xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 7d3dde3c6b31b513a9c3e6b8d9cf8acc530dbab0)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
43     : BB(B), Number(-1), xParent(&MF) {
44   Insts.Parent = this;
45   if (B)
46     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
47 }
48 
49 MachineBasicBlock::~MachineBasicBlock() {
50 }
51 
52 /// Return the MCSymbol for this basic block.
53 MCSymbol *MachineBasicBlock::getSymbol() const {
54   if (!CachedMCSymbol) {
55     const MachineFunction *MF = getParent();
56     MCContext &Ctx = MF->getContext();
57     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
58     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
59     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
60                                            Twine(MF->getFunctionNumber()) +
61                                            "_" + Twine(getNumber()));
62   }
63 
64   return CachedMCSymbol;
65 }
66 
67 
68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
69   MBB.print(OS);
70   return OS;
71 }
72 
73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
74   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
75 }
76 
77 /// When an MBB is added to an MF, we need to update the parent pointer of the
78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
79 /// operand list for registers.
80 ///
81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
82 /// gets the next available unique MBB number. If it is removed from a
83 /// MachineFunction, it goes back to being #-1.
84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
85     MachineBasicBlock *N) {
86   MachineFunction &MF = *N->getParent();
87   N->Number = MF.addToMBBNumbering(N);
88 
89   // Make sure the instructions have their operands in the reginfo lists.
90   MachineRegisterInfo &RegInfo = MF.getRegInfo();
91   for (MachineBasicBlock::instr_iterator
92          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
93     I->AddRegOperandsToUseLists(RegInfo);
94 }
95 
96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
97     MachineBasicBlock *N) {
98   N->getParent()->removeFromMBBNumbering(N->Number);
99   N->Number = -1;
100 }
101 
102 /// When we add an instruction to a basic block list, we update its parent
103 /// pointer and add its operands from reg use/def lists if appropriate.
104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
105   assert(!N->getParent() && "machine instruction already in a basic block");
106   N->setParent(Parent);
107 
108   // Add the instruction's register operands to their corresponding
109   // use/def lists.
110   MachineFunction *MF = Parent->getParent();
111   N->AddRegOperandsToUseLists(MF->getRegInfo());
112 }
113 
114 /// When we remove an instruction from a basic block list, we update its parent
115 /// pointer and remove its operands from reg use/def lists if appropriate.
116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
117   assert(N->getParent() && "machine instruction not in a basic block");
118 
119   // Remove from the use/def lists.
120   if (MachineFunction *MF = N->getMF())
121     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
122 
123   N->setParent(nullptr);
124 }
125 
126 /// When moving a range of instructions from one MBB list to another, we need to
127 /// update the parent pointers and the use/def lists.
128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
129                                                        instr_iterator First,
130                                                        instr_iterator Last) {
131   assert(Parent->getParent() == FromList.Parent->getParent() &&
132         "MachineInstr parent mismatch!");
133   assert(this != &FromList && "Called without a real transfer...");
134   assert(Parent != FromList.Parent && "Two lists have the same parent?");
135 
136   // If splicing between two blocks within the same function, just update the
137   // parent pointers.
138   for (; First != Last; ++First)
139     First->setParent(Parent);
140 }
141 
142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
143   assert(!MI->getParent() && "MI is still in a block!");
144   Parent->getParent()->DeleteMachineInstr(MI);
145 }
146 
147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
148   instr_iterator I = instr_begin(), E = instr_end();
149   while (I != E && I->isPHI())
150     ++I;
151   assert((I == E || !I->isInsideBundle()) &&
152          "First non-phi MI cannot be inside a bundle!");
153   return I;
154 }
155 
156 MachineBasicBlock::iterator
157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
158   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
159 
160   iterator E = end();
161   while (I != E && (I->isPHI() || I->isPosition() ||
162                     TII->isBasicBlockPrologue(*I)))
163     ++I;
164   // FIXME: This needs to change if we wish to bundle labels
165   // inside the bundle.
