xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 801bf7ebbed34577e730a53d6575035c26e39ac1)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCContext.h"
34 #include "llvm/Support/DataTypes.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <algorithm>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "codegen"
42 
43 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
44     : BB(B), Number(-1), xParent(&MF) {
45   Insts.Parent = this;
46   if (B)
47     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
48 }
49 
50 MachineBasicBlock::~MachineBasicBlock() {
51 }
52 
53 /// Return the MCSymbol for this basic block.
54 MCSymbol *MachineBasicBlock::getSymbol() const {
55   if (!CachedMCSymbol) {
56     const MachineFunction *MF = getParent();
57     MCContext &Ctx = MF->getContext();
58     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
59     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
60     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
61                                            Twine(MF->getFunctionNumber()) +
62                                            "_" + Twine(getNumber()));
63   }
64 
65   return CachedMCSymbol;
66 }
67 
68 
69 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
70   MBB.print(OS);
71   return OS;
72 }
73 
74 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
75   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
76 }
77 
78 /// When an MBB is added to an MF, we need to update the parent pointer of the
79 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
80 /// operand list for registers.
81 ///
82 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
83 /// gets the next available unique MBB number. If it is removed from a
84 /// MachineFunction, it goes back to being #-1.
85 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
86     MachineBasicBlock *N) {
87   MachineFunction &MF = *N->getParent();
88   N->Number = MF.addToMBBNumbering(N);
89 
90   // Make sure the instructions have their operands in the reginfo lists.
91   MachineRegisterInfo &RegInfo = MF.getRegInfo();
92   for (MachineBasicBlock::instr_iterator
93          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
94     I->AddRegOperandsToUseLists(RegInfo);
95 }
96 
97 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
98     MachineBasicBlock *N) {
99   N->getParent()->removeFromMBBNumbering(N->Number);
100   N->Number = -1;
101 }
102 
103 /// When we add an instruction to a basic block list, we update its parent
104 /// pointer and add its operands from reg use/def lists if appropriate.
105 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
106   assert(!N->getParent() && "machine instruction already in a basic block");
107   N->setParent(Parent);
108 
109   // Add the instruction's register operands to their corresponding
110   // use/def lists.
111   MachineFunction *MF = Parent->getParent();
112   N->AddRegOperandsToUseLists(MF->getRegInfo());
113 }
114 
115 /// When we remove an instruction from a basic block list, we update its parent
116 /// pointer and remove its operands from reg use/def lists if appropriate.
117 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
118   assert(N->getParent() && "machine instruction not in a basic block");
119 
120   // Remove from the use/def lists.
121   if (MachineFunction *MF = N->getMF())
122     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
123 
124   N->setParent(nullptr);
125 }
126 
127 /// When moving a range of instructions from one MBB list to another, we need to
128 /// update the parent pointers and the use/def lists.
129 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
130                                                        instr_iterator First,
131                                                        instr_iterator Last) {
132   assert(Parent->getParent() == FromList.Parent->getParent() &&
133         "MachineInstr parent mismatch!");
134   assert(this != &FromList && "Called without a real transfer...");
135   assert(Parent != FromList.Parent && "Two lists have the same parent?");
136 
137   // If splicing between two blocks within the same function, just update the
138   // parent pointers.
139   for (; First != Last; ++First)
140     First->setParent(Parent);
141 }
142 
143 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
144   assert(!MI->getParent() && "MI is still in a block!");
145   Parent->getParent()->DeleteMachineInstr(MI);
146 }
147 
148 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
149   instr_iterator I = instr_begin(), E = instr_end();
150   while (I != E && I->isPHI())
151     ++I;
152   assert((I == E || !I->isInsideBundle()) &&
153          "First non-phi MI cannot be inside a bundle!");
154   return I;
155 }
156 
157 MachineBasicBlock::iterator
158 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
159   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
160 
161   iterator E = end();
162   while (I != E && (I->isPHI() || I->isPosition() ||
163                     TII->isBasicBlockPrologue(*I)))
164     ++I;
165   // FIXME: This needs to change if we wish to bundle labels
166   // inside the bundle.
167   assert((I == E || !I->isInsideBundle()) &&
168          "First non-phi / non-label instruction is inside a bundle!");
169   return I;
170 }
171 
172 MachineBasicBlock::iterator
173 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
174   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
175 
176   iterator E = end();
177   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
178                     TII->isBasicBlockPrologue(*I)))
179     ++I;
180   // FIXME: This needs to change if we wish to bundle labels / dbg_values
181   // inside the bundle.
182   assert((I == E || !I->isInsideBundle()) &&
183          "First non-phi / non-label / non-debug "
184          "instruction is inside a bundle!");
185   return I;
186 }
187 
188 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
189   iterator B = begin(), E = end(), I = E;
190   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
191     ; /*noop */
192   while (I != E && !I->isTerminator())
193     ++I;
194   return I;
195 }
196 
197 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
198   instr_iterator B = instr_begin(), E = instr_end(), I = E;
199   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
200     ; /*noop */
201   while (I != E && !I->isTerminator())
202     ++I;
203   return I;
204 }
205 
206 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
207   // Skip over begin-of-block dbg_value instructions.
208   return skipDebugInstructionsForward(begin(), end());
209 }
210 
211 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
212   // Skip over end-of-block dbg_value instructions.
213   instr_iterator B = instr_begin(), I = instr_end();
214   while (I != B) {
215     --I;
216     // Return instruction that starts a bundle.
217     if (I->isDebugInstr() || I->isInsideBundle())
218       continue;
219     return I;
220   }
221   // The block is all debug values.
