PredJTI = findJumpTableIndex(*Pred); 1079 if (PredJTI >= 0) { 1080 if (PredJTI == JumpTableIndex) 1081 return true; 1082 continue; 1083 } 1084 // Be conservative for unanalyzable jumps. 1085 return true; 1086 } 1087 return false; 1088 } 1089 1090 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( 1091 MachineBasicBlock *Succ, Pass &P, 1092 std::vector<SparseBitVector<>> *LiveInSets) { 1093 if (!canSplitCriticalEdge(Succ)) 1094 return nullptr; 1095 1096 MachineFunction *MF = getParent(); 1097 MachineBasicBlock *PrevFallthrough = getNextNode(); 1098 DebugLoc DL; // FIXME: this is nowhere 1099 1100 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 1101 1102 // Is there an indirect jump with jump table? 1103 bool ChangedIndirectJump = false; 1104 int JTI = findJumpTableIndex(*this); 1105 if (JTI >= 0) { 1106 MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo(); 1107 MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB); 1108 ChangedIndirectJump = true; 1109 } 1110 1111 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 1112 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 1113 << " -- " << printMBBReference(*NMBB) << " -- " 1114 << printMBBReference(*Succ) << '\n'); 1115 1116 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 1117 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 1118 if (LIS) 1119 LIS->insertMBBInMaps(NMBB); 1120 else if (Indexes) 1121 Indexes->insertMBBInMaps(NMBB); 1122 1123 // On some targets like Mips, branches may kill virtual registers. Make sure 1124 // that LiveVariables is properly updated after updateTerminator replaces the 1125 // terminators. 1126 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 1127 1128 // Collect a list of virtual registers killed by the terminators. 1129 SmallVector<Register, 4> KilledRegs; 1130 if (LV) 1131 for (MachineInstr &MI : 1132 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1133 for (MachineOperand &MO : MI.operands()) { 1134 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse() || !MO.isKill() || 1135 MO.isUndef()) 1136 continue; 1137 Register Reg = MO.getReg(); 1138 if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) { 1139 KilledRegs.push_back(Reg); 1140 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI); 1141 MO.setIsKill(false); 1142 } 1143 } 1144 } 1145 1146 SmallVector<Register, 4> UsedRegs; 1147 if (LIS) { 1148 for (MachineInstr &MI : 1149 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1150 for (const MachineOperand &MO : MI.operands()) { 1151 if (!MO.isReg() || MO.getReg() == 0) 1152 continue; 1153 1154 Register Reg = MO.getReg(); 1155 if (!is_contained(UsedRegs, Reg)) 1156 UsedRegs.push_back(Reg); 1157 } 1158 } 1159 } 1160 1161 ReplaceUsesOfBlockWith(Succ, NMBB); 1162 1163 // If updateTerminator() removes instructions, we need to remove them from 1164 // SlotIndexes. 1165 SmallVector<MachineInstr*, 4> Terminators; 1166 if (Indexes) { 1167 for (MachineInstr &MI : 1168 llvm::make_range(getFirstInstrTerminator(), instr_end())) 1169 Terminators.push_back(&MI); 1170 } 1171 1172 // Since we replaced all uses of Succ with NMBB, that should also be treated 1173 // as the fallthrough successor 1174 if (Succ == PrevFallthrough) 1175 PrevFallthrough = NMBB; 1176 1177 if (!ChangedIndirectJump) 1178 updateTerminator(PrevFallthrough); 1179 1180 if (Indexes) { 1181 SmallVector<MachineInstr*, 4> NewTerminators; 1182 for (MachineInstr &MI : 1183 llvm::make_range(getFirstInstrTerminator(), instr_end())) 1184 NewTerminators.push_back(&MI); 1185 1186 for (MachineInstr *Terminator : Terminators) { 1187 if (!is_contained(NewTerminators, Terminator)) 1188 Indexes->removeMachineInstrFromMaps(*Terminator); 1189 } 1190 } 1191 1192 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 1193 NMBB->addSuccessor(Succ); 1194 if (!NMBB->isLayoutSuccessor(Succ)) { 1195 SmallVector<MachineOperand, 4> Cond; 1196 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 1197 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 1198 1199 if (Indexes) { 1200 for (MachineInstr &MI : NMBB->instrs()) { 1201 // Some instructions may have been moved to NMBB by updateTerminator(), 1202 // so we first remove any instruction that already has an index. 1203 if (Indexes->hasIndex(MI)) 1204 Indexes->removeMachineInstrFromMaps(MI); 1205 Indexes->insertMachineInstrInMaps(MI); 1206 } 1207 } 1208 } 1209 1210 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 1211 Succ->replacePhiUsesWith(this, NMBB); 1212 1213 // Inherit live-ins from the successor 1214 for (const auto &LI : Succ->liveins()) 1215 NMBB->addLiveIn(LI); 1216 1217 // Update LiveVariables. 1218 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1219 if (LV) { 1220 // Restore kills of virtual registers that were killed by the terminators. 