xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 89855158228644b7be273055efd728b82ea82803)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 static cl::opt<bool> PrintSlotIndexes(
43     "print-slotindexes",
44     cl::desc("When printing machine IR, annotate instructions and blocks with "
45              "SlotIndexes when available"),
46     cl::init(true), cl::Hidden);
47 
48 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
49     : BB(B), Number(-1), xParent(&MF) {
50   Insts.Parent = this;
51   if (B)
52     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
53 }
54 
55 MachineBasicBlock::~MachineBasicBlock() {
56 }
57 
58 /// Return the MCSymbol for this basic block.
59 MCSymbol *MachineBasicBlock::getSymbol() const {
60   if (!CachedMCSymbol) {
61     const MachineFunction *MF = getParent();
62     MCContext &Ctx = MF->getContext();
63 
64     // We emit a non-temporary symbol -- with a descriptive name -- if it begins
65     // a section (with basic block sections). Otherwise we fall back to use temp
66     // label.
67     if (MF->hasBBSections() && isBeginSection()) {
68       SmallString<5> Suffix;
69       if (SectionID == MBBSectionID::ColdSectionID) {
70         Suffix += ".cold";
71       } else if (SectionID == MBBSectionID::ExceptionSectionID) {
72         Suffix += ".eh";
73       } else {
74         // For symbols that represent basic block sections, we add ".__part." to
75         // allow tools like symbolizers to know that this represents a part of
76         // the original function.
77         Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
78       }
79       CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
80     } else {
81       const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
82       CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
83                                              Twine(MF->getFunctionNumber()) +
84                                              "_" + Twine(getNumber()));
85     }
86   }
87   return CachedMCSymbol;
88 }
89 
90 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
91   if (!CachedEHCatchretMCSymbol) {
92     const MachineFunction *MF = getParent();
93     SmallString<128> SymbolName;
94     raw_svector_ostream(SymbolName)
95         << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
96     CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
97   }
98   return CachedEHCatchretMCSymbol;
99 }
100 
101 MCSymbol *MachineBasicBlock::getEndSymbol() const {
102   if (!CachedEndMCSymbol) {
103     const MachineFunction *MF = getParent();
104     MCContext &Ctx = MF->getContext();
105     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
106     CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
107                                               Twine(MF->getFunctionNumber()) +
108                                               "_" + Twine(getNumber()));
109   }
110   return CachedEndMCSymbol;
111 }
112 
113 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
114   MBB.print(OS);
115   return OS;
116 }
117 
118 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
119   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
120 }
121 
122 /// When an MBB is added to an MF, we need to update the parent pointer of the
123 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
124 /// operand list for registers.
125 ///
126 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
127 /// gets the next available unique MBB number. If it is removed from a
128 /// MachineFunction, it goes back to being #-1.
129 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
130     MachineBasicBlock *N) {
131   MachineFunction &MF = *N->getParent();
132   N->Number = MF.addToMBBNumbering(N);
133 
134   // Make sure the instructions have their operands in the reginfo lists.
135   MachineRegisterInfo &RegInfo = MF.getRegInfo();
136   for (MachineBasicBlock::instr_iterator
137          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
138     I->AddRegOperandsToUseLists(RegInfo);
139 }
140 
141 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
142     MachineBasicBlock *N) {
143   N->getParent()->removeFromMBBNumbering(N->Number);
144   N->Number = -1;
145 }
146 
147 /// When we add an instruction to a basic block list, we update its parent
148 /// pointer and add its operands from reg use/def lists if appropriate.
149 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
150   assert(!N->getParent() && "machine instruction already in a basic block");
151   N->setParent(Parent);
152 
153   // Add the instruction's register operands to their corresponding
154   // use/def lists.
155   MachineFunction *MF = Parent->getParent();
156   N->AddRegOperandsToUseLists(MF->getRegInfo());
157   MF->handleInsertion(*N);
158 }
159 
160 /// When we remove an instruction from a basic block list, we update its parent
161 /// pointer and remove its operands from reg use/def lists if appropriate.
162 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
163   assert(N->getParent() && "machine instruction not in a basic block");
164 
165   // Remove from the use/def lists.
166   if (MachineFunction *MF = N->getMF()) {
167     MF->handleRemoval(*N);
168     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
169   }
170 
171   N->setParent(nullptr);
172 }
173 
174 /// When moving a range of instructions from one MBB list to another, we need to
175 /// update the parent pointers and the use/def lists.
176 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
177                                                        instr_iterator First,
178                                                        instr_iterator Last) {
179   assert(Parent->getParent() == FromList.Parent->getParent() &&
180          "cannot transfer MachineInstrs between MachineFunctions");
181 
182   // If it's within the same BB, there's nothing to do.
183   if (this == &FromList)
184     return;
185 
186   assert(Parent != FromList.Parent && "Two lists have the same parent?");
187 
188   // If splicing between two blocks within the same function, just update the
189   // parent pointers.
190   for (; First != Last; ++First)
191     First->setParent(Parent);
192 }
193 
194 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
195   assert(!MI->getParent() && "MI is still in a block!");
196   Parent->getParent()->DeleteMachineInstr(MI);
197 }
198 
199 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
200   instr_iterator I = instr_begin(), E = instr_end();
201   while (I != E && I->isPHI())
202     ++I;
203   assert((I == E || !I->isInsideBundle()) &&
204          "First non-phi MI cannot be inside a bundle!");
205   return I;
206 }
207 
208 MachineBasicBlock::iterator
209 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
210   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
211 
212   iterator E = end();
213   while (I != E && (I->isPHI() || I->isPosition() ||
214                     TII->isBasicBlockPrologue(*I)))
215     ++I;
216   // FIXME: This needs to change if we wish to bundle labels
217   // inside the bundle.
218   assert((I == E || !I->isInsideBundle()) &&
219          "First non-phi / non-label instruction is inside a bundle!");
220   return I;
221 }
222 
223 MachineBasicBlock::iterator
224 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
225   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
226 
227   iterator E = end();
228   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
229                     TII->isBasicBlockPrologue(*I)))
230     ++I;
231   // FIXME: This needs to change if we wish to bundle labels / dbg_values
232   // inside the bundle.