222   return end();
223 }
224 
225 bool MachineBasicBlock::hasEHPadSuccessor() const {
226   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
227     if ((*I)->isEHPad())
228       return true;
229   return false;
230 }
231 
232 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
233 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
234   print(dbgs());
235 }
236 #endif
237 
238 bool MachineBasicBlock::isLegalToHoistInto() const {
239   if (isReturnBlock() || hasEHPadSuccessor())
240     return false;
241   return true;
242 }
243 
244 StringRef MachineBasicBlock::getName() const {
245   if (const BasicBlock *LBB = getBasicBlock())
246     return LBB->getName();
247   else
248     return StringRef("", 0);
249 }
250 
251 /// Return a hopefully unique identifier for this block.
252 std::string MachineBasicBlock::getFullName() const {
253   std::string Name;
254   if (getParent())
255     Name = (getParent()->getName() + ":").str();
256   if (getBasicBlock())
257     Name += getBasicBlock()->getName();
258   else
259     Name += ("BB" + Twine(getNumber())).str();
260   return Name;
261 }
262 
263 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
264                               bool IsStandalone) const {
265   const MachineFunction *MF = getParent();
266   if (!MF) {
267     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
268        << " is null\n";
269     return;
270   }
271   const Function &F = MF->getFunction();
272   const Module *M = F.getParent();
273   ModuleSlotTracker MST(M);
274   MST.incorporateFunction(F);
275   print(OS, MST, Indexes, IsStandalone);
276 }
277 
278 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
279                               const SlotIndexes *Indexes,
280                               bool IsStandalone) const {
281   const MachineFunction *MF = getParent();
282   if (!MF) {
283     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
284        << " is null\n";
285     return;
286   }
287 
288   if (Indexes)
289     OS << Indexes->getMBBStartIdx(this) << '\t';
290 
291   OS << "bb." << getNumber();
292   bool HasAttributes = false;
293   if (const auto *BB = getBasicBlock()) {
294     if (BB->hasName()) {
295       OS << "." << BB->getName();
296     } else {
297       HasAttributes = true;
298       OS << " (";
299       int Slot = MST.getLocalSlot(BB);
300       if (Slot == -1)
301         OS << "<ir-block badref>";
302       else
303         OS << (Twine("%ir-block.") + Twine(Slot)).str();
304     }
305   }
306 
307   if (hasAddressTaken()) {
308     OS << (HasAttributes ? ", " : " (");
309     OS << "address-taken";
310     HasAttributes = true;
311   }
312   if (isEHPad()) {
313     OS << (HasAttributes ? ", " : " (");
314     OS << "landing-pad";
315     HasAttributes = true;
316   }
317   if (getAlignment()) {
318     OS << (HasAttributes ? ", " : " (");
319     OS << "align " << getAlignment();
320     HasAttributes = true;
321   }
322   if (HasAttributes)
323     OS << ")";
324   OS << ":\n";
325 
326   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
327   const MachineRegisterInfo &MRI = MF->getRegInfo();
328   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
329   bool HasLineAttributes = false;
330 
331   // Print the preds of this block according to the CFG.
332   if (!pred_empty() && IsStandalone) {
333     if (Indexes) OS << '\t';
334     // Don't indent(2), align with previous line attributes.
335     OS << "; predecessors: ";
336     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
337       if (I != pred_begin())
338         OS << ", ";
339       OS << printMBBReference(**I);
340     }
341     OS << '\n';
342     HasLineAttributes = true;
343   }
344 
345   if (!succ_empty()) {
346     if (Indexes) OS << '\t';
347     // Print the successors
348     OS.indent(2) << "successors: ";
349     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
350       if (I != succ_begin())
351         OS << ", ";
352       OS << printMBBReference(**I);
353       if (!Probs.empty())
354         OS << '('
355            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
356            << ')';
357     }
358     if (!Probs.empty() && IsStandalone) {
359       // Print human readable probabilities as comments.
360       OS << "; ";
361       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
362         const BranchProbability &BP = *getProbabilityIterator(I);
363         if (I != succ_begin())
364           OS << ", ";
365         OS << printMBBReference(**I) << '('
366            << format("%.2f%%",
367                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
368                           100.0 * 100.0) /
369                          100.0)
370            << ')';
371       }
372     }
373 
374     OS << '\n';
375     HasLineAttributes = true;
376   }
377 
378   if (!livein_empty() && MRI.tracksLiveness()) {
379     if (Indexes) OS << '\t';
380     OS.indent(2) << "liveins: ";
381 
382     bool First = true;
383     for (const auto &LI : liveins()) {
384       if (!First)
385         OS << ", ";
386       First = false;
387       OS << printReg(LI.PhysReg, TRI);
388       if (!LI.LaneMask.all())
389         OS << ":0x" << PrintLaneMask(LI.LaneMask);
390     }
391     HasLineAttributes = true;
392   }
393 
394   if (HasLineAttributes)
395     OS << '\n';
396 
397   bool IsInBundle = false;
398   for (const MachineInstr &MI : instrs()) {
399     if (Indexes) {
400       if (Indexes->hasIndex(MI))
401         OS << Indexes->getInstructionIndex(MI);
402       OS << '\t';
403     }
404 
405     if (IsInBundle && !MI.isInsideBundle()) {
406       OS.indent(2) << "}\n";
407       IsInBundle = false;
408     }
409 
410     OS.indent(IsInBundle ? 4 : 2);
411     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
412              /*AddNewLine=*/false, &TII);
413 
414     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
415       OS << " {";
416       IsInBundle = true;
417     }
418     OS << '\n';
419   }
420 
421   if (IsInBundle)
422     OS.indent(2) << "}\n";
423 
424   if (IrrLoopHeaderWeight && IsStandalone) {
425     if (Indexes) OS << '\t';
426     OS.indent(2) << "; Irreducible loop header weight: "
427                  << IrrLoopHeaderWeight.getValue() << '\n';
428   }
429 }
430 
431 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
432                                        bool /*PrintType*/) const {
433   OS << "%bb." << getNumber();
434 }
435 
436 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
437   LiveInVector::iterator I = find_if(
438       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
439   if (I == LiveIns.end())
440     return;
441 
442   I->LaneMask &= ~LaneMask;
443   if (I->LaneMask.none())
444     LiveIns.erase(I);
445 }
446 
447 MachineBasicBlock::livein_iterator
448 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
449   // Get non-const version of iterator.