166   assert((I == E || !I->isInsideBundle()) &&
167          "First non-phi / non-label instruction is inside a bundle!");
168   return I;
169 }
170 
171 MachineBasicBlock::iterator
172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
173   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
174 
175   iterator E = end();
176   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() ||
177                     TII->isBasicBlockPrologue(*I)))
178     ++I;
179   // FIXME: This needs to change if we wish to bundle labels / dbg_values
180   // inside the bundle.
181   assert((I == E || !I->isInsideBundle()) &&
182          "First non-phi / non-label / non-debug "
183          "instruction is inside a bundle!");
184   return I;
185 }
186 
187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
188   iterator B = begin(), E = end(), I = E;
189   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
190     ; /*noop */
191   while (I != E && !I->isTerminator())
192     ++I;
193   return I;
194 }
195 
196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
197   instr_iterator B = instr_begin(), E = instr_end(), I = E;
198   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
199     ; /*noop */
200   while (I != E && !I->isTerminator())
201     ++I;
202   return I;
203 }
204 
205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
206   // Skip over begin-of-block dbg_value instructions.
207   return skipDebugInstructionsForward(begin(), end());
208 }
209 
210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
211   // Skip over end-of-block dbg_value instructions.
212   instr_iterator B = instr_begin(), I = instr_end();
213   while (I != B) {
214     --I;
215     // Return instruction that starts a bundle.
216     if (I->isDebugValue() || I->isInsideBundle())
217       continue;
218     return I;
219   }
220   // The block is all debug values.
221   return end();
222 }
223 
224 bool MachineBasicBlock::hasEHPadSuccessor() const {
225   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
226     if ((*I)->isEHPad())
227       return true;
228   return false;
229 }
230 
231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
233   print(dbgs());
234 }
235 #endif
236 
237 bool MachineBasicBlock::isLegalToHoistInto() const {
238   if (isReturnBlock() || hasEHPadSuccessor())
239     return false;
240   return true;
241 }
242 
243 StringRef MachineBasicBlock::getName() const {
244   if (const BasicBlock *LBB = getBasicBlock())
245     return LBB->getName();
246   else
247     return StringRef("", 0);
248 }
249 
250 /// Return a hopefully unique identifier for this block.
251 std::string MachineBasicBlock::getFullName() const {
252   std::string Name;
253   if (getParent())
254     Name = (getParent()->getName() + ":").str();
255   if (getBasicBlock())
256     Name += getBasicBlock()->getName();
257   else
258     Name += ("BB" + Twine(getNumber())).str();
259   return Name;
260 }
261 
262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
263                               bool IsStandalone) const {
264   const MachineFunction *MF = getParent();
265   if (!MF) {
266     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
267        << " is null\n";
268     return;
269   }
270   const Function &F = MF->getFunction();
271   const Module *M = F.getParent();
272   ModuleSlotTracker MST(M);
273   MST.incorporateFunction(F);
274   print(OS, MST, Indexes, IsStandalone);
275 }
276 
277 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
278                               const SlotIndexes *Indexes,
279                               bool IsStandalone) const {
280   const MachineFunction *MF = getParent();
281   if (!MF) {
282     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
283        << " is null\n";
284     return;
285   }
286 
287   if (Indexes)
288     OS << Indexes->getMBBStartIdx(this) << '\t';
289 
290   OS << "bb." << getNumber();
291   bool HasAttributes = false;
292   if (const auto *BB = getBasicBlock()) {
293     if (BB->hasName()) {
294       OS << "." << BB->getName();
295     } else {
296       HasAttributes = true;
297       OS << " (";
298       int Slot = MST.getLocalSlot(BB);
299       if (Slot == -1)
