1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfoMetadata.h" 31 #include "llvm/IR/ModuleSlotTracker.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCContext.h" 34 #include "llvm/Support/DataTypes.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "codegen" 42 43 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 44 : BB(B), Number(-1), xParent(&MF) { 45 Insts.Parent = this; 46 if (B) 47 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 48 } 49 50 MachineBasicBlock::~MachineBasicBlock() { 51 } 52 53 /// Return the MCSymbol for this basic block. 54 MCSymbol *MachineBasicBlock::getSymbol() const { 55 if (!CachedMCSymbol) { 56 const MachineFunction *MF = getParent(); 57 MCContext &Ctx = MF->getContext(); 58 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 59 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 60 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 61 Twine(MF->getFunctionNumber()) + 62 "_" + Twine(getNumber())); 63 } 64 65 return CachedMCSymbol; 66 } 67 68 69 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 70 MBB.print(OS); 71 return OS; 72 } 73 74 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 75 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 76 } 77 78 /// When an MBB is added to an MF, we need to update the parent pointer of the 79 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 80 /// operand list for registers. 81 /// 82 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 83 /// gets the next available unique MBB number. If it is removed from a 84 /// MachineFunction, it goes back to being #-1. 85 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 86 MachineBasicBlock *N) { 87 MachineFunction &MF = *N->getParent(); 88 N->Number = MF.addToMBBNumbering(N); 89 90 // Make sure the instructions have their operands in the reginfo lists. 91 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 92 for (MachineBasicBlock::instr_iterator 93 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 94 I->AddRegOperandsToUseLists(RegInfo); 95 } 96 97 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 98 MachineBasicBlock *N) { 99 N->getParent()->removeFromMBBNumbering(N->Number); 100 N->Number = -1; 101 } 102 103 /// When we add an instruction to a basic block list, we update its parent 104 /// pointer and add its operands from reg use/def lists if appropriate. 105 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 106 assert(!N->getParent() && "machine instruction already in a basic block"); 107 N->setParent(Parent); 108 109 // Add the instruction's register operands to their corresponding 110 // use/def lists. 111 MachineFunction *MF = Parent->getParent(); 112 N->AddRegOperandsToUseLists(MF->getRegInfo()); 113 } 114 115 /// When we remove an instruction from a basic block list, we update its parent 116 /// pointer and remove its operands from reg use/def lists if appropriate. 117 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 118 assert(N->getParent() && "machine instruction not in a basic block"); 119 120 // Remove from the use/def lists. 121 if (MachineFunction *MF = N->getMF()) 122 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 123 124 N->setParent(nullptr); 125 } 126 127 /// When moving a range of instructions from one MBB list to another, we need to 128 /// update the parent pointers and the use/def lists. 129 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 130 instr_iterator First, 131 instr_iterator Last) { 132 assert(Parent->getParent() == FromList.Parent->getParent() && 133 "MachineInstr parent mismatch!"); 134 assert(this != &FromList && "Called without a real transfer..."); 135 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 136 137 // If splicing between two blocks within the same function, just update the 138 // parent pointers. 139 for (; First != Last; ++First) 140 First->setParent(Parent); 141 } 142 143 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 144 assert(!MI->getParent() && "MI is still in a block!"); 145 Parent->getParent()->DeleteMachineInstr(MI); 146 } 147 148 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 149 instr_iterator I = instr_begin(), E = instr_end(); 150 while (I != E && I->isPHI()) 151 ++I; 152 assert((I == E || !I->isInsideBundle()) && 153 "First non-phi MI cannot be inside a bundle!"); 154 return I; 155 } 156 157 MachineBasicBlock::iterator 158 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 159 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 160 161 iterator E = end(); 162 while (I != E && (I->isPHI() || I->isPosition() || 163 TII->isBasicBlockPrologue(*I))) 164 ++I; 165 // FIXME: This needs to change if we wish to bundle labels 166 // inside the bundle. 167 assert((I == E || !I->isInsideBundle()) && 168 "First non-phi / non-label instruction is inside a bundle!"); 169 return I; 170 } 171 172 MachineBasicBlock::iterator 173 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 174 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 175 176 iterator E = end(); 177 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 178 TII->isBasicBlockPrologue(*I))) 179 ++I; 180 // FIXME: This needs to change if we wish to bundle labels / dbg_values 181 // inside the bundle. 182 assert((I == E || !I->isInsideBundle()) && 183 "First non-phi / non-label / non-debug " 184 "instruction is inside a bundle!"); 185 return I; 186 } 187 188 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 189 iterator B = begin(), E = end(), I = E; 190 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 191 ; /*noop */ 192 while (I != E && !I->isTerminator()) 193 ++I; 194 return I; 195 } 196 197 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 198 instr_iterator B = instr_begin(), E = instr_end(), I = E; 199 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 200 ; /*noop */ 201 while (I != E && !I->isTerminator()) 202 ++I; 203 return I; 204 } 205 206 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 207 // Skip over begin-of-block dbg_value instructions. 