450   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
451   return LiveIns.erase(LI);
452 }
453 
454 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
455   livein_iterator I = find_if(
456       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
457   return I != livein_end() && (I->LaneMask & LaneMask).any();
458 }
459 
460 void MachineBasicBlock::sortUniqueLiveIns() {
461   llvm::sort(LiveIns.begin(), LiveIns.end(),
462              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
463                return LI0.PhysReg < LI1.PhysReg;
464              });
465   // Liveins are sorted by physreg now we can merge their lanemasks.
466   LiveInVector::const_iterator I = LiveIns.begin();
467   LiveInVector::const_iterator J;
468   LiveInVector::iterator Out = LiveIns.begin();
469   for (; I != LiveIns.end(); ++Out, I = J) {
470     unsigned PhysReg = I->PhysReg;
471     LaneBitmask LaneMask = I->LaneMask;
472     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
473       LaneMask |= J->LaneMask;
474     Out->PhysReg = PhysReg;
475     Out->LaneMask = LaneMask;
476   }
477   LiveIns.erase(Out, LiveIns.end());
478 }
479 
480 unsigned
481 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
482   assert(getParent() && "MBB must be inserted in function");
483   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
484   assert(RC && "Register class is required");
485   assert((isEHPad() || this == &getParent()->front()) &&
486          "Only the entry block and landing pads can have physreg live ins");
487 
488   bool LiveIn = isLiveIn(PhysReg);
489   iterator I = SkipPHIsAndLabels(begin()), E = end();
490   MachineRegisterInfo &MRI = getParent()->getRegInfo();
491   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
492 
493   // Look for an existing copy.
494   if (LiveIn)
495     for (;I != E && I->isCopy(); ++I)
496       if (I->getOperand(1).getReg() == PhysReg) {
497         unsigned VirtReg = I->getOperand(0).getReg();
498         if (!MRI.constrainRegClass(VirtReg, RC))
499           llvm_unreachable("Incompatible live-in register class.");
500         return VirtReg;
501       }
502 
503   // No luck, create a virtual register.
504   unsigned VirtReg = MRI.createVirtualRegister(RC);
505   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
506     .addReg(PhysReg, RegState::Kill);
507   if (!LiveIn)
508     addLiveIn(PhysReg);
509   return VirtReg;
510 }
511 
512 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
513   getParent()->splice(NewAfter->getIterator(), getIterator());
514 }
515 
516 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
517   getParent()->splice(++NewBefore->getIterator(), getIterator());
518 }
519 
520 void MachineBasicBlock::updateTerminator() {
521   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
522   // A block with no successors has no concerns with fall-through edges.
523   if (this->succ_empty())
524     return;
525 
526   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
527   SmallVector<MachineOperand, 4> Cond;
528   DebugLoc DL = findBranchDebugLoc();
529   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
530   (void) B;
531   assert(!B && "UpdateTerminators requires analyzable predecessors!");
532   if (Cond.empty()) {
533     if (TBB) {
534       // The block has an unconditional branch. If its successor is now its
535       // layout successor, delete the branch.
536       if (isLayoutSuccessor(TBB))
537         TII->removeBranch(*this);
538     } else {
539       // The block has an unconditional fallthrough. If its successor is not its
540       // layout successor, insert a branch. First we have to locate the only
541       // non-landing-pad successor, as that is the fallthrough block.
542       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
543         if ((*SI)->isEHPad())
544           continue;
545         assert(!TBB && "Found more than one non-landing-pad successor!");
546         TBB = *SI;
547       }
548 
549       // If there is no non-landing-pad successor, the block has no fall-through
550       // edges to be concerned with.
551       if (!TBB)
552         return;
553 
554       // Finally update the unconditional successor to be reached via a branch
555       // if it would not be reached by fallthrough.
556       if (!isLayoutSuccessor(TBB))
557         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
558     }
559     return;
560   }
561 
562   if (FBB) {
563     // The block has a non-fallthrough conditional branch. If one of its
564     // successors is its layout successor, rewrite it to a fallthrough
565     // conditional branch.
566     if (isLayoutSuccessor(TBB)) {
567       if (TII->reverseBranchCondition(Cond))
568         return;
569       TII->removeBranch(*this);
570       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
571     } else if (isLayoutSuccessor(FBB)) {
572       TII->removeBranch(*this);
573       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
574     }
575     return;
576   }
577 
578   // Walk through the successors and find the successor which is not a landing
579   // pad and is not the conditional branch destination (in TBB) as the
580   // fallthrough successor.
581   MachineBasicBlock *FallthroughBB = nullptr;
582   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
583     if ((*SI)->isEHPad() || *SI == TBB)
584       continue;
585     assert(!FallthroughBB && "Found more than one fallthrough successor.");
586     FallthroughBB = *SI;
587   }
588 
589   if (!FallthroughBB) {
590     if (canFallThrough()) {
591       // We fallthrough to the same basic block as the conditional jump targets.