233   assert((I == E || !I->isInsideBundle()) &&
234          "First non-phi / non-label / non-debug "
235          "instruction is inside a bundle!");
236   return I;
237 }
238 
239 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
240   iterator B = begin(), E = end(), I = E;
241   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
242     ; /*noop */
243   while (I != E && !I->isTerminator())
244     ++I;
245   return I;
246 }
247 
248 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
249   instr_iterator B = instr_begin(), E = instr_end(), I = E;
250   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
251     ; /*noop */
252   while (I != E && !I->isTerminator())
253     ++I;
254   return I;
255 }
256 
257 MachineBasicBlock::iterator
258 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
259   // Skip over begin-of-block dbg_value instructions.
260   return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
261 }
262 
263 MachineBasicBlock::iterator
264 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
265   // Skip over end-of-block dbg_value instructions.
266   instr_iterator B = instr_begin(), I = instr_end();
267   while (I != B) {
268     --I;
269     // Return instruction that starts a bundle.
270     if (I->isDebugInstr() || I->isInsideBundle())
271       continue;
272     if (SkipPseudoOp && I->isPseudoProbe())
273       continue;
274     return I;
275   }
276   // The block is all debug values.
277   return end();
278 }
279 
280 bool MachineBasicBlock::hasEHPadSuccessor() const {
281   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
282     if ((*I)->isEHPad())
283       return true;
284   return false;
285 }
286 
287 bool MachineBasicBlock::isEntryBlock() const {
288   return getParent()->begin() == getIterator();
289 }
290 
291 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
292 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
293   print(dbgs());
294 }
295 #endif
296 
297 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
298   for (const MachineBasicBlock *Succ : successors()) {
299     if (Succ->isInlineAsmBrIndirectTarget())
300       return true;
301   }
302   return false;
303 }
304 
305 bool MachineBasicBlock::isLegalToHoistInto() const {
306   if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
307     return false;
308   return true;
309 }
310 
311 StringRef MachineBasicBlock::getName() const {
312   if (const BasicBlock *LBB = getBasicBlock())
313     return LBB->getName();
314   else
315     return StringRef("", 0);
316 }
317 
318 /// Return a hopefully unique identifier for this block.
319 std::string MachineBasicBlock::getFullName() const {
320   std::string Name;
321   if (getParent())
322     Name = (getParent()->getName() + ":").str();
323   if (getBasicBlock())
324     Name += getBasicBlock()->getName();
325   else
326     Name += ("BB" + Twine(getNumber())).str();
327   return Name;
328 }
329 
330 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
331                               bool IsStandalone) const {
332   const MachineFunction *MF = getParent();
333   if (!MF) {
334     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
335        << " is null\n";
336     return;
337   }
338   const Function &F = MF->getFunction();
339   const Module *M = F.getParent();
340   ModuleSlotTracker MST(M);
341   MST.incorporateFunction(F);
342   print(OS, MST, Indexes, IsStandalone);
343 }
344 
345 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
346                               const SlotIndexes *Indexes,
347                               bool IsStandalone) const {
348   const MachineFunction *MF = getParent();
349   if (!MF) {
350     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
351        << " is null\n";
352     return;
353   }
354 
355   if (Indexes && PrintSlotIndexes)
356     OS << Indexes->getMBBStartIdx(this) << '\t';
357 
358   printName(OS, PrintNameIr | PrintNameAttributes, &MST);
359   OS << ":\n";
360 
361   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
362   const MachineRegisterInfo &MRI = MF->getRegInfo();
363   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
364   bool HasLineAttributes = false;
365 
366   // Print the preds of this block according to the CFG.
367   if (!pred_empty() && IsStandalone) {
368     if (Indexes) OS << '\t';
369     // Don't indent(2), align with previous line attributes.
370     OS << "; predecessors: ";
371     ListSeparator LS;
372     for (auto *Pred : predecessors())
373       OS << LS << printMBBReference(*Pred);
374     OS << '\n';
375     HasLineAttributes = true;
376   }
377 
378   if (!succ_empty()) {
379     if (Indexes) OS << '\t';
380     // Print the successors
381     OS.indent(2) << "successors: ";
382     ListSeparator LS;
383     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
384       OS << LS << printMBBReference(**I);
385       if (!Probs.empty())
386         OS << '('
387            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
388            << ')';
389     }
390     if (!Probs.empty() && IsStandalone) {
391       // Print human readable probabilities as comments.
392       OS << "; ";
393       ListSeparator LS;
394       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
395         const BranchProbability &BP = getSuccProbability(I);
396         OS << LS << printMBBReference(**I) << '('
397            << format("%.2f%%",
398                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
399                           100.0 * 100.0) /
400                          100.0)
401            << ')';
402       }
403     }
404 
405     OS << '\n';
406     HasLineAttributes = true;
407   }
408 
409   if (!livein_empty() && MRI.tracksLiveness()) {
410     if (Indexes) OS << '\t';
411     OS.indent(2) << "liveins: ";
412 
413     ListSeparator LS;
414     for (const auto &LI : liveins()) {
415       OS << LS << printReg(LI.PhysReg, TRI);
416       if (!LI.LaneMask.all())
417         OS << ":0x" << PrintLaneMask(LI.LaneMask);
418     }
419     HasLineAttributes = true;
420   }
421 
422   if (HasLineAttributes)
423     OS << '\n';
424 
425   bool IsInBundle = false;
426   for (const MachineInstr &MI : instrs()) {
427     if (Indexes && PrintSlotIndexes) {
428       if (Indexes->hasIndex(MI))
429         OS << Indexes->getInstructionIndex(MI);
430       OS << '\t';
431     }
432 
433     if (IsInBundle && !MI.isInsideBundle()) {
434       OS.indent(2) << "}\n";
435       IsInBundle = false;
436     }
437 
438     OS.indent(IsInBundle ? 4 : 2);
439     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
440              /*AddNewLine=*/false, &TII);
441 
442     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
443       OS << " {";
444       IsInBundle = true;
445     }
446     OS << '\n';
447   }
448 
449   if (IsInBundle)
450     OS.indent(2) << "}\n";
451 
452   if (IrrLoopHeaderWeight && IsStandalone) {
453     if (Indexes) OS << '\t';
454     OS.indent(2) << "; Irreducible loop header weight: "
455                  << IrrLoopHeaderWeight.getValue() << '\n';
456   }
457 }
458 
459 /// Print the basic block's name as:
460 ///
461 ///    bb.{number}[.{ir-name}] [(attributes...)]