300         OS << "<ir-block badref>";
301       else
302         OS << (Twine("%ir-block.") + Twine(Slot)).str();
303     }
304   }
305 
306   if (hasAddressTaken()) {
307     OS << (HasAttributes ? ", " : " (");
308     OS << "address-taken";
309     HasAttributes = true;
310   }
311   if (isEHPad()) {
312     OS << (HasAttributes ? ", " : " (");
313     OS << "landing-pad";
314     HasAttributes = true;
315   }
316   if (getAlignment()) {
317     OS << (HasAttributes ? ", " : " (");
318     OS << "align " << getAlignment();
319     HasAttributes = true;
320   }
321   if (HasAttributes)
322     OS << ")";
323   OS << ":\n";
324 
325   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
326   if (!livein_empty()) {
327     if (Indexes) OS << '\t';
328     OS << "    Live Ins:";
329     for (const auto &LI : LiveIns) {
330       OS << ' ' << printReg(LI.PhysReg, TRI);
331       if (!LI.LaneMask.all())
332         OS << ':' << PrintLaneMask(LI.LaneMask);
333     }
334     OS << '\n';
335   }
336 
337   if (!succ_empty()) {
338     // Print the successors
339     OS.indent(2) << "successors: ";
340     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
341       if (I != succ_begin())
342         OS << ", ";
343       OS << printMBBReference(**I);
344       if (!Probs.empty())
345         OS << '('
346            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
347            << ')';
348     }
349     if (!Probs.empty()) {
350       // Print human readable probabilities as comments.
351       OS << "; ";
352       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
353         const BranchProbability &BP = *getProbabilityIterator(I);
354         if (I != succ_begin())
355           OS << ", ";
356         OS << printMBBReference(**I) << '('
357            << format("%.2f%%",
358                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
359                           100.0 * 100.0) /
360                          100.0)
361            << ')';
362       }
363       OS << '\n';
364     }
365   }
366 
367   // Print the preds of this block according to the CFG.
368   if (!pred_empty()) {
369     if (Indexes) OS << '\t';
370     OS << "    Predecessors according to CFG:";
371     for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
372       OS << " " << printMBBReference(*(*PI));
373     OS << '\n';
374   }
375 
376   for (auto &I : instrs()) {
377     if (Indexes) {
378       if (Indexes->hasIndex(I))
379         OS << Indexes->getInstructionIndex(I);
380       OS << '\t';
381     }
382     OS << '\t';
383     if (I.isInsideBundle())
384       OS << "  * ";
385     I.print(OS, MST, IsStandalone);
386     OS << '\n';
387   }
388 
389   if (IrrLoopHeaderWeight) {
390     if (Indexes) OS << '\t';
391     OS << "    Irreducible loop header weight: "
392        << IrrLoopHeaderWeight.getValue();
393     OS << '\n';
394   }
395 }
396 
397 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
398                                        bool /*PrintType*/) const {
399   OS << "%bb." << getNumber();
400 }
401 
402 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
403   LiveInVector::iterator I = find_if(
404       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
405   if (I == LiveIns.end())
406     return;
407 
408   I->LaneMask &= ~LaneMask;
409   if (I->LaneMask.none())
410     LiveIns.erase(I);
411 }
412 
413 MachineBasicBlock::livein_iterator
414 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
415   // Get non-const version of iterator.
416   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
417   return LiveIns.erase(LI);
418 }
419 
420 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
421   livein_iterator I = find_if(
422       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
423   return I != livein_end() && (I->LaneMask & LaneMask).any();
424 }
425 
426 void MachineBasicBlock::sortUniqueLiveIns() {
427   std::sort(LiveIns.begin(), LiveIns.end(),
428             [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
429               return LI0.PhysReg < LI1.PhysReg;
430             });
431   // Liveins are sorted by physreg now we can merge their lanemasks.