592       // Remove the conditional jump, leaving unconditional fallthrough.
593       // FIXME: This does not seem like a reasonable pattern to support, but it
594       // has been seen in the wild coming out of degenerate ARM test cases.
595       TII->removeBranch(*this);
596 
597       // Finally update the unconditional successor to be reached via a branch if
598       // it would not be reached by fallthrough.
599       if (!isLayoutSuccessor(TBB))
600         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
601       return;
602     }
603 
604     // We enter here iff exactly one successor is TBB which cannot fallthrough
605     // and the rest successors if any are EHPads.  In this case, we need to
606     // change the conditional branch into unconditional branch.
607     TII->removeBranch(*this);
608     Cond.clear();
609     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
610     return;
611   }
612 
613   // The block has a fallthrough conditional branch.
614   if (isLayoutSuccessor(TBB)) {
615     if (TII->reverseBranchCondition(Cond)) {
616       // We can't reverse the condition, add an unconditional branch.
617       Cond.clear();
618       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
619       return;
620     }
621     TII->removeBranch(*this);
622     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
623   } else if (!isLayoutSuccessor(FallthroughBB)) {
624     TII->removeBranch(*this);
625     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
626   }
627 }
628 
629 void MachineBasicBlock::validateSuccProbs() const {
630 #ifndef NDEBUG
631   int64_t Sum = 0;
632   for (auto Prob : Probs)
633     Sum += Prob.getNumerator();
634   // Due to precision issue, we assume that the sum of probabilities is one if
635   // the difference between the sum of their numerators and the denominator is
636   // no greater than the number of successors.
637   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
638              Probs.size() &&
639          "The sum of successors's probabilities exceeds one.");
640 #endif // NDEBUG
641 }
642 
643 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
644                                      BranchProbability Prob) {
645   // Probability list is either empty (if successor list isn't empty, this means
646   // disabled optimization) or has the same size as successor list.
647   if (!(Probs.empty() && !Successors.empty()))
648     Probs.push_back(Prob);
649   Successors.push_back(Succ);
650   Succ->addPredecessor(this);
651 }
652 
653 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
654   // We need to make sure probability list is either empty or has the same size
655   // of successor list. When this function is called, we can safely delete all
656   // probability in the list.
657   Probs.clear();
658   Successors.push_back(Succ);
659   Succ->addPredecessor(this);
660 }
661 
662 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
663                                         bool NormalizeSuccProbs) {
664   succ_iterator I = find(Successors, Succ);
665   removeSuccessor(I, NormalizeSuccProbs);
666 }
667 
668 MachineBasicBlock::succ_iterator
669 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
670   assert(I != Successors.end() && "Not a current successor!");
671 
672   // If probability list is empty it means we don't use it (disabled
673   // optimization).
674   if (!Probs.empty()) {
675     probability_iterator WI = getProbabilityIterator(I);
676     Probs.erase(WI);
677     if (NormalizeSuccProbs)
678       normalizeSuccProbs();
679   }
680 
681   (*I)->removePredecessor(this);
682   return Successors.erase(I);
683 }
684 
685 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
686                                          MachineBasicBlock *New) {
687   if (Old == New)
688     return;
689 
690   succ_iterator E = succ_end();
691   succ_iterator NewI = E;
692   succ_iterator OldI = E;
693   for (succ_iterator I = succ_begin(); I != E; ++I) {
694     if (*I == Old) {
695       OldI = I;
696       if (NewI != E)
697         break;
698     }
699     if (*I == New) {
700       NewI = I;
701       if (OldI != E)
702         break;
703     }
704   }
705   assert(OldI != E && "Old is not a successor of this block");
706 
707   // If New isn't already a successor, let it take Old's place.
708   if (NewI == E) {
709     Old->removePredecessor(this);
710     New->addPredecessor(this);
711     *OldI = New;
712     return;
713   }
714 
715   // New is already a successor.
716   // Update its probability instead of adding a duplicate edge.
717   if (!Probs.empty()) {
718     auto ProbIter = getProbabilityIterator(NewI);
719     if (!ProbIter->isUnknown())
720       *ProbIter += *getProbabilityIterator(OldI);
721   }
722   removeSuccessor(OldI);
723 }
724 
725 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
726                                       succ_iterator I) {
727   if (Orig->Probs.empty())
728     addSuccessor(*I, Orig->getSuccProbability(I));
729   else
730     addSuccessorWithoutProb(*I);
731 }
732 
733 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
734   Predecessors.push_back(Pred);
735 }
736 
737 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
738   pred_iterator I = find(Predecessors, Pred);
739   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
740   Predecessors.erase(I);
741 }
742 
743 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
744   if (this == FromMBB)
745     return;
746 
747   while (!FromMBB->succ_empty()) {
748     MachineBasicBlock *Succ = *FromMBB->succ_begin();
749 
750     // If probability list is empty it means we don't use it (disabled optimization).
751     if (!FromMBB->Probs.empty()) {
752       auto Prob = *FromMBB->Probs.begin();
753       addSuccessor(Succ, Prob);
754     } else
755       addSuccessorWithoutProb(Succ);
756 
757     FromMBB->removeSuccessor(Succ);
758   }
759 }
760 
761 void
762 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
763   if (this == FromMBB)
764     return;
765 
766   while (!FromMBB->succ_empty()) {
767     MachineBasicBlock *Succ = *FromMBB->succ_begin();
768     if (!FromMBB->Probs.empty()) {
769       auto Prob = *FromMBB->Probs.begin();
770       addSuccessor(Succ, Prob);
771     } else
772       addSuccessorWithoutProb(Succ);
773     FromMBB->removeSuccessor(Succ);
774 
775     // Fix up any PHI nodes in the successor.