462 ///
463 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
464 /// (which is the default). If the IR block has no name, it is identified
465 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
466 ///
467 /// When the \ref PrintNameAttributes flag is passed, additional attributes
468 /// of the block are printed when set.
469 ///
470 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
471 ///                       the parts to print.
472 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
473 ///                          incorporate its own tracker when necessary to
474 ///                          determine the block's IR name.
475 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
476                                   ModuleSlotTracker *moduleSlotTracker) const {
477   os << "bb." << getNumber();
478   bool hasAttributes = false;
479 
480   if (printNameFlags & PrintNameIr) {
481     if (const auto *bb = getBasicBlock()) {
482       if (bb->hasName()) {
483         os << '.' << bb->getName();
484       } else {
485         hasAttributes = true;
486         os << " (";
487 
488         int slot = -1;
489 
490         if (moduleSlotTracker) {
491           slot = moduleSlotTracker->getLocalSlot(bb);
492         } else if (bb->getParent()) {
493           ModuleSlotTracker tmpTracker(bb->getModule(), false);
494           tmpTracker.incorporateFunction(*bb->getParent());
495           slot = tmpTracker.getLocalSlot(bb);
496         }
497 
498         if (slot == -1)
499           os << "<ir-block badref>";
500         else
501           os << (Twine("%ir-block.") + Twine(slot)).str();
502       }
503     }
504   }
505 
506   if (printNameFlags & PrintNameAttributes) {
507     if (hasAddressTaken()) {
508       os << (hasAttributes ? ", " : " (");
509       os << "address-taken";
510       hasAttributes = true;
511     }
512     if (isEHPad()) {
513       os << (hasAttributes ? ", " : " (");
514       os << "landing-pad";
515       hasAttributes = true;
516     }
517     if (isEHFuncletEntry()) {
518       os << (hasAttributes ? ", " : " (");
519       os << "ehfunclet-entry";
520       hasAttributes = true;
521     }
522     if (getAlignment() != Align(1)) {
523       os << (hasAttributes ? ", " : " (");
524       os << "align " << getAlignment().value();
525       hasAttributes = true;
526     }
527     if (getSectionID() != MBBSectionID(0)) {
528       os << (hasAttributes ? ", " : " (");
529       os << "bbsections ";
530       switch (getSectionID().Type) {
531       case MBBSectionID::SectionType::Exception:
532         os << "Exception";
533         break;
534       case MBBSectionID::SectionType::Cold:
535         os << "Cold";
536         break;
537       default:
538         os << getSectionID().Number;
539       }
540       hasAttributes = true;
541     }
542   }
543 
544   if (hasAttributes)
545     os << ')';
546 }
547 
548 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
549                                        bool /*PrintType*/) const {
550   OS << '%';
551   printName(OS, 0);
552 }
553 
554 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
555   LiveInVector::iterator I = find_if(
556       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
557   if (I == LiveIns.end())
558     return;
559 
560   I->LaneMask &= ~LaneMask;
561   if (I->LaneMask.none())
562     LiveIns.erase(I);
563 }
564 
565 MachineBasicBlock::livein_iterator
566 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
567   // Get non-const version of iterator.
568   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
569   return LiveIns.erase(LI);
570 }
571 
572 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
573   livein_iterator I = find_if(
574       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
575   return I != livein_end() && (I->LaneMask & LaneMask).any();
576 }
577 
578 void MachineBasicBlock::sortUniqueLiveIns() {
579   llvm::sort(LiveIns,
580              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
581                return LI0.PhysReg < LI1.PhysReg;
582              });
583   // Liveins are sorted by physreg now we can merge their lanemasks.
584   LiveInVector::const_iterator I = LiveIns.begin();
585   LiveInVector::const_iterator J;
586   LiveInVector::iterator Out = LiveIns.begin();
587   for (; I != LiveIns.end(); ++Out, I = J) {
588     MCRegister PhysReg = I->PhysReg;
589     LaneBitmask LaneMask = I->LaneMask;
590     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
591       LaneMask |= J->LaneMask;
592     Out->PhysReg = PhysReg;
593     Out->LaneMask = LaneMask;
594   }
595   LiveIns.erase(Out, LiveIns.end());
596 }
597 
598 Register
599 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
600   assert(getParent() && "MBB must be inserted in function");
601   assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
602   assert(RC && "Register class is required");
603   assert((isEHPad() || this == &getParent()->front()) &&
604          "Only the entry block and landing pads can have physreg live ins");
605 
606   bool LiveIn = isLiveIn(PhysReg);
607   iterator I = SkipPHIsAndLabels(begin()), E = end();
608   MachineRegisterInfo &MRI = getParent()->getRegInfo();
609   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
610 
611   // Look for an existing copy.
612   if (LiveIn)
613     for (;I != E && I->isCopy(); ++I)
614       if (I->getOperand(1).getReg() == PhysReg) {
615         Register VirtReg = I->getOperand(0).getReg();
616         if (!MRI.constrainRegClass(VirtReg, RC))
617           llvm_unreachable("Incompatible live-in register class.");
618         return VirtReg;
619       }
620 
621   // No luck, create a virtual register.
622   Register VirtReg = MRI.createVirtualRegister(RC);
623   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
624     .addReg(PhysReg, RegState::Kill);
625   if (!LiveIn)
626     addLiveIn(PhysReg);
627   return VirtReg;
628 }
629 
630 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
631   getParent()->splice(NewAfter->getIterator(), getIterator());
632 }
633 
634 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
635   getParent()->splice(++NewBefore->getIterator(), getIterator());
636 }
637 
638 void MachineBasicBlock::updateTerminator(
639     MachineBasicBlock *PreviousLayoutSuccessor) {
640   LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
641                     << "\n");
642 
643   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
644   // A block with no successors has no concerns with fall-through edges.
645   if (this->succ_empty())
646     return;
647 
648   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
649   SmallVector<MachineOperand, 4> Cond;
650   DebugLoc DL = findBranchDebugLoc();
651   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
652   (void) B;
653   assert(!B && "UpdateTerminators requires analyzable predecessors!");
654   if (Cond.empty()) {
655     if (TBB) {
656       // The block has an unconditional branch. If its successor is now its
657       // layout successor, delete the branch.
658       if (isLayoutSuccessor(TBB))
659         TII->removeBranch(*this);
660     } else {
661       // The block has an unconditional fallthrough, or the end of the block is
662       // unreachable.