208 return skipDebugInstructionsForward(begin(), end()); 209 } 210 211 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 212 // Skip over end-of-block dbg_value instructions. 213 instr_iterator B = instr_begin(), I = instr_end(); 214 while (I != B) { 215 --I; 216 // Return instruction that starts a bundle. 217 if (I->isDebugInstr() || I->isInsideBundle()) 218 continue; 219 return I; 220 } 221 // The block is all debug values. 222 return end(); 223 } 224 225 bool MachineBasicBlock::hasEHPadSuccessor() const { 226 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 227 if ((*I)->isEHPad()) 228 return true; 229 return false; 230 } 231 232 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 233 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 234 print(dbgs()); 235 } 236 #endif 237 238 bool MachineBasicBlock::isLegalToHoistInto() const { 239 if (isReturnBlock() || hasEHPadSuccessor()) 240 return false; 241 return true; 242 } 243 244 StringRef MachineBasicBlock::getName() const { 245 if (const BasicBlock *LBB = getBasicBlock()) 246 return LBB->getName(); 247 else 248 return StringRef("", 0); 249 } 250 251 /// Return a hopefully unique identifier for this block. 252 std::string MachineBasicBlock::getFullName() const { 253 std::string Name; 254 if (getParent()) 255 Name = (getParent()->getName() + ":").str(); 256 if (getBasicBlock()) 257 Name += getBasicBlock()->getName(); 258 else 259 Name += ("BB" + Twine(getNumber())).str(); 260 return Name; 261 } 262 263 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 264 bool IsStandalone) const { 265 const MachineFunction *MF = getParent(); 266 if (!MF) { 267 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 268 << " is null\n"; 269 return; 270 } 271 const Function &F = MF->getFunction(); 272 const Module *M = F.getParent(); 273 ModuleSlotTracker MST(M); 274 MST.incorporateFunction(F); 275 print(OS, MST, Indexes, IsStandalone); 276 } 277 278 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 279 const SlotIndexes *Indexes, 280 bool IsStandalone) const { 281 const MachineFunction *MF = getParent(); 282 if (!MF) { 283 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 284 << " is null\n"; 285 return; 286 } 287 288 if (Indexes) 289 OS << Indexes->getMBBStartIdx(this) << '\t'; 290 291 OS << "bb." << getNumber(); 292 bool HasAttributes = false; 293 if (const auto *BB = getBasicBlock()) { 294 if (BB->hasName()) { 295 OS << "." << BB->getName(); 296 } else { 297 HasAttributes = true; 298 OS << " ("; 299 int Slot = MST.getLocalSlot(BB); 300 if (Slot == -1) 301 OS << "<ir-block badref>"; 302 else 303 OS << (Twine("%ir-block.") + Twine(Slot)).str(); 304 } 305 } 306 307 if (hasAddressTaken()) { 308 OS << (HasAttributes ? ", " : " ("); 309 OS << "address-taken"; 310 HasAttributes = true; 311 } 312 if (isEHPad()) { 313 OS << (HasAttributes ? ", " : " ("); 314 OS << "landing-pad"; 315 HasAttributes = true; 316 } 317 if (getAlignment()) { 318 OS << (HasAttributes ? ", " : " ("); 319 OS << "align " << getAlignment(); 320 HasAttributes = true; 321 } 322 if (HasAttributes) 323 OS << ")"; 324 OS << ":\n"; 325 326 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 327 const MachineRegisterInfo &MRI = MF->getRegInfo(); 328 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 329 bool HasLineAttributes = false; 330 331 // Print the preds of this block according to the CFG. 332 if (!pred_empty() && IsStandalone) { 333 if (Indexes) OS << '\t'; 334 // Don't indent(2), align with previous line attributes. 335 OS << "; predecessors: "; 336 for (auto I = pred_begin(), E = pred_end(); I != E; ++I) { 337 if (I != pred_begin()) 338 OS << ", "; 339 OS << printMBBReference(**I); 340 } 341 OS << '\n'; 342 HasLineAttributes = true; 343 } 344 345 if (!succ_empty()) { 346 if (Indexes) OS << '\t'; 347 // Print the successors 348 OS.indent(2) << "successors: "; 349 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 350 if (I != succ_begin()) 351 OS << ", "; 352 OS << printMBBReference(**I); 353 if (!Probs.empty()) 354 OS << '(' 355 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 356 << ')'; 357 } 358 if (!Probs.empty() && IsStandalone) { 359 // Print human readable probabilities as comments. 360 OS << "; "; 361 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 362 const BranchProbability &BP = *getProbabilityIterator(I); 363 if (I != succ_begin()) 364 OS << ", "; 365 OS << printMBBReference(**I) << '(' 366 << format("%.2f%%", 367 rint(((double)BP.getNumerator() / BP.getDenominator()) * 368 100.0 * 100.0) / 369 100.0) 370 << ')'; 371 } 372 } 373 374 OS << '\n'; 375 HasLineAttributes = true; 376 } 377 378 if (!livein_empty() && MRI.tracksLiveness()) { 379 if (Indexes) OS << '\t'; 380 OS.indent(2) << "liveins: "; 381 382 bool First = true; 383 for (const auto &LI : liveins()) { 384 if (!First) 385 OS << ", "; 386 First = false; 387 OS << printReg(LI.PhysReg, TRI); 388 if (!LI.LaneMask.all()) 389 OS << ":0x" << PrintLaneMask(LI.LaneMask); 390 } 391 HasLineAttributes = true; 392 } 393 394 if (HasLineAttributes) 395 OS << '\n'; 396 397 bool IsInBundle = false; 398 for (const MachineInstr &MI : instrs()) { 399 if (Indexes) { 400 if (Indexes->hasIndex(MI)) 401 OS << Indexes->getInstructionIndex(MI); 402 OS << '\t'; 403 } 404 405 if (IsInBundle && !MI.isInsideBundle()) { 406 OS.indent(2) << "}\n"; 407 IsInBundle = false; 408 } 409 410 OS.indent(IsInBundle ? 4 : 2); 411 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 412 /*AddNewLine=*/false, &TII); 413 414 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 415 OS << " {"; 416 IsInBundle = true; 417 } 418 OS << '\n'; 419 } 420 421 if (IsInBundle) 422 OS.indent(2) << "}\n"; 423 424 if (IrrLoopHeaderWeight && IsStandalone) { 425 if (Indexes) OS << '\t'; 426 OS.indent(2) << "; Irreducible loop header weight: " 427 << IrrLoopHeaderWeight.getValue() << '\n'; 428 } 429 } 430 431 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 432 bool /*PrintType*/) const { 433 OS << "%bb." << getNumber(); 434 } 435 436 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 437 LiveInVector::iterator I = find_if( 438 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 439 if (I == LiveIns.end()) 440 return; 441 442 I->LaneMask &= ~LaneMask; 443 if (I->LaneMask.none()) 444 LiveIns.erase(I); 445 } 446 447 MachineBasicBlock::livein_iterator 448 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 449 // Get non-const version of iterator. 