1221 while (!KilledRegs.empty()) { 1222 Register Reg = KilledRegs.pop_back_val(); 1223 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 1224 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 1225 continue; 1226 if (Reg.isVirtual()) 1227 LV->getVarInfo(Reg).Kills.push_back(&*I); 1228 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1229 break; 1230 } 1231 } 1232 // Update relevant live-through information. 1233 if (LiveInSets != nullptr) 1234 LV->addNewBlock(NMBB, this, Succ, *LiveInSets); 1235 else 1236 LV->addNewBlock(NMBB, this, Succ); 1237 } 1238 1239 if (LIS) { 1240 // After splitting the edge and updating SlotIndexes, live intervals may be 1241 // in one of two situations, depending on whether this block was the last in 1242 // the function. If the original block was the last in the function, all 1243 // live intervals will end prior to the beginning of the new split block. If 1244 // the original block was not at the end of the function, all live intervals 1245 // will extend to the end of the new split block. 1246 1247 bool isLastMBB = 1248 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1249 1250 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1251 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1252 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1253 1254 // Find the registers used from NMBB in PHIs in Succ. 1255 SmallSet<Register, 8> PHISrcRegs; 1256 for (MachineBasicBlock::instr_iterator 1257 I = Succ->instr_begin(), E = Succ->instr_end(); 1258 I != E && I->isPHI(); ++I) { 1259 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1260 if (I->getOperand(ni+1).getMBB() == NMBB) { 1261 MachineOperand &MO = I->getOperand(ni); 1262 Register Reg = MO.getReg(); 1263 PHISrcRegs.insert(Reg); 1264 if (MO.isUndef()) 1265 continue; 1266 1267 LiveInterval &LI = LIS->getInterval(Reg); 1268 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1269 assert(VNI && 1270 "PHI sources should be live out of their predecessors."); 1271 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1272 } 1273 } 1274 } 1275 1276 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1277 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1278 Register Reg = Register::index2VirtReg(i); 1279 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1280 continue; 1281 1282 LiveInterval &LI = LIS->getInterval(Reg); 1283 if (!LI.liveAt(PrevIndex)) 1284 continue; 1285 1286 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1287 if (isLiveOut && isLastMBB) { 1288 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1289 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1290 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1291 } else if (!isLiveOut && !isLastMBB) { 1292 LI.removeSegment(StartIndex, EndIndex); 1293 } 1294 } 1295 1296 // Update all intervals for registers whose uses may have been modified by 1297 // updateTerminator(). 1298 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1299 } 1300 1301 if (MachineDominatorTree *MDT = 1302 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1303 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1304 1305 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1306 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1307 // If one or the other blocks were not in a loop, the new block is not 1308 // either, and thus LI doesn't need to be updated. 1309 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1310 if (TIL == DestLoop) { 1311 // Both in the same loop, the NMBB joins loop. 1312 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1313 } else if (TIL->contains(DestLoop)) { 1314 // Edge from an outer loop to an inner loop. Add to the outer loop. 1315 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1316 } else if (DestLoop->contains(TIL)) { 1317 // Edge from an inner loop to an outer loop. Add to the outer loop. 1318 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1319 } else { 1320 // Edge from two loops with no containment relation. Because these 1321 // are natural loops, we know that the destination block must be the 1322 // header of its loop (adding a branch into a loop elsewhere would 1323 // create an irreducible loop). 1324 assert(DestLoop->getHeader() == Succ && 1325 "Should not create irreducible loops!"); 1326 if (MachineLoop *P = DestLoop->getParentLoop()) 1327 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1328 } 1329 } 1330 } 1331 1332 return NMBB; 1333 } 1334 1335 bool MachineBasicBlock::canSplitCriticalEdge( 1336 const MachineBasicBlock *Succ) const { 1337 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1338 // it in this generic function. 