776     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
777            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
778       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
779         MachineOperand &MO = MI->getOperand(i);
780         if (MO.getMBB() == FromMBB)
781           MO.setMBB(this);
782       }
783   }
784   normalizeSuccProbs();
785 }
786 
787 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
788   return is_contained(predecessors(), MBB);
789 }
790 
791 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
792   return is_contained(successors(), MBB);
793 }
794 
795 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
796   MachineFunction::const_iterator I(this);
797   return std::next(I) == MachineFunction::const_iterator(MBB);
798 }
799 
800 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
801   MachineFunction::iterator Fallthrough = getIterator();
802   ++Fallthrough;
803   // If FallthroughBlock is off the end of the function, it can't fall through.
804   if (Fallthrough == getParent()->end())
805     return nullptr;
806 
807   // If FallthroughBlock isn't a successor, no fallthrough is possible.
808   if (!isSuccessor(&*Fallthrough))
809     return nullptr;
810 
811   // Analyze the branches, if any, at the end of the block.
812   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
813   SmallVector<MachineOperand, 4> Cond;
814   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
815   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
816     // If we couldn't analyze the branch, examine the last instruction.
817     // If the block doesn't end in a known control barrier, assume fallthrough
818     // is possible. The isPredicated check is needed because this code can be
819     // called during IfConversion, where an instruction which is normally a
820     // Barrier is predicated and thus no longer an actual control barrier.
821     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
822                ? &*Fallthrough
823                : nullptr;
824   }
825 
826   // If there is no branch, control always falls through.
827   if (!TBB) return &*Fallthrough;
828 
829   // If there is some explicit branch to the fallthrough block, it can obviously
830   // reach, even though the branch should get folded to fall through implicitly.
831   if (MachineFunction::iterator(TBB) == Fallthrough ||
832       MachineFunction::iterator(FBB) == Fallthrough)
833     return &*Fallthrough;
834 
835   // If it's an unconditional branch to some block not the fall through, it
836   // doesn't fall through.
837   if (Cond.empty()) return nullptr;
838 
839   // Otherwise, if it is conditional and has no explicit false block, it falls
840   // through.
841   return (FBB == nullptr) ? &*Fallthrough : nullptr;
842 }
843 
844 bool MachineBasicBlock::canFallThrough() {
845   return getFallThrough() != nullptr;
846 }
847 
848 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
849                                                         Pass &P) {
850   if (!canSplitCriticalEdge(Succ))
851     return nullptr;
852 
853   MachineFunction *MF = getParent();
854   DebugLoc DL;  // FIXME: this is nowhere
855 
856   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
857   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
858   DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
859                << " -- " << printMBBReference(*NMBB) << " -- "
860                << printMBBReference(*Succ) << '\n');
861 
862   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
863   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
864   if (LIS)
865     LIS->insertMBBInMaps(NMBB);
866   else if (Indexes)
867     Indexes->insertMBBInMaps(NMBB);
868 
869   // On some targets like Mips, branches may kill virtual registers. Make sure
870   // that LiveVariables is properly updated after updateTerminator replaces the
871   // terminators.
872   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
873 
874   // Collect a list of virtual registers killed by the terminators.
875   SmallVector<unsigned, 4> KilledRegs;
876   if (LV)
877     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
878          I != E; ++I) {
879       MachineInstr *MI = &*I;
880       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
881            OE = MI->operands_end(); OI != OE; ++OI) {
882         if (!OI->isReg() || OI->getReg() == 0 ||
883             !OI->isUse() || !OI->isKill() || OI->isUndef())
884           continue;
885         unsigned Reg = OI->getReg();
886         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
887             LV->getVarInfo(Reg).removeKill(*MI)) {
888           KilledRegs.push_back(Reg);
889           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
890           OI->setIsKill(false);
891         }
892       }
893     }
894 
895   SmallVector<unsigned, 4> UsedRegs;
896   if (LIS) {
897     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
898          I != E; ++I) {
899       MachineInstr *MI = &*I;
900 
901       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
902            OE = MI->operands_end(); OI != OE; ++OI) {
903         if (!OI->isReg() || OI->getReg() == 0)
904           continue;
905 
906         unsigned Reg = OI->getReg();
907         if (!is_contained(UsedRegs, Reg))
908           UsedRegs.push_back(Reg);
909       }
910     }
911   }
912 
913   ReplaceUsesOfBlockWith(Succ, NMBB);
914 
915   // If updateTerminator() removes instructions, we need to remove them from
916   // SlotIndexes.
917   SmallVector<MachineInstr*, 4> Terminators;
918   if (Indexes) {
919     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
920          I != E; ++I)
921       Terminators.push_back(&*I);
922   }
923 
924   updateTerminator();
925 
926   if (Indexes) {
927     SmallVector<MachineInstr*, 4> NewTerminators;
928     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
929          I != E; ++I)
930       NewTerminators.push_back(&*I);
931 
932     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
933         E = Terminators.end(); I != E; ++I) {
934       if (!is_contained(NewTerminators, *I))
935         Indexes->removeMachineInstrFromMaps(**I);
936     }
937   }
938 
939   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
940   NMBB->addSuccessor(Succ);
941   if (!NMBB->isLayoutSuccessor(Succ)) {
942     SmallVector<MachineOperand, 4> Cond;
943     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
944     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
945 
946     if (Indexes) {
947       for (MachineInstr &MI : NMBB->instrs()) {
948         // Some instructions may have been moved to NMBB by updateTerminator(),
949         // so we first remove any instruction that already has an index.