450 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 451 return LiveIns.erase(LI); 452 } 453 454 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 455 livein_iterator I = find_if( 456 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 457 return I != livein_end() && (I->LaneMask & LaneMask).any(); 458 } 459 460 void MachineBasicBlock::sortUniqueLiveIns() { 461 llvm::sort(LiveIns.begin(), LiveIns.end(), 462 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 463 return LI0.PhysReg < LI1.PhysReg; 464 }); 465 // Liveins are sorted by physreg now we can merge their lanemasks. 466 LiveInVector::const_iterator I = LiveIns.begin(); 467 LiveInVector::const_iterator J; 468 LiveInVector::iterator Out = LiveIns.begin(); 469 for (; I != LiveIns.end(); ++Out, I = J) { 470 unsigned PhysReg = I->PhysReg; 471 LaneBitmask LaneMask = I->LaneMask; 472 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 473 LaneMask |= J->LaneMask; 474 Out->PhysReg = PhysReg; 475 Out->LaneMask = LaneMask; 476 } 477 LiveIns.erase(Out, LiveIns.end()); 478 } 479 480 unsigned 481 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 482 assert(getParent() && "MBB must be inserted in function"); 483 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 484 assert(RC && "Register class is required"); 485 assert((isEHPad() || this == &getParent()->front()) && 486 "Only the entry block and landing pads can have physreg live ins"); 487 488 bool LiveIn = isLiveIn(PhysReg); 489 iterator I = SkipPHIsAndLabels(begin()), E = end(); 490 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 491 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 492 493 // Look for an existing copy. 494 if (LiveIn) 495 for (;I != E && I->isCopy(); ++I) 496 if (I->getOperand(1).getReg() == PhysReg) { 497 unsigned VirtReg = I->getOperand(0).getReg(); 498 if (!MRI.constrainRegClass(VirtReg, RC)) 499 llvm_unreachable("Incompatible live-in register class."); 500 return VirtReg; 501 } 502 503 // No luck, create a virtual register. 504 unsigned VirtReg = MRI.createVirtualRegister(RC); 505 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 506 .addReg(PhysReg, RegState::Kill); 507 if (!LiveIn) 508 addLiveIn(PhysReg); 509 return VirtReg; 510 } 511 512 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 513 getParent()->splice(NewAfter->getIterator(), getIterator()); 514 } 515 516 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 517 getParent()->splice(++NewBefore->getIterator(), getIterator()); 518 } 519 520 void MachineBasicBlock::updateTerminator() { 521 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 522 // A block with no successors has no concerns with fall-through edges. 523 if (this->succ_empty()) 524 return; 525 526 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 527 SmallVector<MachineOperand, 4> Cond; 528 DebugLoc DL = findBranchDebugLoc(); 529 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 530 (void) B; 531 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 532 if (Cond.empty()) { 533 if (TBB) { 534 // The block has an unconditional branch. If its successor is now its 535 // layout successor, delete the branch. 536 if (isLayoutSuccessor(TBB)) 537 TII->removeBranch(*this); 538 } else { 539 // The block has an unconditional fallthrough. If its successor is not its 540 // layout successor, insert a branch. First we have to locate the only 541 // non-landing-pad successor, as that is the fallthrough block. 542 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 543 if ((*SI)->isEHPad()) 544 continue; 545 assert(!TBB && "Found more than one non-landing-pad successor!"); 546 TBB = *SI; 547 } 548 549 // If there is no non-landing-pad successor, the block has no fall-through 550 // edges to be concerned with. 551 if (!TBB) 552 return; 553 554 // Finally update the unconditional successor to be reached via a branch 555 // if it would not be reached by fallthrough. 556 if (!isLayoutSuccessor(TBB)) 557 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 558 } 559 return; 560 } 561 562 if (FBB) { 563 // The block has a non-fallthrough conditional branch. If one of its 564 // successors is its layout successor, rewrite it to a fallthrough 565 // conditional branch. 566 if (isLayoutSuccessor(TBB)) { 567 if (TII->reverseBranchCondition(Cond)) 568 return; 569 TII->removeBranch(*this); 570 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 571 } else if (isLayoutSuccessor(FBB)) { 572 TII->removeBranch(*this); 573 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 574 } 575 return; 576 } 577 578 // Walk through the successors and find the successor which is not a landing 579 // pad and is not the conditional branch destination (in TBB) as the 580 // fallthrough successor. 581 MachineBasicBlock *FallthroughBB = nullptr; 582 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 583 if ((*SI)->isEHPad() || *SI == TBB) 584 continue; 585 assert(!FallthroughBB && "Found more than one fallthrough successor."); 586 FallthroughBB = *SI; 587 } 588 589 if (!FallthroughBB) { 590 if (canFallThrough()) { 591 // We fallthrough to the same basic block as the conditional jump targets. 592 // Remove the conditional jump, leaving unconditional fallthrough. 593 // FIXME: This does not seem like a reasonable pattern to support, but it 594 // has been seen in the wild coming out of degenerate ARM test cases. 595 TII->removeBranch(*this); 596 597 // Finally update the unconditional successor to be reached via a branch if 598 // it would not be reached by fallthrough. 