1339 if (Succ->isEHPad()) 1340 return false; 1341 1342 // Splitting the critical edge to a callbr's indirect block isn't advised. 1343 // Don't do it in this generic function. 1344 if (Succ->isInlineAsmBrIndirectTarget()) 1345 return false; 1346 1347 const MachineFunction *MF = getParent(); 1348 // Performance might be harmed on HW that implements branching using exec mask 1349 // where both sides of the branches are always executed. 1350 if (MF->getTarget().requiresStructuredCFG()) 1351 return false; 1352 1353 // Do we have an Indirect jump with a jumptable that we can rewrite? 1354 int JTI = findJumpTableIndex(*this); 1355 if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI)) 1356 return true; 1357 1358 // We may need to update this's terminator, but we can't do that if 1359 // analyzeBranch fails. 1360 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1361 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1362 SmallVector<MachineOperand, 4> Cond; 1363 // AnalyzeBanch should modify this, since we did not allow modification. 1364 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1365 /*AllowModify*/ false)) 1366 return false; 1367 1368 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1369 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1370 // case that we can't handle. Since this never happens in properly optimized 1371 // code, just skip those edges. 1372 if (TBB && TBB == FBB) { 1373 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1374 << printMBBReference(*this) << '\n'); 1375 return false; 1376 } 1377 return true; 1378 } 1379 1380 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1381 /// neighboring instructions so the bundle won't be broken by removing MI. 1382 static void unbundleSingleMI(MachineInstr *MI) { 1383 // Removing the first instruction in a bundle. 1384 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1385 MI->unbundleFromSucc(); 1386 // Removing the last instruction in a bundle. 1387 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1388 MI->unbundleFromPred(); 1389 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1390 // are already fine. 1391 } 1392 1393 MachineBasicBlock::instr_iterator 1394 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1395 unbundleSingleMI(&*I); 1396 return Insts.erase(I); 1397 } 1398 1399 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1400 unbundleSingleMI(MI); 1401 MI->clearFlag(MachineInstr::BundledPred); 1402 MI->clearFlag(MachineInstr::BundledSucc); 1403 return Insts.remove(MI); 1404 } 1405 1406 MachineBasicBlock::instr_iterator 1407 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1408 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1409 "Cannot insert instruction with bundle flags"); 1410 // Set the bundle flags when inserting inside a bundle. 1411 if (I != instr_end() && I->isBundledWithPred()) { 1412 MI->setFlag(MachineInstr::BundledPred); 1413 MI->setFlag(MachineInstr::BundledSucc); 1414 } 1415 return Insts.insert(I, MI); 1416 } 1417 1418 /// This method unlinks 'this' from the containing function, and returns it, but 1419 /// does not delete it. 1420 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1421 assert(getParent() && "Not embedded in a function!"); 1422 getParent()->remove(this); 1423 return this; 1424 } 1425 1426 /// This method unlinks 'this' from the containing function, and deletes it. 1427 void MachineBasicBlock::eraseFromParent() { 1428 assert(getParent() && "Not embedded in a function!"); 1429 getParent()->erase(this); 1430 } 1431 1432 /// Given a machine basic block that branched to 'Old', change the code and CFG 1433 /// so that it branches to 'New' instead. 1434 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1435 MachineBasicBlock *New) { 1436 assert(Old != New && "Cannot replace self with self!"); 1437 1438 MachineBasicBlock::instr_iterator I = instr_end(); 1439 while (I != instr_begin()) { 1440 --I; 1441 if (!I->isTerminator()) break; 1442 1443 // Scan the operands of this machine instruction, replacing any uses of Old 1444 // with New. 1445 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1446 if (I->getOperand(i).isMBB() && 1447 I->getOperand(i).getMBB() == Old) 1448 I->getOperand(i).setMBB(New); 1449 } 1450 1451 // Update the successor information. 