663 
664       // Unfortunately, whether the end of the block is unreachable is not
665       // immediately obvious; we must fall back to checking the successor list,
666       // and assuming that if the passed in block is in the succesor list and
667       // not an EHPad, it must be the intended target.
668       if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
669           PreviousLayoutSuccessor->isEHPad())
670         return;
671 
672       // If the unconditional successor block is not the current layout
673       // successor, insert a branch to jump to it.
674       if (!isLayoutSuccessor(PreviousLayoutSuccessor))
675         TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
676     }
677     return;
678   }
679 
680   if (FBB) {
681     // The block has a non-fallthrough conditional branch. If one of its
682     // successors is its layout successor, rewrite it to a fallthrough
683     // conditional branch.
684     if (isLayoutSuccessor(TBB)) {
685       if (TII->reverseBranchCondition(Cond))
686         return;
687       TII->removeBranch(*this);
688       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
689     } else if (isLayoutSuccessor(FBB)) {
690       TII->removeBranch(*this);
691       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
692     }
693     return;
694   }
695 
696   // We now know we're going to fallthrough to PreviousLayoutSuccessor.
697   assert(PreviousLayoutSuccessor);
698   assert(!PreviousLayoutSuccessor->isEHPad());
699   assert(isSuccessor(PreviousLayoutSuccessor));
700 
701   if (PreviousLayoutSuccessor == TBB) {
702     // We had a fallthrough to the same basic block as the conditional jump
703     // targets.  Remove the conditional jump, leaving an unconditional
704     // fallthrough or an unconditional jump.
705     TII->removeBranch(*this);
706     if (!isLayoutSuccessor(TBB)) {
707       Cond.clear();
708       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
709     }
710     return;
711   }
712 
713   // The block has a fallthrough conditional branch.
714   if (isLayoutSuccessor(TBB)) {
715     if (TII->reverseBranchCondition(Cond)) {
716       // We can't reverse the condition, add an unconditional branch.
717       Cond.clear();
718       TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
719       return;
720     }
721     TII->removeBranch(*this);
722     TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
723   } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
724     TII->removeBranch(*this);
725     TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
726   }
727 }
728 
729 void MachineBasicBlock::validateSuccProbs() const {
730 #ifndef NDEBUG
731   int64_t Sum = 0;
732   for (auto Prob : Probs)
733     Sum += Prob.getNumerator();
734   // Due to precision issue, we assume that the sum of probabilities is one if
735   // the difference between the sum of their numerators and the denominator is
736   // no greater than the number of successors.
737   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
738              Probs.size() &&
739          "The sum of successors's probabilities exceeds one.");
740 #endif // NDEBUG
741 }
742 
743 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
744                                      BranchProbability Prob) {
745   // Probability list is either empty (if successor list isn't empty, this means
746   // disabled optimization) or has the same size as successor list.
747   if (!(Probs.empty() && !Successors.empty()))
748     Probs.push_back(Prob);
749   Successors.push_back(Succ);
750   Succ->addPredecessor(this);
751 }
752 
753 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
754   // We need to make sure probability list is either empty or has the same size
755   // of successor list. When this function is called, we can safely delete all
756   // probability in the list.
757   Probs.clear();
758   Successors.push_back(Succ);
759   Succ->addPredecessor(this);
760 }
761 
762 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
763                                        MachineBasicBlock *New,
764                                        bool NormalizeSuccProbs) {
765   succ_iterator OldI = llvm::find(successors(), Old);
766   assert(OldI != succ_end() && "Old is not a successor of this block!");
767   assert(!llvm::is_contained(successors(), New) &&
768          "New is already a successor of this block!");
769 
770   // Add a new successor with equal probability as the original one. Note
771   // that we directly copy the probability using the iterator rather than
772   // getting a potentially synthetic probability computed when unknown. This
773   // preserves the probabilities as-is and then we can renormalize them and
774   // query them effectively afterward.
775   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
776                                   : *getProbabilityIterator(OldI));
777   if (NormalizeSuccProbs)
778     normalizeSuccProbs();
779 }
780 
781 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
782                                         bool NormalizeSuccProbs) {
783   succ_iterator I = find(Successors, Succ);
784   removeSuccessor(I, NormalizeSuccProbs);
785 }
786 
787 MachineBasicBlock::succ_iterator
788 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
789   assert(I != Successors.end() && "Not a current successor!");
790 
791   // If probability list is empty it means we don't use it (disabled
792   // optimization).
793   if (!Probs.empty()) {
794     probability_iterator WI = getProbabilityIterator(I);
795     Probs.erase(WI);
796     if (NormalizeSuccProbs)
797       normalizeSuccProbs();
798   }
799 
800   (*I)->removePredecessor(this);
801   return Successors.erase(I);
802 }
803 
804 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
805                                          MachineBasicBlock *New) {
806   if (Old == New)
807     return;
808 
809   succ_iterator E = succ_end();
810   succ_iterator NewI = E;
811   succ_iterator OldI = E;
812   for (succ_iterator I = succ_begin(); I != E; ++I) {
813     if (*I == Old) {
814       OldI = I;
815       if (NewI != E)
816         break;
817     }
818     if (*I == New) {
819       NewI = I;
820       if (OldI != E)
821         break;
822     }
823   }
824   assert(OldI != E && "Old is not a successor of this block");
825 
826   // If New isn't already a successor, let it take Old's place.
827   if (NewI == E) {
828     Old->removePredecessor(this);
829     New->addPredecessor(this);
830     *OldI = New;
831     return;
832   }
833 
834   // New is already a successor.
835   // Update its probability instead of adding a duplicate edge.
836   if (!Probs.empty()) {
837     auto ProbIter = getProbabilityIterator(NewI);
838     if (!ProbIter->isUnknown())
839       *ProbIter += *getProbabilityIterator(OldI);
840   }
841   removeSuccessor(OldI);
842 }
843 
844 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
845                                       succ_iterator I) {
846   if (!Orig->Probs.empty())
847     addSuccessor(*I, Orig->getSuccProbability(I));
848   else
849     addSuccessorWithoutProb(*I);
850 }
851 
852 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
853   Predecessors.push_back(Pred);
854 }
855 
856 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
857   pred_iterator I = find(Predecessors, Pred);
858   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
859   Predecessors.erase(I);
860 }
861 
862 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
863   if (this == FromMBB)
864     return;
865 
866   while (!FromMBB->succ_empty()) {
867     MachineBasicBlock *Succ = *FromMBB->succ_begin();
868 
869     // If probability list is empty it means we don't use it (disabled
870     // optimization).