599 if (!isLayoutSuccessor(TBB)) 600 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 601 return; 602 } 603 604 // We enter here iff exactly one successor is TBB which cannot fallthrough 605 // and the rest successors if any are EHPads. In this case, we need to 606 // change the conditional branch into unconditional branch. 607 TII->removeBranch(*this); 608 Cond.clear(); 609 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 610 return; 611 } 612 613 // The block has a fallthrough conditional branch. 614 if (isLayoutSuccessor(TBB)) { 615 if (TII->reverseBranchCondition(Cond)) { 616 // We can't reverse the condition, add an unconditional branch. 617 Cond.clear(); 618 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 619 return; 620 } 621 TII->removeBranch(*this); 622 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 623 } else if (!isLayoutSuccessor(FallthroughBB)) { 624 TII->removeBranch(*this); 625 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 626 } 627 } 628 629 void MachineBasicBlock::validateSuccProbs() const { 630 #ifndef NDEBUG 631 int64_t Sum = 0; 632 for (auto Prob : Probs) 633 Sum += Prob.getNumerator(); 634 // Due to precision issue, we assume that the sum of probabilities is one if 635 // the difference between the sum of their numerators and the denominator is 636 // no greater than the number of successors. 637 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 638 Probs.size() && 639 "The sum of successors's probabilities exceeds one."); 640 #endif // NDEBUG 641 } 642 643 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 644 BranchProbability Prob) { 645 // Probability list is either empty (if successor list isn't empty, this means 646 // disabled optimization) or has the same size as successor list. 647 if (!(Probs.empty() && !Successors.empty())) 648 Probs.push_back(Prob); 649 Successors.push_back(Succ); 650 Succ->addPredecessor(this); 651 } 652 653 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 654 // We need to make sure probability list is either empty or has the same size 655 // of successor list. When this function is called, we can safely delete all 656 // probability in the list. 657 Probs.clear(); 658 Successors.push_back(Succ); 659 Succ->addPredecessor(this); 660 } 661 662 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 663 bool NormalizeSuccProbs) { 664 succ_iterator I = find(Successors, Succ); 665 removeSuccessor(I, NormalizeSuccProbs); 666 } 667 668 MachineBasicBlock::succ_iterator 669 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 670 assert(I != Successors.end() && "Not a current successor!"); 671 672 // If probability list is empty it means we don't use it (disabled 673 // optimization). 674 if (!Probs.empty()) { 675 probability_iterator WI = getProbabilityIterator(I); 676 Probs.erase(WI); 677 if (NormalizeSuccProbs) 678 normalizeSuccProbs(); 679 } 680 681 (*I)->removePredecessor(this); 682 return Successors.erase(I); 683 } 684 685 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 686 MachineBasicBlock *New) { 687 if (Old == New) 688 return; 689 690 succ_iterator E = succ_end(); 691 succ_iterator NewI = E; 692 succ_iterator OldI = E; 693 for (succ_iterator I = succ_begin(); I != E; ++I) { 694 if (*I == Old) { 695 OldI = I; 696 if (NewI != E) 697 break; 698 } 699 if (*I == New) { 700 NewI = I; 701 if (OldI != E) 702 break; 703 } 704 } 705 assert(OldI != E && "Old is not a successor of this block"); 706 707 // If New isn't already a successor, let it take Old's place. 708 if (NewI == E) { 709 Old->removePredecessor(this); 710 New->addPredecessor(this); 711 *OldI = New; 712 return; 713 } 714 715 // New is already a successor. 716 // Update its probability instead of adding a duplicate edge. 717 if (!Probs.empty()) { 718 auto ProbIter = getProbabilityIterator(NewI); 719 if (!ProbIter->isUnknown()) 720 *ProbIter += *getProbabilityIterator(OldI); 721 } 722 removeSuccessor(OldI); 723 } 724 725 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 726 succ_iterator I) { 727 if (Orig->Probs.empty()) 728 addSuccessor(*I, Orig->getSuccProbability(I)); 729 else 730 addSuccessorWithoutProb(*I); 731 } 732 733 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 734 Predecessors.push_back(Pred); 735 } 736 737 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 738 pred_iterator I = find(Predecessors, Pred); 739 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 740 Predecessors.erase(I); 741 } 742 743 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 744 if (this == FromMBB) 745 return; 746 747 while (!FromMBB->succ_empty()) { 748 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 749 750 // If probability list is empty it means we don't use it (disabled optimization). 751 if (!FromMBB->Probs.empty()) { 752 auto Prob = *FromMBB->Probs.begin(); 753 addSuccessor(Succ, Prob); 754 } else 755 addSuccessorWithoutProb(Succ); 756 757 FromMBB->removeSuccessor(Succ); 758 } 759 } 760 761 void 762 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 763 if (this == FromMBB) 764 return; 765 766 while (!FromMBB->succ_empty()) { 767 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 768 if (!FromMBB->Probs.empty()) { 769 auto Prob = *FromMBB->Probs.begin(); 770 addSuccessor(Succ, Prob); 771 } else 772 addSuccessorWithoutProb(Succ); 773 FromMBB->removeSuccessor(Succ); 774 775 // Fix up any PHI nodes in the successor. 776 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 777 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 778 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 779 MachineOperand &MO = MI->getOperand(i); 780 if (MO.getMBB() == FromMBB) 781 MO.setMBB(this); 782 } 783 } 784 normalizeSuccProbs(); 785 } 786 787 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 788 return is_contained(predecessors(), MBB); 789 } 790 791 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 792 return is_contained(successors(), MBB); 793 } 794 795 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 796 MachineFunction::const_iterator I(this); 797 return std::next(I) == MachineFunction::const_iterator(MBB); 798 } 799 800 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 801 MachineFunction::iterator Fallthrough = getIterator(); 802 ++Fallthrough; 803 // If FallthroughBlock is off the end of the function, it can't fall through. 