432   LiveInVector::const_iterator I = LiveIns.begin();
433   LiveInVector::const_iterator J;
434   LiveInVector::iterator Out = LiveIns.begin();
435   for (; I != LiveIns.end(); ++Out, I = J) {
436     unsigned PhysReg = I->PhysReg;
437     LaneBitmask LaneMask = I->LaneMask;
438     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
439       LaneMask |= J->LaneMask;
440     Out->PhysReg = PhysReg;
441     Out->LaneMask = LaneMask;
442   }
443   LiveIns.erase(Out, LiveIns.end());
444 }
445 
446 unsigned
447 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
448   assert(getParent() && "MBB must be inserted in function");
449   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
450   assert(RC && "Register class is required");
451   assert((isEHPad() || this == &getParent()->front()) &&
452          "Only the entry block and landing pads can have physreg live ins");
453 
454   bool LiveIn = isLiveIn(PhysReg);
455   iterator I = SkipPHIsAndLabels(begin()), E = end();
456   MachineRegisterInfo &MRI = getParent()->getRegInfo();
457   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
458 
459   // Look for an existing copy.
460   if (LiveIn)
461     for (;I != E && I->isCopy(); ++I)
462       if (I->getOperand(1).getReg() == PhysReg) {
463         unsigned VirtReg = I->getOperand(0).getReg();
464         if (!MRI.constrainRegClass(VirtReg, RC))
465           llvm_unreachable("Incompatible live-in register class.");
466         return VirtReg;
467       }
468 
469   // No luck, create a virtual register.
470   unsigned VirtReg = MRI.createVirtualRegister(RC);
471   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
472     .addReg(PhysReg, RegState::Kill);
473   if (!LiveIn)
474     addLiveIn(PhysReg);
475   return VirtReg;
476 }
477 
478 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
479   getParent()->splice(NewAfter->getIterator(), getIterator());
480 }
481 
482 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
483   getParent()->splice(++NewBefore->getIterator(), getIterator());
484 }
485 
486 void MachineBasicBlock::updateTerminator() {
487   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
488   // A block with no successors has no concerns with fall-through edges.
489   if (this->succ_empty())
490     return;
491 
492   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
493   SmallVector<MachineOperand, 4> Cond;
494   DebugLoc DL = findBranchDebugLoc();
495   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
496   (void) B;
497   assert(!B && "UpdateTerminators requires analyzable predecessors!");
498   if (Cond.empty()) {
499     if (TBB) {
500       // The block has an unconditional branch. If its successor is now its
501       // layout successor, delete the branch.
502       if (isLayoutSuccessor(TBB))
503         TII->removeBranch(*this);
504     } else {
505       // The block has an unconditional fallthrough. If its successor is not its
506       // layout successor, insert a branch. First we have to locate the only
507       // non-landing-pad successor, as that is the fallthrough block.
508       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
509         if ((*SI)->isEHPad())
510           continue;
511         assert(!TBB && "Found more than one non-landing-pad successor!");
512         TBB = *SI;
513       }
514 
515       // If there is no non-landing-pad successor, the block has no fall-through
516       // edges to be concerned with.
517       if (!TBB)
518         return;
519 
520       // Finally update the unconditional successor to be reached via a branch
521       // if it would not be reached by fallthrough.
522       if (!isLayoutSuccessor(TBB))
523         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
524     }
525     return;
526   }
527 
528   if (FBB) {
529     // The block has a non-fallthrough conditional branch. If one of its
530     // successors is its layout successor, rewrite it to a fallthrough
531     // conditional branch.
532     if (isLayoutSuccessor(TBB)) {
533       if (TII->reverseBranchCondition(Cond))
534         return;
535       TII->removeBranch(*this);
536       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
537     } else if (isLayoutSuccessor(FBB)) {
538       TII->removeBranch(*this);
539       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
540     }
541     return;
542   }
543 
544   // Walk through the successors and find the successor which is not a landing
545   // pad and is not the conditional branch destination (in TBB) as the
546   // fallthrough successor.