871     if (!FromMBB->Probs.empty()) {
872       auto Prob = *FromMBB->Probs.begin();
873       addSuccessor(Succ, Prob);
874     } else
875       addSuccessorWithoutProb(Succ);
876 
877     FromMBB->removeSuccessor(Succ);
878   }
879 }
880 
881 void
882 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
883   if (this == FromMBB)
884     return;
885 
886   while (!FromMBB->succ_empty()) {
887     MachineBasicBlock *Succ = *FromMBB->succ_begin();
888     if (!FromMBB->Probs.empty()) {
889       auto Prob = *FromMBB->Probs.begin();
890       addSuccessor(Succ, Prob);
891     } else
892       addSuccessorWithoutProb(Succ);
893     FromMBB->removeSuccessor(Succ);
894 
895     // Fix up any PHI nodes in the successor.
896     Succ->replacePhiUsesWith(FromMBB, this);
897   }
898   normalizeSuccProbs();
899 }
900 
901 /// A block emptied (i.e., with all instructions moved out of it) won't be
902 /// sampled at run time. In such cases, AutoFDO will be informed of zero samples
903 /// collected for the block. This is not accurate and could lead to misleading
904 /// weights assigned for the block. A way to mitigate that is to treat such
905 /// block as having unknown counts in the AutoFDO profile loader and allow the
906 /// counts inference tool a chance to calculate a relatively reasonable weight
907 /// for it. This can be done by moving all pseudo probes in the emptied block
908 /// i.e, /c this, to before /c ToMBB and tag them dangling. Note that this is
909 /// not needed for dead blocks which really have a zero weight. It's per
910 /// transforms to decide whether to call this function or not.
911 void MachineBasicBlock::moveAndDanglePseudoProbes(MachineBasicBlock *ToMBB) {
912   SmallVector<MachineInstr *, 4> ToBeMoved;
913   for (MachineInstr &MI : instrs()) {
914     if (MI.isPseudoProbe()) {
915       MI.addPseudoProbeAttribute(PseudoProbeAttributes::Dangling);
916       ToBeMoved.push_back(&MI);
917     }
918   }
919 
920   MachineBasicBlock::iterator I = ToMBB->getFirstTerminator();
921   for (MachineInstr *MI : ToBeMoved) {
922     MI->removeFromParent();
923     ToMBB->insert(I, MI);
924   }
925 }
926 
927 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
928   return is_contained(predecessors(), MBB);
929 }
930 
931 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
932   return is_contained(successors(), MBB);
933 }
934 
935 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
936   MachineFunction::const_iterator I(this);
937   return std::next(I) == MachineFunction::const_iterator(MBB);
938 }
939 
940 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
941   MachineFunction::iterator Fallthrough = getIterator();
942   ++Fallthrough;
943   // If FallthroughBlock is off the end of the function, it can't fall through.
944   if (Fallthrough == getParent()->end())
945     return nullptr;
946 
947   // If FallthroughBlock isn't a successor, no fallthrough is possible.
948   if (!isSuccessor(&*Fallthrough))
949     return nullptr;
950 
951   // Analyze the branches, if any, at the end of the block.
952   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
953   SmallVector<MachineOperand, 4> Cond;
954   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
955   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
956     // If we couldn't analyze the branch, examine the last instruction.
957     // If the block doesn't end in a known control barrier, assume fallthrough
958     // is possible. The isPredicated check is needed because this code can be
959     // called during IfConversion, where an instruction which is normally a
960     // Barrier is predicated and thus no longer an actual control barrier.
961     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
962                ? &*Fallthrough
963                : nullptr;
964   }
965 
966   // If there is no branch, control always falls through.
967   if (!TBB) return &*Fallthrough;
968 
969   // If there is some explicit branch to the fallthrough block, it can obviously
970   // reach, even though the branch should get folded to fall through implicitly.
971   if (MachineFunction::iterator(TBB) == Fallthrough ||
972       MachineFunction::iterator(FBB) == Fallthrough)
973     return &*Fallthrough;
974 
975   // If it's an unconditional branch to some block not the fall through, it
976   // doesn't fall through.
977   if (Cond.empty()) return nullptr;
978 
979   // Otherwise, if it is conditional and has no explicit false block, it falls
980   // through.
981   return (FBB == nullptr) ? &*Fallthrough : nullptr;
982 }
983 
984 bool MachineBasicBlock::canFallThrough() {
985   return getFallThrough() != nullptr;
986 }
987 
988 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
989                                               bool UpdateLiveIns,
990                                               LiveIntervals *LIS) {
991   MachineBasicBlock::iterator SplitPoint(&MI);
992   ++SplitPoint;
993 
994   if (SplitPoint == end()) {
995     // Don't bother with a new block.
996     return this;
997   }
998 
999   MachineFunction *MF = getParent();
1000 
1001   LivePhysRegs LiveRegs;
1002   if (UpdateLiveIns) {
1003     // Make sure we add any physregs we define in the block as liveins to the
1004     // new block.
1005     MachineBasicBlock::iterator Prev(&MI);
1006     LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
1007     LiveRegs.addLiveOuts(*this);
1008     for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
1009       LiveRegs.stepBackward(*I);
1010   }
1011 
1012   MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
1013 
1014   MF->insert(++MachineFunction::iterator(this), SplitBB);
1015   SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
1016 
1017   SplitBB->transferSuccessorsAndUpdatePHIs(this);
1018   addSuccessor(SplitBB);
1019 
1020   if (UpdateLiveIns)
1021     addLiveIns(*SplitBB, LiveRegs);
1022 
1023   if (LIS)
1024     LIS->insertMBBInMaps(SplitBB);
1025 
1026   return SplitBB;
1027 }
1028 
1029 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1030     MachineBasicBlock *Succ, Pass &P,
1031     std::vector<SparseBitVector<>> *LiveInSets) {
1032   if (!canSplitCriticalEdge(Succ))
1033     return nullptr;
1034 
1035   MachineFunction *MF = getParent();
1036   MachineBasicBlock *PrevFallthrough = getNextNode();
1037   DebugLoc DL;  // FIXME: this is nowhere
1038 
1039   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1040   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1041   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1042                     << " -- " << printMBBReference(*NMBB) << " -- "
1043                     << printMBBReference(*Succ) << '\n');
1044 
1045   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1046   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1047   if (LIS)
1048     LIS->insertMBBInMaps(NMBB);
1049   else if (Indexes)
1050     Indexes->insertMBBInMaps(NMBB);
1051 
1052   // On some targets like Mips, branches may kill virtual registers. Make sure
1053   // that LiveVariables is properly updated after updateTerminator replaces the
1054   // terminators.