804 if (Fallthrough == getParent()->end()) 805 return nullptr; 806 807 // If FallthroughBlock isn't a successor, no fallthrough is possible. 808 if (!isSuccessor(&*Fallthrough)) 809 return nullptr; 810 811 // Analyze the branches, if any, at the end of the block. 812 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 813 SmallVector<MachineOperand, 4> Cond; 814 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 815 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 816 // If we couldn't analyze the branch, examine the last instruction. 817 // If the block doesn't end in a known control barrier, assume fallthrough 818 // is possible. The isPredicated check is needed because this code can be 819 // called during IfConversion, where an instruction which is normally a 820 // Barrier is predicated and thus no longer an actual control barrier. 821 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 822 ? &*Fallthrough 823 : nullptr; 824 } 825 826 // If there is no branch, control always falls through. 827 if (!TBB) return &*Fallthrough; 828 829 // If there is some explicit branch to the fallthrough block, it can obviously 830 // reach, even though the branch should get folded to fall through implicitly. 831 if (MachineFunction::iterator(TBB) == Fallthrough || 832 MachineFunction::iterator(FBB) == Fallthrough) 833 return &*Fallthrough; 834 835 // If it's an unconditional branch to some block not the fall through, it 836 // doesn't fall through. 837 if (Cond.empty()) return nullptr; 838 839 // Otherwise, if it is conditional and has no explicit false block, it falls 840 // through. 841 return (FBB == nullptr) ? &*Fallthrough : nullptr; 842 } 843 844 bool MachineBasicBlock::canFallThrough() { 845 return getFallThrough() != nullptr; 846 } 847 848 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 849 Pass &P) { 850 if (!canSplitCriticalEdge(Succ)) 851 return nullptr; 852 853 MachineFunction *MF = getParent(); 854 DebugLoc DL; // FIXME: this is nowhere 855 856 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 857 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 858 DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 859 << " -- " << printMBBReference(*NMBB) << " -- " 860 << printMBBReference(*Succ) << '\n'); 861 862 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 863 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 864 if (LIS) 865 LIS->insertMBBInMaps(NMBB); 866 else if (Indexes) 867 Indexes->insertMBBInMaps(NMBB); 868 869 // On some targets like Mips, branches may kill virtual registers. Make sure 870 // that LiveVariables is properly updated after updateTerminator replaces the 871 // terminators. 872 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 873 874 // Collect a list of virtual registers killed by the terminators. 875 SmallVector<unsigned, 4> KilledRegs; 876 if (LV) 877 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 878 I != E; ++I) { 879 MachineInstr *MI = &*I; 880 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 881 OE = MI->operands_end(); OI != OE; ++OI) { 882 if (!OI->isReg() || OI->getReg() == 0 || 883 !OI->isUse() || !OI->isKill() || OI->isUndef()) 884 continue; 885 unsigned Reg = OI->getReg(); 886 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 887 LV->getVarInfo(Reg).removeKill(*MI)) { 888 KilledRegs.push_back(Reg); 889 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 890 OI->setIsKill(false); 891 } 892 } 893 } 894 895 SmallVector<unsigned, 4> UsedRegs; 896 if (LIS) { 897 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 898 I != E; ++I) { 899 MachineInstr *MI = &*I; 900 901 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 902 OE = MI->operands_end(); OI != OE; ++OI) { 903 if (!OI->isReg() || OI->getReg() == 0) 904 continue; 905 906 unsigned Reg = OI->getReg(); 907 if (!is_contained(UsedRegs, Reg)) 908 UsedRegs.push_back(Reg); 909 } 910 } 911 } 912 913 ReplaceUsesOfBlockWith(Succ, NMBB); 914 915 // If updateTerminator() removes instructions, we need to remove them from 916 // SlotIndexes. 917 SmallVector<MachineInstr*, 4> Terminators; 918 if (Indexes) { 919 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 920 I != E; ++I) 921 Terminators.push_back(&*I); 922 } 923 924 updateTerminator(); 925 926 if (Indexes) { 927 SmallVector<MachineInstr*, 4> NewTerminators; 928 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 929 I != E; ++I) 930 NewTerminators.push_back(&*I); 931 932 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 933 E = Terminators.end(); I != E; ++I) { 934 if (!is_contained(NewTerminators, *I)) 935 Indexes->removeMachineInstrFromMaps(**I); 936 } 937 } 938 939 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 940 NMBB->addSuccessor(Succ); 941 if (!NMBB->isLayoutSuccessor(Succ)) { 942 SmallVector<MachineOperand, 4> Cond; 943 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 944 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 945 946 if (Indexes) { 947 for (MachineInstr &MI : NMBB->instrs()) { 948 // Some instructions may have been moved to NMBB by updateTerminator(), 949 // so we first remove any instruction that already has an index. 950 if (Indexes->hasIndex(MI)) 951 Indexes->removeMachineInstrFromMaps(MI); 952 Indexes->insertMachineInstrInMaps(MI); 953 } 954 } 955 } 956 957 // Fix PHI nodes in Succ so they refer to NMBB instead of this 958 for (MachineBasicBlock::instr_iterator 959 i = Succ->instr_begin(),e = Succ->instr_end(); 960 i != e && i->isPHI(); ++i) 961 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 962 if (i->getOperand(ni+1).getMBB() == this) 963 i->getOperand(ni+1).setMBB(NMBB); 964 965 // Inherit live-ins from the successor 966 for (const auto &LI : Succ->liveins()) 967 NMBB->addLiveIn(LI); 968 969 // Update LiveVariables. 