547   MachineBasicBlock *FallthroughBB = nullptr;
548   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
549     if ((*SI)->isEHPad() || *SI == TBB)
550       continue;
551     assert(!FallthroughBB && "Found more than one fallthrough successor.");
552     FallthroughBB = *SI;
553   }
554 
555   if (!FallthroughBB) {
556     if (canFallThrough()) {
557       // We fallthrough to the same basic block as the conditional jump targets.
558       // Remove the conditional jump, leaving unconditional fallthrough.
559       // FIXME: This does not seem like a reasonable pattern to support, but it
560       // has been seen in the wild coming out of degenerate ARM test cases.
561       TII->removeBranch(*this);
562 
563       // Finally update the unconditional successor to be reached via a branch if
564       // it would not be reached by fallthrough.
565       if (!isLayoutSuccessor(TBB))
566         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
567       return;
568     }
569 
570     // We enter here iff exactly one successor is TBB which cannot fallthrough
571     // and the rest successors if any are EHPads.  In this case, we need to
572     // change the conditional branch into unconditional branch.
573     TII->removeBranch(*this);
574     Cond.clear();
575     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
576     return;
577   }
578 
579   // The block has a fallthrough conditional branch.
580   if (isLayoutSuccessor(TBB)) {
581     if (TII->reverseBranchCondition(Cond)) {
582       // We can't reverse the condition, add an unconditional branch.
583       Cond.clear();
584       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
585       return;
586     }
587     TII->removeBranch(*this);
588     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
589   } else if (!isLayoutSuccessor(FallthroughBB)) {
590     TII->removeBranch(*this);
591     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
592   }
593 }
594 
595 void MachineBasicBlock::validateSuccProbs() const {
596 #ifndef NDEBUG
597   int64_t Sum = 0;
598   for (auto Prob : Probs)
599     Sum += Prob.getNumerator();
600   // Due to precision issue, we assume that the sum of probabilities is one if
601   // the difference between the sum of their numerators and the denominator is
602   // no greater than the number of successors.
603   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
604              Probs.size() &&
605          "The sum of successors's probabilities exceeds one.");
606 #endif // NDEBUG
607 }
608 
609 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
610                                      BranchProbability Prob) {
611   // Probability list is either empty (if successor list isn't empty, this means
612   // disabled optimization) or has the same size as successor list.
613   if (!(Probs.empty() && !Successors.empty()))
614     Probs.push_back(Prob);
615   Successors.push_back(Succ);
616   Succ->addPredecessor(this);
617 }
618 
619 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
620   // We need to make sure probability list is either empty or has the same size
621   // of successor list. When this function is called, we can safely delete all
622   // probability in the list.
623   Probs.clear();
624   Successors.push_back(Succ);
625   Succ->addPredecessor(this);
626 }
627 
628 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
629                                         bool NormalizeSuccProbs) {
630   succ_iterator I = find(Successors, Succ);
631   removeSuccessor(I, NormalizeSuccProbs);
632 }
633 
634 MachineBasicBlock::succ_iterator
635 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
636   assert(I != Successors.end() && "Not a current successor!");
637 
638   // If probability list is empty it means we don't use it (disabled
639   // optimization).
640   if (!Probs.empty()) {
641     probability_iterator WI = getProbabilityIterator(I);
642     Probs.erase(WI);
643     if (NormalizeSuccProbs)
644       normalizeSuccProbs();
645   }
646 
647   (*I)->removePredecessor(this);
648   return Successors.erase(I);
649 }
650 
651 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
652                                          MachineBasicBlock *New) {
653   if (Old == New)
654     return;
655 
656   succ_iterator E = succ_end();
657   succ_iterator NewI = E;
658   succ_iterator OldI = E;
659   for (succ_iterator I = succ_begin(); I != E; ++I) {
660     if (*I == Old) {
661       OldI = I;
662       if (NewI != E)
663         break;
664     }
665     if (*I == New) {
666       NewI = I;
667       if (OldI != E)
668         break;
669     }
670   }
671   assert(OldI != E && "Old is not a successor of this block");
672 
673   // If New isn't already a successor, let it take Old's place.