1055   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1056 
1057   // Collect a list of virtual registers killed by the terminators.
1058   SmallVector<Register, 4> KilledRegs;
1059   if (LV)
1060     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1061          I != E; ++I) {
1062       MachineInstr *MI = &*I;
1063       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1064            OE = MI->operands_end(); OI != OE; ++OI) {
1065         if (!OI->isReg() || OI->getReg() == 0 ||
1066             !OI->isUse() || !OI->isKill() || OI->isUndef())
1067           continue;
1068         Register Reg = OI->getReg();
1069         if (Register::isPhysicalRegister(Reg) ||
1070             LV->getVarInfo(Reg).removeKill(*MI)) {
1071           KilledRegs.push_back(Reg);
1072           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
1073           OI->setIsKill(false);
1074         }
1075       }
1076     }
1077 
1078   SmallVector<Register, 4> UsedRegs;
1079   if (LIS) {
1080     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1081          I != E; ++I) {
1082       MachineInstr *MI = &*I;
1083 
1084       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1085            OE = MI->operands_end(); OI != OE; ++OI) {
1086         if (!OI->isReg() || OI->getReg() == 0)
1087           continue;
1088 
1089         Register Reg = OI->getReg();
1090         if (!is_contained(UsedRegs, Reg))
1091           UsedRegs.push_back(Reg);
1092       }
1093     }
1094   }
1095 
1096   ReplaceUsesOfBlockWith(Succ, NMBB);
1097 
1098   // If updateTerminator() removes instructions, we need to remove them from
1099   // SlotIndexes.
1100   SmallVector<MachineInstr*, 4> Terminators;
1101   if (Indexes) {
1102     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1103          I != E; ++I)
1104       Terminators.push_back(&*I);
1105   }
1106 
1107   // Since we replaced all uses of Succ with NMBB, that should also be treated
1108   // as the fallthrough successor
1109   if (Succ == PrevFallthrough)
1110     PrevFallthrough = NMBB;
1111   updateTerminator(PrevFallthrough);
1112 
1113   if (Indexes) {
1114     SmallVector<MachineInstr*, 4> NewTerminators;
1115     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1116          I != E; ++I)
1117       NewTerminators.push_back(&*I);
1118 
1119     for (MachineInstr *Terminator : Terminators) {
1120       if (!is_contained(NewTerminators, Terminator))
1121         Indexes->removeMachineInstrFromMaps(*Terminator);
1122     }
1123   }
1124 
1125   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1126   NMBB->addSuccessor(Succ);
1127   if (!NMBB->isLayoutSuccessor(Succ)) {
1128     SmallVector<MachineOperand, 4> Cond;
1129     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1130     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1131 
1132     if (Indexes) {
1133       for (MachineInstr &MI : NMBB->instrs()) {
1134         // Some instructions may have been moved to NMBB by updateTerminator(),
1135         // so we first remove any instruction that already has an index.
1136         if (Indexes->hasIndex(MI))
1137           Indexes->removeMachineInstrFromMaps(MI);
1138         Indexes->insertMachineInstrInMaps(MI);
1139       }
1140     }
1141   }
1142 
1143   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1144   Succ->replacePhiUsesWith(this, NMBB);
1145 
1146   // Inherit live-ins from the successor
1147   for (const auto &LI : Succ->liveins())
1148     NMBB->addLiveIn(LI);
1149 
1150   // Update LiveVariables.
1151   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1152   if (LV) {
1153     // Restore kills of virtual registers that were killed by the terminators.
1154     while (!KilledRegs.empty()) {
1155       Register Reg = KilledRegs.pop_back_val();
1156       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1157         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1158           continue;
1159         if (Register::isVirtualRegister(Reg))
1160           LV->getVarInfo(Reg).Kills.push_back(&*I);
1161         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1162         break;
1163       }
1164     }
1165     // Update relevant live-through information.
1166     if (LiveInSets != nullptr)
1167       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1168     else
1169       LV->addNewBlock(NMBB, this, Succ);
1170   }
1171 
1172   if (LIS) {
1173     // After splitting the edge and updating SlotIndexes, live intervals may be
1174     // in one of two situations, depending on whether this block was the last in
1175     // the function. If the original block was the last in the function, all
1176     // live intervals will end prior to the beginning of the new split block. If
1177     // the original block was not at the end of the function, all live intervals
1178     // will extend to the end of the new split block.
1179 
1180     bool isLastMBB =
1181       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1182 
1183     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1184     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1185     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1186 
1187     // Find the registers used from NMBB in PHIs in Succ.
1188     SmallSet<Register, 8> PHISrcRegs;
1189     for (MachineBasicBlock::instr_iterator
1190          I = Succ->instr_begin(), E = Succ->instr_end();
1191          I != E && I->isPHI(); ++I) {
1192       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1193         if (I->getOperand(ni+1).getMBB() == NMBB) {
1194           MachineOperand &MO = I->getOperand(ni);
1195           Register Reg = MO.getReg();
1196           PHISrcRegs.insert(Reg);
1197           if (MO.isUndef())
1198             continue;
1199 
1200           LiveInterval &LI = LIS->getInterval(Reg);
1201           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1202           assert(VNI &&
1203                  "PHI sources should be live out of their predecessors.");
1204           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1205         }
1206       }
1207     }
1208 
1209     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1210     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1211       Register Reg = Register::index2VirtReg(i);
1212       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1213         continue;
1214 
1215       LiveInterval &LI = LIS->getInterval(Reg);
1216       if (!LI.liveAt(PrevIndex))
1217         continue;
1218 
1219       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1220       if (isLiveOut && isLastMBB) {
1221         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1222         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1223         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1224       } else if (!isLiveOut && !isLastMBB) {
1225         LI.removeSegment(StartIndex, EndIndex);
1226       }
1227     }
1228 
1229     // Update all intervals for registers whose uses may have been modified by
1230     // updateTerminator().