950         if (Indexes->hasIndex(MI))
951           Indexes->removeMachineInstrFromMaps(MI);
952         Indexes->insertMachineInstrInMaps(MI);
953       }
954     }
955   }
956 
957   // Fix PHI nodes in Succ so they refer to NMBB instead of this
958   for (MachineBasicBlock::instr_iterator
959          i = Succ->instr_begin(),e = Succ->instr_end();
960        i != e && i->isPHI(); ++i)
961     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
962       if (i->getOperand(ni+1).getMBB() == this)
963         i->getOperand(ni+1).setMBB(NMBB);
964 
965   // Inherit live-ins from the successor
966   for (const auto &LI : Succ->liveins())
967     NMBB->addLiveIn(LI);
968 
969   // Update LiveVariables.
970   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
971   if (LV) {
972     // Restore kills of virtual registers that were killed by the terminators.
973     while (!KilledRegs.empty()) {
974       unsigned Reg = KilledRegs.pop_back_val();
975       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
976         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
977           continue;
978         if (TargetRegisterInfo::isVirtualRegister(Reg))
979           LV->getVarInfo(Reg).Kills.push_back(&*I);
980         DEBUG(dbgs() << "Restored terminator kill: " << *I);
981         break;
982       }
983     }
984     // Update relevant live-through information.
985     LV->addNewBlock(NMBB, this, Succ);
986   }
987 
988   if (LIS) {
989     // After splitting the edge and updating SlotIndexes, live intervals may be
990     // in one of two situations, depending on whether this block was the last in
991     // the function. If the original block was the last in the function, all
992     // live intervals will end prior to the beginning of the new split block. If
993     // the original block was not at the end of the function, all live intervals
994     // will extend to the end of the new split block.
995 
996     bool isLastMBB =
997       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
998 
999     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1000     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1001     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1002 
1003     // Find the registers used from NMBB in PHIs in Succ.
1004     SmallSet<unsigned, 8> PHISrcRegs;
1005     for (MachineBasicBlock::instr_iterator
1006          I = Succ->instr_begin(), E = Succ->instr_end();
1007          I != E && I->isPHI(); ++I) {
1008       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1009         if (I->getOperand(ni+1).getMBB() == NMBB) {
1010           MachineOperand &MO = I->getOperand(ni);
1011           unsigned Reg = MO.getReg();
1012           PHISrcRegs.insert(Reg);
1013           if (MO.isUndef())
1014             continue;
1015 
1016           LiveInterval &LI = LIS->getInterval(Reg);
1017           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1018           assert(VNI &&
1019                  "PHI sources should be live out of their predecessors.");
1020           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1021         }
1022       }
1023     }
1024 
1025     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1026     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1027       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1028       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1029         continue;
1030 
1031       LiveInterval &LI = LIS->getInterval(Reg);
1032       if (!LI.liveAt(PrevIndex))
1033         continue;
1034 
1035       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1036       if (isLiveOut && isLastMBB) {
1037         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1038         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1039         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1040       } else if (!isLiveOut && !isLastMBB) {
1041         LI.removeSegment(StartIndex, EndIndex);
1042       }
1043     }
1044 
1045     // Update all intervals for registers whose uses may have been modified by
1046     // updateTerminator().
1047     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1048   }
1049 
1050   if (MachineDominatorTree *MDT =
1051           P.getAnalysisIfAvailable<MachineDominatorTree>())
1052     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1053 
1054   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1055     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1056       // If one or the other blocks were not in a loop, the new block is not
1057       // either, and thus LI doesn't need to be updated.
1058       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1059         if (TIL == DestLoop) {
1060           // Both in the same loop, the NMBB joins loop.
1061           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1062         } else if (TIL->contains(DestLoop)) {
1063           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1064           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1065         } else if (DestLoop->contains(TIL)) {
1066           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1067           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1068         } else {
1069           // Edge from two loops with no containment relation.  Because these
1070           // are natural loops, we know that the destination block must be the
1071           // header of its loop (adding a branch into a loop elsewhere would
1072           // create an irreducible loop).
1073           assert(DestLoop->getHeader() == Succ &&
1074                  "Should not create irreducible loops!");
1075           if (MachineLoop *P = DestLoop->getParentLoop())
1076             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1077         }
1078       }
1079     }
1080 
1081   return NMBB;
1082 }
1083 
1084 bool MachineBasicBlock::canSplitCriticalEdge(
1085     const MachineBasicBlock *Succ) const {
1086   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1087   // it in this generic function.
1088   if (Succ->isEHPad())
1089     return false;
1090 
1091   const MachineFunction *MF = getParent();
1092 
1093   // Performance might be harmed on HW that implements branching using exec mask
1094   // where both sides of the branches are always executed.
1095   if (MF->getTarget().requiresStructuredCFG())
1096     return false;
1097 
1098   // We may need to update this's terminator, but we can't do that if
1099   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1100   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1101   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1102   SmallVector<MachineOperand, 4> Cond;
1103   // AnalyzeBanch should modify this, since we did not allow modification.
1104   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1105                          /*AllowModify*/ false))
1106     return false;
1107 
1108   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1109   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1110   // case that we can't handle. Since this never happens in properly optimized
1111   // code, just skip those edges.
1112   if (TBB && TBB == FBB) {
1113     DEBUG(dbgs() << "Won't split critical edge after degenerate "
1114                  << printMBBReference(*this) << '\n');
1115     return false;
1116   }
1117   return true;
1118 }
1119 
1120 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1121 /// neighboring instructions so the bundle won't be broken by removing MI.