674   if (NewI == E) {
675     Old->removePredecessor(this);
676     New->addPredecessor(this);
677     *OldI = New;
678     return;
679   }
680 
681   // New is already a successor.
682   // Update its probability instead of adding a duplicate edge.
683   if (!Probs.empty()) {
684     auto ProbIter = getProbabilityIterator(NewI);
685     if (!ProbIter->isUnknown())
686       *ProbIter += *getProbabilityIterator(OldI);
687   }
688   removeSuccessor(OldI);
689 }
690 
691 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
692   Predecessors.push_back(Pred);
693 }
694 
695 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
696   pred_iterator I = find(Predecessors, Pred);
697   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
698   Predecessors.erase(I);
699 }
700 
701 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
702   if (this == FromMBB)
703     return;
704 
705   while (!FromMBB->succ_empty()) {
706     MachineBasicBlock *Succ = *FromMBB->succ_begin();
707 
708     // If probability list is empty it means we don't use it (disabled optimization).
709     if (!FromMBB->Probs.empty()) {
710       auto Prob = *FromMBB->Probs.begin();
711       addSuccessor(Succ, Prob);
712     } else
713       addSuccessorWithoutProb(Succ);
714 
715     FromMBB->removeSuccessor(Succ);
716   }
717 }
718 
719 void
720 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
721   if (this == FromMBB)
722     return;
723 
724   while (!FromMBB->succ_empty()) {
725     MachineBasicBlock *Succ = *FromMBB->succ_begin();
726     if (!FromMBB->Probs.empty()) {
727       auto Prob = *FromMBB->Probs.begin();
728       addSuccessor(Succ, Prob);
729     } else
730       addSuccessorWithoutProb(Succ);
731     FromMBB->removeSuccessor(Succ);
732 
733     // Fix up any PHI nodes in the successor.
734     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
735            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
736       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
737         MachineOperand &MO = MI->getOperand(i);
738         if (MO.getMBB() == FromMBB)
739           MO.setMBB(this);
740       }
741   }
742   normalizeSuccProbs();
743 }
744 
745 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
746   return is_contained(predecessors(), MBB);
747 }
748 
749 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
750   return is_contained(successors(), MBB);
751 }
752 
753 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
754   MachineFunction::const_iterator I(this);
755   return std::next(I) == MachineFunction::const_iterator(MBB);
756 }
757 
758 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
759   MachineFunction::iterator Fallthrough = getIterator();
760   ++Fallthrough;
761   // If FallthroughBlock is off the end of the function, it can't fall through.
762   if (Fallthrough == getParent()->end())
763     return nullptr;
764 
765   // If FallthroughBlock isn't a successor, no fallthrough is possible.
766   if (!isSuccessor(&*Fallthrough))
767     return nullptr;
768 
769   // Analyze the branches, if any, at the end of the block.
770   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
771   SmallVector<MachineOperand, 4> Cond;
772   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
773   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
774     // If we couldn't analyze the branch, examine the last instruction.
775     // If the block doesn't end in a known control barrier, assume fallthrough
776     // is possible. The isPredicated check is needed because this code can be
777     // called during IfConversion, where an instruction which is normally a
778     // Barrier is predicated and thus no longer an actual control barrier.
779     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
780                ? &*Fallthrough
781                : nullptr;
782   }
783 
784   // If there is no branch, control always falls through.
785   if (!TBB) return &*Fallthrough;
786 
787   // If there is some explicit branch to the fallthrough block, it can obviously
788   // reach, even though the branch should get folded to fall through implicitly.
789   if (MachineFunction::iterator(TBB) == Fallthrough ||
790       MachineFunction::iterator(FBB) == Fallthrough)
791     return &*Fallthrough;
792 
793   // If it's an unconditional branch to some block not the fall through, it
794   // doesn't fall through.