970 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 971 if (LV) { 972 // Restore kills of virtual registers that were killed by the terminators. 973 while (!KilledRegs.empty()) { 974 unsigned Reg = KilledRegs.pop_back_val(); 975 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 976 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 977 continue; 978 if (TargetRegisterInfo::isVirtualRegister(Reg)) 979 LV->getVarInfo(Reg).Kills.push_back(&*I); 980 DEBUG(dbgs() << "Restored terminator kill: " << *I); 981 break; 982 } 983 } 984 // Update relevant live-through information. 985 LV->addNewBlock(NMBB, this, Succ); 986 } 987 988 if (LIS) { 989 // After splitting the edge and updating SlotIndexes, live intervals may be 990 // in one of two situations, depending on whether this block was the last in 991 // the function. If the original block was the last in the function, all 992 // live intervals will end prior to the beginning of the new split block. If 993 // the original block was not at the end of the function, all live intervals 994 // will extend to the end of the new split block. 995 996 bool isLastMBB = 997 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 998 999 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1000 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1001 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1002 1003 // Find the registers used from NMBB in PHIs in Succ. 1004 SmallSet<unsigned, 8> PHISrcRegs; 1005 for (MachineBasicBlock::instr_iterator 1006 I = Succ->instr_begin(), E = Succ->instr_end(); 1007 I != E && I->isPHI(); ++I) { 1008 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1009 if (I->getOperand(ni+1).getMBB() == NMBB) { 1010 MachineOperand &MO = I->getOperand(ni); 1011 unsigned Reg = MO.getReg(); 1012 PHISrcRegs.insert(Reg); 1013 if (MO.isUndef()) 1014 continue; 1015 1016 LiveInterval &LI = LIS->getInterval(Reg); 1017 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1018 assert(VNI && 1019 "PHI sources should be live out of their predecessors."); 1020 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1021 } 1022 } 1023 } 1024 1025 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1026 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1027 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1028 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1029 continue; 1030 1031 LiveInterval &LI = LIS->getInterval(Reg); 1032 if (!LI.liveAt(PrevIndex)) 1033 continue; 1034 1035 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1036 if (isLiveOut && isLastMBB) { 1037 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1038 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1039 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1040 } else if (!isLiveOut && !isLastMBB) { 1041 LI.removeSegment(StartIndex, EndIndex); 1042 } 1043 } 1044 1045 // Update all intervals for registers whose uses may have been modified by 1046 // updateTerminator(). 1047 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1048 } 1049 1050 if (MachineDominatorTree *MDT = 1051 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1052 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1053 1054 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1055 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1056 // If one or the other blocks were not in a loop, the new block is not 1057 // either, and thus LI doesn't need to be updated. 1058 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1059 if (TIL == DestLoop) { 1060 // Both in the same loop, the NMBB joins loop. 1061 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1062 } else if (TIL->contains(DestLoop)) { 1063 // Edge from an outer loop to an inner loop. Add to the outer loop. 1064 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1065 } else if (DestLoop->contains(TIL)) { 1066 // Edge from an inner loop to an outer loop. Add to the outer loop. 1067 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1068 } else { 1069 // Edge from two loops with no containment relation. Because these 1070 // are natural loops, we know that the destination block must be the 1071 // header of its loop (adding a branch into a loop elsewhere would 1072 // create an irreducible loop). 1073 assert(DestLoop->getHeader() == Succ && 1074 "Should not create irreducible loops!"); 1075 if (MachineLoop *P = DestLoop->getParentLoop()) 1076 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1077 } 1078 } 1079 } 1080 1081 return NMBB; 1082 } 1083 1084 bool MachineBasicBlock::canSplitCriticalEdge( 1085 const MachineBasicBlock *Succ) const { 1086 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1087 // it in this generic function. 1088 if (Succ->isEHPad()) 1089 return false; 1090 1091 const MachineFunction *MF = getParent(); 1092 1093 // Performance might be harmed on HW that implements branching using exec mask 1094 // where both sides of the branches are always executed. 1095 if (MF->getTarget().requiresStructuredCFG()) 1096 return false; 1097 1098 // We may need to update this's terminator, but we can't do that if 1099 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1100 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1101 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1102 SmallVector<MachineOperand, 4> Cond; 1103 // AnalyzeBanch should modify this, since we did not allow modification. 1104 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1105 /*AllowModify*/ false)) 1106 return false; 1107 1108 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1109 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1110 // case that we can't handle. Since this never happens in properly optimized 1111 // code, just skip those edges. 1112 if (TBB && TBB == FBB) { 1113 DEBUG(dbgs() << "Won't split critical edge after degenerate " 1114 << printMBBReference(*this) << '\n'); 1115 return false; 1116 } 1117 return true; 1118 } 1119 1120 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1121 /// neighboring instructions so the bundle won't be broken by removing MI. 1122 static void unbundleSingleMI(MachineInstr *MI) { 1123 // Removing the first instruction in a bundle. 