1231     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1232   }
1233 
1234   if (MachineDominatorTree *MDT =
1235           P.getAnalysisIfAvailable<MachineDominatorTree>())
1236     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1237 
1238   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1239     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1240       // If one or the other blocks were not in a loop, the new block is not
1241       // either, and thus LI doesn't need to be updated.
1242       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1243         if (TIL == DestLoop) {
1244           // Both in the same loop, the NMBB joins loop.
1245           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1246         } else if (TIL->contains(DestLoop)) {
1247           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1248           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1249         } else if (DestLoop->contains(TIL)) {
1250           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1251           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1252         } else {
1253           // Edge from two loops with no containment relation.  Because these
1254           // are natural loops, we know that the destination block must be the
1255           // header of its loop (adding a branch into a loop elsewhere would
1256           // create an irreducible loop).
1257           assert(DestLoop->getHeader() == Succ &&
1258                  "Should not create irreducible loops!");
1259           if (MachineLoop *P = DestLoop->getParentLoop())
1260             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1261         }
1262       }
1263     }
1264 
1265   return NMBB;
1266 }
1267 
1268 bool MachineBasicBlock::canSplitCriticalEdge(
1269     const MachineBasicBlock *Succ) const {
1270   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1271   // it in this generic function.
1272   if (Succ->isEHPad())
1273     return false;
1274 
1275   // Splitting the critical edge to a callbr's indirect block isn't advised.
1276   // Don't do it in this generic function.
1277   if (Succ->isInlineAsmBrIndirectTarget())
1278     return false;
1279 
1280   const MachineFunction *MF = getParent();
1281   // Performance might be harmed on HW that implements branching using exec mask
1282   // where both sides of the branches are always executed.
1283   if (MF->getTarget().requiresStructuredCFG())
1284     return false;
1285 
1286   // We may need to update this's terminator, but we can't do that if
1287   // analyzeBranch fails. If this uses a jump table, we won't touch it.
1288   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1289   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1290   SmallVector<MachineOperand, 4> Cond;
1291   // AnalyzeBanch should modify this, since we did not allow modification.
1292   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1293                          /*AllowModify*/ false))
1294     return false;
1295 
1296   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1297   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1298   // case that we can't handle. Since this never happens in properly optimized
1299   // code, just skip those edges.
1300   if (TBB && TBB == FBB) {
1301     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1302                       << printMBBReference(*this) << '\n');
1303     return false;
1304   }
1305   return true;
1306 }
1307 
1308 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1309 /// neighboring instructions so the bundle won't be broken by removing MI.
1310 static void unbundleSingleMI(MachineInstr *MI) {
1311   // Removing the first instruction in a bundle.
1312   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1313     MI->unbundleFromSucc();
1314   // Removing the last instruction in a bundle.
1315   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1316     MI->unbundleFromPred();
1317   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1318   // are already fine.
1319 }
1320 
1321 MachineBasicBlock::instr_iterator
1322 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1323   unbundleSingleMI(&*I);
1324   return Insts.erase(I);
1325 }
1326 
1327 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1328   unbundleSingleMI(MI);
1329   MI->clearFlag(MachineInstr::BundledPred);
1330   MI->clearFlag(MachineInstr::BundledSucc);
1331   return Insts.remove(MI);
1332 }
1333 
1334 MachineBasicBlock::instr_iterator
1335 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1336   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1337          "Cannot insert instruction with bundle flags");
1338   // Set the bundle flags when inserting inside a bundle.
1339   if (I != instr_end() && I->isBundledWithPred()) {
1340     MI->setFlag(MachineInstr::BundledPred);
1341     MI->setFlag(MachineInstr::BundledSucc);
1342   }
1343   return Insts.insert(I, MI);
1344 }
1345 
1346 /// This method unlinks 'this' from the containing function, and returns it, but
1347 /// does not delete it.
1348 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1349   assert(getParent() && "Not embedded in a function!");
1350   getParent()->remove(this);
1351   return this;
1352 }
1353 
1354 /// This method unlinks 'this' from the containing function, and deletes it.
1355 void MachineBasicBlock::eraseFromParent() {
1356   assert(getParent() && "Not embedded in a function!");
1357   getParent()->erase(this);
1358 }
1359 
1360 /// Given a machine basic block that branched to 'Old', change the code and CFG
1361 /// so that it branches to 'New' instead.
1362 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1363                                                MachineBasicBlock *New) {
1364   assert(Old != New && "Cannot replace self with self!");
1365 
1366   MachineBasicBlock::instr_iterator I = instr_end();
1367   while (I != instr_begin()) {
1368     --I;
1369     if (!I->isTerminator()) break;
1370 
1371     // Scan the operands of this machine instruction, replacing any uses of Old
1372     // with New.
1373     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1374       if (I->getOperand(i).isMBB() &&
1375           I->getOperand(i).getMBB() == Old)
1376         I->getOperand(i).setMBB(New);
1377   }
1378 
1379   // Update the successor information.
1380   replaceSuccessor(Old, New);
1381 }
1382 
1383 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1384                                            MachineBasicBlock *New) {
1385   for (MachineInstr &MI : phis())
1386     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1387       MachineOperand &MO = MI.getOperand(i);
1388       if (MO.getMBB() == Old)
1389         MO.setMBB(New);
1390     }
1391 }
1392 
1393 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1394 /// instructions.  Return UnknownLoc if there is none.
1395 DebugLoc
1396 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1397   // Skip debug declarations, we don't want a DebugLoc from them.
1398   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1399   if (MBBI != instr_end())
1400     return MBBI->getDebugLoc();
1401   return {};
1402 }
1403 
1404 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1405 /// instructions.  Return UnknownLoc if there is none.
1406 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1407   if (MBBI == instr_begin()) return {};
1408   // Skip debug instructions, we don't want a DebugLoc from them.
1409   MBBI = prev_nodbg(MBBI, instr_begin());
1410   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1411   return {};
1412 }
1413 
1414 /// Find and return the merged DebugLoc of the branch instructions of the block.
1415 /// Return UnknownLoc if there is none.