1122 static void unbundleSingleMI(MachineInstr *MI) {
1123   // Removing the first instruction in a bundle.
1124   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1125     MI->unbundleFromSucc();
1126   // Removing the last instruction in a bundle.
1127   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1128     MI->unbundleFromPred();
1129   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1130   // are already fine.
1131 }
1132 
1133 MachineBasicBlock::instr_iterator
1134 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1135   unbundleSingleMI(&*I);
1136   return Insts.erase(I);
1137 }
1138 
1139 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1140   unbundleSingleMI(MI);
1141   MI->clearFlag(MachineInstr::BundledPred);
1142   MI->clearFlag(MachineInstr::BundledSucc);
1143   return Insts.remove(MI);
1144 }
1145 
1146 MachineBasicBlock::instr_iterator
1147 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1148   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1149          "Cannot insert instruction with bundle flags");
1150   // Set the bundle flags when inserting inside a bundle.
1151   if (I != instr_end() && I->isBundledWithPred()) {
1152     MI->setFlag(MachineInstr::BundledPred);
1153     MI->setFlag(MachineInstr::BundledSucc);
1154   }
1155   return Insts.insert(I, MI);
1156 }
1157 
1158 /// This method unlinks 'this' from the containing function, and returns it, but
1159 /// does not delete it.
1160 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1161   assert(getParent() && "Not embedded in a function!");
1162   getParent()->remove(this);
1163   return this;
1164 }
1165 
1166 /// This method unlinks 'this' from the containing function, and deletes it.
1167 void MachineBasicBlock::eraseFromParent() {
1168   assert(getParent() && "Not embedded in a function!");
1169   getParent()->erase(this);
1170 }
1171 
1172 /// Given a machine basic block that branched to 'Old', change the code and CFG
1173 /// so that it branches to 'New' instead.
1174 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1175                                                MachineBasicBlock *New) {
1176   assert(Old != New && "Cannot replace self with self!");
1177 
1178   MachineBasicBlock::instr_iterator I = instr_end();
1179   while (I != instr_begin()) {
1180     --I;
1181     if (!I->isTerminator()) break;
1182 
1183     // Scan the operands of this machine instruction, replacing any uses of Old
1184     // with New.
1185     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1186       if (I->getOperand(i).isMBB() &&
1187           I->getOperand(i).getMBB() == Old)
1188         I->getOperand(i).setMBB(New);
1189   }
1190 
1191   // Update the successor information.
1192   replaceSuccessor(Old, New);
1193 }
1194 
1195 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1196 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1197 /// MBB successors from the CFG.  DestA and DestB can be null.
1198 ///
1199 /// Besides DestA and DestB, retain other edges leading to LandingPads
1200 /// (currently there can be only one; we don't check or require that here).
1201 /// Note it is possible that DestA and/or DestB are LandingPads.
1202 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1203                                              MachineBasicBlock *DestB,
1204                                              bool IsCond) {
1205   // The values of DestA and DestB frequently come from a call to the
1206   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1207   // values from there.
1208   //
1209   // 1. If both DestA and DestB are null, then the block ends with no branches
1210   //    (it falls through to its successor).
1211   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1212   //    with only an unconditional branch.
1213   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1214   //    with a conditional branch that falls through to a successor (DestB).
1215   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1216   //    conditional branch followed by an unconditional branch. DestA is the
1217   //    'true' destination and DestB is the 'false' destination.
1218 
1219   bool Changed = false;
1220 
1221   MachineBasicBlock *FallThru = getNextNode();
1222 
1223   if (!DestA && !DestB) {
1224     // Block falls through to successor.
1225     DestA = FallThru;
1226     DestB = FallThru;
1227   } else if (DestA && !DestB) {
1228     if (IsCond)
1229       // Block ends in conditional jump that falls through to successor.
1230       DestB = FallThru;
1231   } else {
1232     assert(DestA && DestB && IsCond &&
1233            "CFG in a bad state. Cannot correct CFG edges");
1234   }
1235 
1236   // Remove superfluous edges. I.e., those which aren't destinations of this
1237   // basic block, duplicate edges, or landing pads.
1238   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1239   MachineBasicBlock::succ_iterator SI = succ_begin();
1240   while (SI != succ_end()) {
1241     const MachineBasicBlock *MBB = *SI;
1242     if (!SeenMBBs.insert(MBB).second ||
1243         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1244       // This is a superfluous edge, remove it.
1245       SI = removeSuccessor(SI);
1246       Changed = true;
1247     } else {
1248       ++SI;
1249     }
1250   }
1251 
1252   if (Changed)
1253     normalizeSuccProbs();
1254   return Changed;
1255 }
1256 
1257 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1258 /// instructions.  Return UnknownLoc if there is none.
1259 DebugLoc
1260 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1261   // Skip debug declarations, we don't want a DebugLoc from them.
1262   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1263   if (MBBI != instr_end())
1264     return MBBI->getDebugLoc();
1265   return {};
1266 }
1267 
1268 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1269 /// instructions.  Return UnknownLoc if there is none.
1270 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1271   if (MBBI == instr_begin()) return {};
1272   // Skip debug declarations, we don't want a DebugLoc from them.
1273   MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin());
1274   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1275   return {};
1276 }
1277 
1278 /// Find and return the merged DebugLoc of the branch instructions of the block.
1279 /// Return UnknownLoc if there is none.
1280 DebugLoc
1281 MachineBasicBlock::findBranchDebugLoc() {
1282   DebugLoc DL;
1283   auto TI = getFirstTerminator();
1284   while (TI != end() && !TI->isBranch())
1285     ++TI;
1286 
1287   if (TI != end()) {
1288     DL = TI->getDebugLoc();
1289     for (++TI ; TI != end() ; ++TI)
1290       if (TI->isBranch())
1291         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1292   }
1293   return DL;
1294 }
1295 
1296 /// Return probability of the edge from this block to MBB.