1124 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1125 MI->unbundleFromSucc(); 1126 // Removing the last instruction in a bundle. 1127 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1128 MI->unbundleFromPred(); 1129 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1130 // are already fine. 1131 } 1132 1133 MachineBasicBlock::instr_iterator 1134 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1135 unbundleSingleMI(&*I); 1136 return Insts.erase(I); 1137 } 1138 1139 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1140 unbundleSingleMI(MI); 1141 MI->clearFlag(MachineInstr::BundledPred); 1142 MI->clearFlag(MachineInstr::BundledSucc); 1143 return Insts.remove(MI); 1144 } 1145 1146 MachineBasicBlock::instr_iterator 1147 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1148 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1149 "Cannot insert instruction with bundle flags"); 1150 // Set the bundle flags when inserting inside a bundle. 1151 if (I != instr_end() && I->isBundledWithPred()) { 1152 MI->setFlag(MachineInstr::BundledPred); 1153 MI->setFlag(MachineInstr::BundledSucc); 1154 } 1155 return Insts.insert(I, MI); 1156 } 1157 1158 /// This method unlinks 'this' from the containing function, and returns it, but 1159 /// does not delete it. 1160 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1161 assert(getParent() && "Not embedded in a function!"); 1162 getParent()->remove(this); 1163 return this; 1164 } 1165 1166 /// This method unlinks 'this' from the containing function, and deletes it. 1167 void MachineBasicBlock::eraseFromParent() { 1168 assert(getParent() && "Not embedded in a function!"); 1169 getParent()->erase(this); 1170 } 1171 1172 /// Given a machine basic block that branched to 'Old', change the code and CFG 1173 /// so that it branches to 'New' instead. 1174 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1175 MachineBasicBlock *New) { 1176 assert(Old != New && "Cannot replace self with self!"); 1177 1178 MachineBasicBlock::instr_iterator I = instr_end(); 1179 while (I != instr_begin()) { 1180 --I; 1181 if (!I->isTerminator()) break; 1182 1183 // Scan the operands of this machine instruction, replacing any uses of Old 1184 // with New. 1185 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1186 if (I->getOperand(i).isMBB() && 1187 I->getOperand(i).getMBB() == Old) 1188 I->getOperand(i).setMBB(New); 1189 } 1190 1191 // Update the successor information. 1192 replaceSuccessor(Old, New); 1193 } 1194 1195 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1196 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1197 /// MBB successors from the CFG. DestA and DestB can be null. 1198 /// 1199 /// Besides DestA and DestB, retain other edges leading to LandingPads 1200 /// (currently there can be only one; we don't check or require that here). 1201 /// Note it is possible that DestA and/or DestB are LandingPads. 1202 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1203 MachineBasicBlock *DestB, 1204 bool IsCond) { 1205 // The values of DestA and DestB frequently come from a call to the 1206 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1207 // values from there. 1208 // 1209 // 1. If both DestA and DestB are null, then the block ends with no branches 1210 // (it falls through to its successor). 1211 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1212 // with only an unconditional branch. 1213 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1214 // with a conditional branch that falls through to a successor (DestB). 1215 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1216 // conditional branch followed by an unconditional branch. DestA is the 1217 // 'true' destination and DestB is the 'false' destination. 1218 1219 bool Changed = false; 1220 1221 MachineBasicBlock *FallThru = getNextNode(); 1222 1223 if (!DestA && !DestB) { 1224 // Block falls through to successor. 1225 DestA = FallThru; 1226 DestB = FallThru; 1227 } else if (DestA && !DestB) { 1228 if (IsCond) 1229 // Block ends in conditional jump that falls through to successor. 1230 DestB = FallThru; 1231 } else { 1232 assert(DestA && DestB && IsCond && 1233 "CFG in a bad state. Cannot correct CFG edges"); 1234 } 1235 1236 // Remove superfluous edges. I.e., those which aren't destinations of this 1237 // basic block, duplicate edges, or landing pads. 1238 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1239 MachineBasicBlock::succ_iterator SI = succ_begin(); 1240 while (SI != succ_end()) { 1241 const MachineBasicBlock *MBB = *SI; 1242 if (!SeenMBBs.insert(MBB).second || 1243 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1244 // This is a superfluous edge, remove it. 1245 SI = removeSuccessor(SI); 1246 Changed = true; 1247 } else { 1248 ++SI; 1249 } 1250 } 1251 1252 if (Changed) 1253 normalizeSuccProbs(); 1254 return Changed; 1255 } 1256 1257 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1258 /// instructions. Return UnknownLoc if there is none. 1259 DebugLoc 1260 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1261 // Skip debug declarations, we don't want a DebugLoc from them. 1262 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1263 if (MBBI != instr_end()) 1264 return MBBI->getDebugLoc(); 1265 return {}; 1266 } 1267 1268 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE 1269 /// instructions. Return UnknownLoc if there is none. 1270 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1271 if (MBBI == instr_begin()) return {}; 1272 // Skip debug declarations, we don't want a DebugLoc from them. 1273 MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin()); 1274 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); 1275 return {}; 1276 } 1277 1278 /// Find and return the merged DebugLoc of the branch instructions of the block. 