1416 DebugLoc
1417 MachineBasicBlock::findBranchDebugLoc() {
1418   DebugLoc DL;
1419   auto TI = getFirstTerminator();
1420   while (TI != end() && !TI->isBranch())
1421     ++TI;
1422 
1423   if (TI != end()) {
1424     DL = TI->getDebugLoc();
1425     for (++TI ; TI != end() ; ++TI)
1426       if (TI->isBranch())
1427         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1428   }
1429   return DL;
1430 }
1431 
1432 /// Return probability of the edge from this block to MBB.
1433 BranchProbability
1434 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1435   if (Probs.empty())
1436     return BranchProbability(1, succ_size());
1437 
1438   const auto &Prob = *getProbabilityIterator(Succ);
1439   if (Prob.isUnknown()) {
1440     // For unknown probabilities, collect the sum of all known ones, and evenly
1441     // ditribute the complemental of the sum to each unknown probability.
1442     unsigned KnownProbNum = 0;
1443     auto Sum = BranchProbability::getZero();
1444     for (auto &P : Probs) {
1445       if (!P.isUnknown()) {
1446         Sum += P;
1447         KnownProbNum++;
1448       }
1449     }
1450     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1451   } else
1452     return Prob;
1453 }
1454 
1455 /// Set successor probability of a given iterator.
1456 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1457                                            BranchProbability Prob) {
1458   assert(!Prob.isUnknown());
1459   if (Probs.empty())
1460     return;
1461   *getProbabilityIterator(I) = Prob;
1462 }
1463 
1464 /// Return probability iterator corresonding to the I successor iterator
1465 MachineBasicBlock::const_probability_iterator
1466 MachineBasicBlock::getProbabilityIterator(
1467     MachineBasicBlock::const_succ_iterator I) const {
1468   assert(Probs.size() == Successors.size() && "Async probability list!");
1469   const size_t index = std::distance(Successors.begin(), I);
1470   assert(index < Probs.size() && "Not a current successor!");
1471   return Probs.begin() + index;
1472 }
1473 
1474 /// Return probability iterator corresonding to the I successor iterator.
1475 MachineBasicBlock::probability_iterator
1476 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1477   assert(Probs.size() == Successors.size() && "Async probability list!");
1478   const size_t index = std::distance(Successors.begin(), I);
1479   assert(index < Probs.size() && "Not a current successor!");
1480   return Probs.begin() + index;
1481 }
1482 
1483 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1484 /// as of just before "MI".
1485 ///
1486 /// Search is localised to a neighborhood of
1487 /// Neighborhood instructions before (searching for defs or kills) and N
1488 /// instructions after (searching just for defs) MI.
1489 MachineBasicBlock::LivenessQueryResult
1490 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1491                                            MCRegister Reg, const_iterator Before,
1492                                            unsigned Neighborhood) const {
1493   unsigned N = Neighborhood;
1494 
1495   // Try searching forwards from Before, looking for reads or defs.
1496   const_iterator I(Before);
1497   for (; I != end() && N > 0; ++I) {
1498     if (I->isDebugInstr())
1499       continue;
1500 
1501     --N;
1502 
1503     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1504 
1505     // Register is live when we read it here.
1506     if (Info.Read)
1507       return LQR_Live;
1508     // Register is dead if we can fully overwrite or clobber it here.
1509     if (Info.FullyDefined || Info.Clobbered)
1510       return LQR_Dead;
1511   }
1512 
1513   // If we reached the end, it is safe to clobber Reg at the end of a block of
1514   // no successor has it live in.
1515   if (I == end()) {
1516     for (MachineBasicBlock *S : successors()) {
1517       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1518         if (TRI->regsOverlap(LI.PhysReg, Reg))
1519           return LQR_Live;
1520       }
1521     }
1522 
1523     return LQR_Dead;
1524   }
1525 
1526 
1527   N = Neighborhood;
1528 
1529   // Start by searching backwards from Before, looking for kills, reads or defs.
1530   I = const_iterator(Before);
1531   // If this is the first insn in the block, don't search backwards.
1532   if (I != begin()) {
1533     do {
1534       --I;
1535 
1536       if (I->isDebugInstr())
1537         continue;
1538 
1539       --N;
1540 
1541       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1542 
1543       // Defs happen after uses so they take precedence if both are present.
1544 
1545       // Register is dead after a dead def of the full register.
1546       if (Info.DeadDef)
1547         return LQR_Dead;
1548       // Register is (at least partially) live after a def.
1549       if (Info.Defined) {
1550         if (!Info.PartialDeadDef)
1551           return LQR_Live;
1552         // As soon as we saw a partial definition (dead or not),
1553         // we cannot tell if the value is partial live without
1554         // tracking the lanemasks. We are not going to do this,
1555         // so fall back on the remaining of the analysis.
1556         break;
1557       }
1558       // Register is dead after a full kill or clobber and no def.
1559       if (Info.Killed || Info.Clobbered)
1560         return LQR_Dead;
1561       // Register must be live if we read it.
1562       if (Info.Read)
1563         return LQR_Live;
1564 
1565     } while (I != begin() && N > 0);
1566   }
1567 
1568   // If all the instructions before this in the block are debug instructions,
1569   // skip over them.
1570   while (I != begin() && std::prev(I)->isDebugInstr())
1571     --I;
1572 
1573   // Did we get to the start of the block?
1574   if (I == begin()) {
1575     // If so, the register's state is definitely defined by the live-in state.
1576     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1577       if (TRI->regsOverlap(LI.PhysReg, Reg))
1578         return LQR_Live;
1579 
1580     return LQR_Dead;
1581   }
1582 
1583   // At this point we have no idea of the liveness of the register.
1584   return LQR_Unknown;
1585 }
1586 
1587 const uint32_t *
1588 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1589   // EH funclet entry does not preserve any registers.
1590   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1591 }
1592 
1593 const uint32_t *
1594 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1595   // If we see a return block with successors, this must be a funclet return,
1596   // which does not preserve any registers. If there are no successors, we don't
1597   // care what kind of return it is, putting a mask after it is a no-op.
1598   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1599 }
1600 
1601 void MachineBasicBlock::clearLiveIns() {
1602   LiveIns.clear();
1603 }
1604 
1605 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1606   assert(getParent()->getProperties().hasProperty(
1607       MachineFunctionProperties::Property::TracksLiveness) &&
1608       "Liveness information is accurate");
1609   return LiveIns.begin();
1610 }
1611 
1612 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1613 const MBBSectionID
1614     MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1615