1452 replaceSuccessor(Old, New); 1453 } 1454 1455 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1456 MachineBasicBlock *New) { 1457 for (MachineInstr &MI : phis()) 1458 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1459 MachineOperand &MO = MI.getOperand(i); 1460 if (MO.getMBB() == Old) 1461 MO.setMBB(New); 1462 } 1463 } 1464 1465 /// Find the next valid DebugLoc starting at MBBI, skipping any debug 1466 /// instructions. Return UnknownLoc if there is none. 1467 DebugLoc 1468 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1469 // Skip debug declarations, we don't want a DebugLoc from them. 1470 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1471 if (MBBI != instr_end()) 1472 return MBBI->getDebugLoc(); 1473 return {}; 1474 } 1475 1476 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) { 1477 // Skip debug declarations, we don't want a DebugLoc from them. 1478 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin()); 1479 if (!MBBI->isDebugInstr()) 1480 return MBBI->getDebugLoc(); 1481 return {}; 1482 } 1483 1484 /// Find the previous valid DebugLoc preceding MBBI, skipping any debug 1485 /// instructions. Return UnknownLoc if there is none. 1486 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1487 if (MBBI == instr_begin()) 1488 return {}; 1489 // Skip debug instructions, we don't want a DebugLoc from them. 1490 MBBI = prev_nodbg(MBBI, instr_begin()); 1491 if (!MBBI->isDebugInstr()) 1492 return MBBI->getDebugLoc(); 1493 return {}; 1494 } 1495 1496 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) { 1497 if (MBBI == instr_rend()) 1498 return {}; 1499 // Skip debug declarations, we don't want a DebugLoc from them. 1500 MBBI = next_nodbg(MBBI, instr_rend()); 1501 if (MBBI != instr_rend()) 1502 return MBBI->getDebugLoc(); 1503 return {}; 1504 } 1505 1506 /// Find and return the merged DebugLoc of the branch instructions of the block. 1507 /// Return UnknownLoc if there is none. 1508 DebugLoc 1509 MachineBasicBlock::findBranchDebugLoc() { 1510 DebugLoc DL; 1511 auto TI = getFirstTerminator(); 1512 while (TI != end() && !TI->isBranch()) 1513 ++TI; 1514 1515 if (TI != end()) { 1516 DL = TI->getDebugLoc(); 1517 for (++TI ; TI != end() ; ++TI) 1518 if (TI->isBranch()) 1519 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1520 } 1521 return DL; 1522 } 1523 1524 /// Return probability of the edge from this block to MBB. 1525 BranchProbability 1526 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1527 if (Probs.empty()) 1528 return BranchProbability(1, succ_size()); 1529 1530 const auto &Prob = *getProbabilityIterator(Succ); 1531 if (Prob.isUnknown()) { 1532 // For unknown probabilities, collect the sum of all known ones, and evenly 1533 // ditribute the complemental of the sum to each unknown probability. 1534 unsigned KnownProbNum = 0; 1535 auto Sum = BranchProbability::getZero(); 1536 for (const auto &P : Probs) { 1537 if (!P.isUnknown()) { 1538 Sum += P; 1539 KnownProbNum++; 1540 } 1541 } 1542 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1543 } else 1544 return Prob; 1545 } 1546 1547 /// Set successor probability of a given iterator. 1548 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1549 BranchProbability Prob) { 1550 assert(!Prob.isUnknown()); 1551 if (Probs.empty()) 1552 return; 1553 *getProbabilityIterator(I) = Prob; 1554 } 1555 1556 /// Return probability iterator corresonding to the I successor iterator 1557 MachineBasicBlock::const_probability_iterator 1558 MachineBasicBlock::getProbabilityIterator( 1559 MachineBasicBlock::const_succ_iterator I) const { 1560 assert(Probs.size() == Successors.size() && "Async probability list!"); 1561 const size_t index = std::distance(Successors.begin(), I); 1562 assert(index < Probs.size() && "Not a current successor!"); 1563 return Probs.begin() + index; 1564 } 1565 1566 /// Return probability iterator corresonding to the I successor iterator. 1567 MachineBasicBlock::probability_iterator 1568 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1569 assert(Probs.size() == Successors.size() && "Async probability list!"); 1570 const size_t index = std::distance(Successors.begin(), I); 1571 assert(index < Probs.size() && "Not a current successor!"); 1572 return Probs.begin() + index; 1573 } 1574 1575 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1576 /// as of just before "MI". 1577 /// 1578 /// Search is localised to a neighborhood of 1579 /// Neighborhood instructions before (searching for defs or kills) and N 1580 /// instructions after (searching just for defs) MI. 1581 MachineBasicBlock::LivenessQueryResult 1582 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1583 MCRegister Reg, const_iterator Before, 1584 unsigned Neighborhood) const { 1585 unsigned N = Neighborhood; 1586 1587 // Try searching forwards from Before, looking for reads or defs. 1588 const_iterator I(Before); 1589 for (; I != end() && N > 0; ++I) { 1590 if (I->isDebugOrPseudoInstr()) 1591 continue; 1592 1593 --N; 1594 1595 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1596 1597 // Register is live when we read it here. 1598 if (Info.Read) 1599 return LQR_Live; 1600 // Register is dead if we can fully overwrite or clobber it here. 1601 if (Info.FullyDefined || Info.Clobbered) 1602 return LQR_Dead; 1603 } 1604 1605 // If we reached the end, it is safe to clobber Reg at the end of a block of 1606 // no successor has it live in. 1607 if (I == end()) { 1608 for (MachineBasicBlock *S : successors()) { 1609 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1610 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1611 return LQR_Live; 1612 } 1613 } 1614 1615 return LQR_Dead; 1616 } 1617 1618 1619 N = Neighborhood; 1620 1621 // Start by searching backwards from Before, looking for kills, reads or defs. 1622 I = const_iterator(Before); 1623 // If this is the first insn in the block, don't search backwards. 1624 if (I != begin()) { 1625 do { 1626 --I; 1627 1628 if (I->isDebugOrPseudoInstr()) 1629 continue; 1630 1631 --N; 1632 1633 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1634 1635 // Defs happen after uses so they take precedence if both are present. 1636 1637 // Register is dead after a dead def of the full register. 1638 if (Info.DeadDef) 1639 return LQR_Dead; 1640 // Register is (at least partially) live after a def. 1641 if (Info.Defined) { 1642 if (!Info.PartialDeadDef) 1643 return LQR_Live; 1644 // As soon as we saw a partial definition (dead or not), 1645 // we cannot tell if the value is partial live without 1646 // tracking the lanemasks. We are not going to do this, 1647 // so fall back on the remaining of the analysis. 1648 break; 1649 } 1650 // Register is dead after a full kill or clobber and no def. 1651 if (Info.Killed || Info.Clobbered) 1652 return LQR_Dead; 1653 // Register must be live if we read it. 1654 if (Info.Read) 1655 return LQR_Live; 1656 1657 } while (I != begin() && N > 0); 1658 } 1659 1660 // If all the instructions before this in the block are debug instructions, 1661 // skip over them. 1662 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr()) 1663 --I; 1664 1665 // Did we get to the start of the block? 1666 if (I == begin()) { 1667 // If so, the register's state is definitely defined by the live-in state. 1668 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1669 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1670 return LQR_Live; 1671 1672 return LQR_Dead; 1673 } 1674 1675 // At this point we have no idea of the liveness of the register. 1676 return LQR_Unknown; 1677 } 1678 1679 const uint32_t * 1680 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1681 // EH funclet entry does not preserve any registers. 1682 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1683 } 1684 1685 const uint32_t * 1686 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1687 // If we see a return block with successors, this must be a funclet return, 1688 // which does not preserve any registers. If there are no successors, we don't 1689 // care what kind of return it is, putting a mask after it is a no-op. 1690 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1691 } 1692 1693 void MachineBasicBlock::clearLiveIns() { 1694 LiveIns.clear(); 1695 } 1696 1697 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1698 assert(getParent()->getProperties().hasProperty( 1699 MachineFunctionProperties::Property::TracksLiveness) && 1700 "Liveness information is accurate"); 1701 return LiveIns.begin(); 1702 } 1703 1704 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const { 1705 const MachineFunction &MF = *getParent(); 1706 assert(MF.getProperties().hasProperty( 1707 MachineFunctionProperties::Property::TracksLiveness) && 1708 "Liveness information is accurate"); 1709 1710 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1711 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0; 1712 if (MF.getFunction().hasPersonalityFn()) { 1713 auto PersonalityFn = MF.getFunction().getPersonalityFn(); 1714 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn); 1715 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn); 1716 } 1717 1718 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false); 1719 } 1720 1721 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const { 1722 unsigned Cntr = 0; 1723 auto R = instructionsWithoutDebug(begin(), end()); 1724 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1725 if (++Cntr > Limit) 1726 return true; 1727 } 1728 return false; 1729 } 1730 1731 unsigned MachineBasicBlock::getBBIDOrNumber() const { 1732 uint8_t BBAddrMapVersion = getParent()->getContext().getBBAddrMapVersion(); 1733 return BBAddrMapVersion < 2 ? getNumber() : *getBBID(); 1734 } 1735 1736 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); 1737 const MBBSectionID 1738 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception); 1739