1279 /// Return UnknownLoc if there is none. 1280 DebugLoc 1281 MachineBasicBlock::findBranchDebugLoc() { 1282 DebugLoc DL; 1283 auto TI = getFirstTerminator(); 1284 while (TI != end() && !TI->isBranch()) 1285 ++TI; 1286 1287 if (TI != end()) { 1288 DL = TI->getDebugLoc(); 1289 for (++TI ; TI != end() ; ++TI) 1290 if (TI->isBranch()) 1291 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1292 } 1293 return DL; 1294 } 1295 1296 /// Return probability of the edge from this block to MBB. 1297 BranchProbability 1298 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1299 if (Probs.empty()) 1300 return BranchProbability(1, succ_size()); 1301 1302 const auto &Prob = *getProbabilityIterator(Succ); 1303 if (Prob.isUnknown()) { 1304 // For unknown probabilities, collect the sum of all known ones, and evenly 1305 // ditribute the complemental of the sum to each unknown probability. 1306 unsigned KnownProbNum = 0; 1307 auto Sum = BranchProbability::getZero(); 1308 for (auto &P : Probs) { 1309 if (!P.isUnknown()) { 1310 Sum += P; 1311 KnownProbNum++; 1312 } 1313 } 1314 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1315 } else 1316 return Prob; 1317 } 1318 1319 /// Set successor probability of a given iterator. 1320 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1321 BranchProbability Prob) { 1322 assert(!Prob.isUnknown()); 1323 if (Probs.empty()) 1324 return; 1325 *getProbabilityIterator(I) = Prob; 1326 } 1327 1328 /// Return probability iterator corresonding to the I successor iterator 1329 MachineBasicBlock::const_probability_iterator 1330 MachineBasicBlock::getProbabilityIterator( 1331 MachineBasicBlock::const_succ_iterator I) const { 1332 assert(Probs.size() == Successors.size() && "Async probability list!"); 1333 const size_t index = std::distance(Successors.begin(), I); 1334 assert(index < Probs.size() && "Not a current successor!"); 1335 return Probs.begin() + index; 1336 } 1337 1338 /// Return probability iterator corresonding to the I successor iterator. 1339 MachineBasicBlock::probability_iterator 1340 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1341 assert(Probs.size() == Successors.size() && "Async probability list!"); 1342 const size_t index = std::distance(Successors.begin(), I); 1343 assert(index < Probs.size() && "Not a current successor!"); 1344 return Probs.begin() + index; 1345 } 1346 1347 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1348 /// as of just before "MI". 1349 /// 1350 /// Search is localised to a neighborhood of 1351 /// Neighborhood instructions before (searching for defs or kills) and N 1352 /// instructions after (searching just for defs) MI. 1353 MachineBasicBlock::LivenessQueryResult 1354 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1355 unsigned Reg, const_iterator Before, 1356 unsigned Neighborhood) const { 1357 unsigned N = Neighborhood; 1358 1359 // Start by searching backwards from Before, looking for kills, reads or defs. 1360 const_iterator I(Before); 1361 // If this is the first insn in the block, don't search backwards. 1362 if (I != begin()) { 1363 do { 1364 --I; 1365 1366 MachineOperandIteratorBase::PhysRegInfo Info = 1367 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1368 1369 // Defs happen after uses so they take precedence if both are present. 1370 1371 // Register is dead after a dead def of the full register. 1372 if (Info.DeadDef) 1373 return LQR_Dead; 1374 // Register is (at least partially) live after a def. 1375 if (Info.Defined) { 1376 if (!Info.PartialDeadDef) 1377 return LQR_Live; 1378 // As soon as we saw a partial definition (dead or not), 1379 // we cannot tell if the value is partial live without 1380 // tracking the lanemasks. We are not going to do this, 1381 // so fall back on the remaining of the analysis. 1382 break; 1383 } 1384 // Register is dead after a full kill or clobber and no def. 1385 if (Info.Killed || Info.Clobbered) 1386 return LQR_Dead; 1387 // Register must be live if we read it. 1388 if (Info.Read) 1389 return LQR_Live; 1390 } while (I != begin() && --N > 0); 1391 } 1392 1393 // Did we get to the start of the block? 1394 if (I == begin()) { 1395 // If so, the register's state is definitely defined by the live-in state. 1396 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1397 ++RAI) 1398 if (isLiveIn(*RAI)) 1399 return LQR_Live; 1400 1401 return LQR_Dead; 1402 } 1403 1404 N = Neighborhood; 1405 1406 // Try searching forwards from Before, looking for reads or defs. 1407 I = const_iterator(Before); 1408 // If this is the last insn in the block, don't search forwards. 1409 if (I != end()) { 1410 for (++I; I != end() && N > 0; ++I, --N) { 1411 MachineOperandIteratorBase::PhysRegInfo Info = 1412 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1413 1414 // Register is live when we read it here. 1415 if (Info.Read) 1416 return LQR_Live; 1417 // Register is dead if we can fully overwrite or clobber it here. 1418 if (Info.FullyDefined || Info.Clobbered) 1419 return LQR_Dead; 1420 } 1421 } 1422 1423 // At this point we have no idea of the liveness of the register. 1424 return LQR_Unknown; 1425 } 1426 1427 const uint32_t * 1428 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1429 // EH funclet entry does not preserve any registers. 1430 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1431 } 1432 1433 const uint32_t * 1434 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1435 // If we see a return block with successors, this must be a funclet return, 1436 // which does not preserve any registers. If there are no successors, we don't 1437 // care what kind of return it is, putting a mask after it is a no-op. 1438 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1439 } 1440 1441 void MachineBasicBlock::clearLiveIns() { 1442 LiveIns.clear(); 1443 } 1444 1445 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1446 assert(getParent()->getProperties().hasProperty( 1447 MachineFunctionProperties::Property::TracksLiveness) && 1448 "Liveness information is accurate"); 1449 return LiveIns.begin(); 1450 } 1451