1297 BranchProbability
1298 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1299   if (Probs.empty())
1300     return BranchProbability(1, succ_size());
1301 
1302   const auto &Prob = *getProbabilityIterator(Succ);
1303   if (Prob.isUnknown()) {
1304     // For unknown probabilities, collect the sum of all known ones, and evenly
1305     // ditribute the complemental of the sum to each unknown probability.
1306     unsigned KnownProbNum = 0;
1307     auto Sum = BranchProbability::getZero();
1308     for (auto &P : Probs) {
1309       if (!P.isUnknown()) {
1310         Sum += P;
1311         KnownProbNum++;
1312       }
1313     }
1314     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1315   } else
1316     return Prob;
1317 }
1318 
1319 /// Set successor probability of a given iterator.
1320 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1321                                            BranchProbability Prob) {
1322   assert(!Prob.isUnknown());
1323   if (Probs.empty())
1324     return;
1325   *getProbabilityIterator(I) = Prob;
1326 }
1327 
1328 /// Return probability iterator corresonding to the I successor iterator
1329 MachineBasicBlock::const_probability_iterator
1330 MachineBasicBlock::getProbabilityIterator(
1331     MachineBasicBlock::const_succ_iterator I) const {
1332   assert(Probs.size() == Successors.size() && "Async probability list!");
1333   const size_t index = std::distance(Successors.begin(), I);
1334   assert(index < Probs.size() && "Not a current successor!");
1335   return Probs.begin() + index;
1336 }
1337 
1338 /// Return probability iterator corresonding to the I successor iterator.
1339 MachineBasicBlock::probability_iterator
1340 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1341   assert(Probs.size() == Successors.size() && "Async probability list!");
1342   const size_t index = std::distance(Successors.begin(), I);
1343   assert(index < Probs.size() && "Not a current successor!");
1344   return Probs.begin() + index;
1345 }
1346 
1347 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1348 /// as of just before "MI".
1349 ///
1350 /// Search is localised to a neighborhood of
1351 /// Neighborhood instructions before (searching for defs or kills) and N
1352 /// instructions after (searching just for defs) MI.
1353 MachineBasicBlock::LivenessQueryResult
1354 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1355                                            unsigned Reg, const_iterator Before,
1356                                            unsigned Neighborhood) const {
1357   unsigned N = Neighborhood;
1358 
1359   // Start by searching backwards from Before, looking for kills, reads or defs.
1360   const_iterator I(Before);
1361   // If this is the first insn in the block, don't search backwards.
1362   if (I != begin()) {
1363     do {
1364       --I;
1365 
1366       MachineOperandIteratorBase::PhysRegInfo Info =
1367           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1368 
1369       // Defs happen after uses so they take precedence if both are present.
1370 
1371       // Register is dead after a dead def of the full register.
1372       if (Info.DeadDef)
1373         return LQR_Dead;
1374       // Register is (at least partially) live after a def.
1375       if (Info.Defined) {
1376         if (!Info.PartialDeadDef)
1377           return LQR_Live;
1378         // As soon as we saw a partial definition (dead or not),
1379         // we cannot tell if the value is partial live without
1380         // tracking the lanemasks. We are not going to do this,
1381         // so fall back on the remaining of the analysis.
1382         break;
1383       }
1384       // Register is dead after a full kill or clobber and no def.
1385       if (Info.Killed || Info.Clobbered)
1386         return LQR_Dead;
1387       // Register must be live if we read it.
1388       if (Info.Read)
1389         return LQR_Live;
1390     } while (I != begin() && --N > 0);
1391   }
1392 
1393   // Did we get to the start of the block?
1394   if (I == begin()) {
1395     // If so, the register's state is definitely defined by the live-in state.
1396     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
1397          ++RAI)
1398       if (isLiveIn(*RAI))
1399         return LQR_Live;
1400 
1401     return LQR_Dead;
1402   }
1403 
1404   N = Neighborhood;
1405 
1406   // Try searching forwards from Before, looking for reads or defs.
1407   I = const_iterator(Before);
1408   // If this is the last insn in the block, don't search forwards.
1409   if (I != end()) {
1410     for (++I; I != end() && N > 0; ++I, --N) {
1411       MachineOperandIteratorBase::PhysRegInfo Info =
1412           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1413 
1414       // Register is live when we read it here.
1415       if (Info.Read)
1416         return LQR_Live;
1417       // Register is dead if we can fully overwrite or clobber it here.
1418       if (Info.FullyDefined || Info.Clobbered)
1419         return LQR_Dead;
1420     }
1421   }
1422 
1423   // At this point we have no idea of the liveness of the register.
1424   return LQR_Unknown;
1425 }
1426 
1427 const uint32_t *
1428 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1429   // EH funclet entry does not preserve any registers.
1430   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1431 }
1432 
1433 const uint32_t *
1434 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1435   // If we see a return block with successors, this must be a funclet return,
1436   // which does not preserve any registers. If there are no successors, we don't
1437   // care what kind of return it is, putting a mask after it is a no-op.
1438   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1439 }
1440 
1441 void MachineBasicBlock::clearLiveIns() {
1442   LiveIns.clear();
1443 }
1444 
1445 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1446   assert(getParent()->getProperties().hasProperty(
1447       MachineFunctionProperties::Property::TracksLiveness) &&
1448       "Liveness information is accurate");
1449   return LiveIns.begin();
1450 }
1451