795   if (Cond.empty()) return nullptr;
796 
797   // Otherwise, if it is conditional and has no explicit false block, it falls
798   // through.
799   return (FBB == nullptr) ? &*Fallthrough : nullptr;
800 }
801 
802 bool MachineBasicBlock::canFallThrough() {
803   return getFallThrough() != nullptr;
804 }
805 
806 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
807                                                         Pass &P) {
808   if (!canSplitCriticalEdge(Succ))
809     return nullptr;
810 
811   MachineFunction *MF = getParent();
812   DebugLoc DL;  // FIXME: this is nowhere
813 
814   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
815   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
816   DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
817                << " -- " << printMBBReference(*NMBB) << " -- "
818                << printMBBReference(*Succ) << '\n');
819 
820   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
821   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
822   if (LIS)
823     LIS->insertMBBInMaps(NMBB);
824   else if (Indexes)
825     Indexes->insertMBBInMaps(NMBB);
826 
827   // On some targets like Mips, branches may kill virtual registers. Make sure
828   // that LiveVariables is properly updated after updateTerminator replaces the
829   // terminators.
830   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
831 
832   // Collect a list of virtual registers killed by the terminators.
833   SmallVector<unsigned, 4> KilledRegs;
834   if (LV)
835     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
836          I != E; ++I) {
837       MachineInstr *MI = &*I;
838       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
839            OE = MI->operands_end(); OI != OE; ++OI) {
840         if (!OI->isReg() || OI->getReg() == 0 ||
841             !OI->isUse() || !OI->isKill() || OI->isUndef())
842           continue;
843         unsigned Reg = OI->getReg();
844         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
845             LV->getVarInfo(Reg).removeKill(*MI)) {
846           KilledRegs.push_back(Reg);
847           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
848           OI->setIsKill(false);
849         }
850       }
851     }
852 
853   SmallVector<unsigned, 4> UsedRegs;
854   if (LIS) {
855     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
856          I != E; ++I) {
857       MachineInstr *MI = &*I;
858 
859       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
860            OE = MI->operands_end(); OI != OE; ++OI) {
861         if (!OI->isReg() || OI->getReg() == 0)
862           continue;
863 
864         unsigned Reg = OI->getReg();
865         if (!is_contained(UsedRegs, Reg))
866           UsedRegs.push_back(Reg);
867       }
868     }
869   }
870 
871   ReplaceUsesOfBlockWith(Succ, NMBB);
872 
873   // If updateTerminator() removes instructions, we need to remove them from
874   // SlotIndexes.
875   SmallVector<MachineInstr*, 4> Terminators;
876   if (Indexes) {
877     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
878          I != E; ++I)
879       Terminators.push_back(&*I);
880   }
881 
882   updateTerminator();
883 
884   if (Indexes) {
885     SmallVector<MachineInstr*, 4> NewTerminators;
886     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
887          I != E; ++I)
888       NewTerminators.push_back(&*I);
889 
890     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
891         E = Terminators.end(); I != E; ++I) {
892       if (!is_contained(NewTerminators, *I))
893         Indexes->removeMachineInstrFromMaps(**I);
894     }
895   }
896 
897   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
898   NMBB->addSuccessor(Succ);
899   if (!NMBB->isLayoutSuccessor(Succ)) {
900     SmallVector<MachineOperand, 4> Cond;
901     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
902     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
903 
904     if (Indexes) {
905       for (MachineInstr &MI : NMBB->instrs()) {
906         // Some instructions may have been moved to NMBB by updateTerminator(),
907         // so we first remove any instruction that already has an index.
908         if (Indexes->hasIndex(MI))
909           Indexes->removeMachineInstrFromMaps(MI);
910         Indexes->insertMachineInstrInMaps(MI);
911       }
912     }
913   }
914 
915   // Fix PHI nodes in Succ so they refer to NMBB instead of this
916   for (MachineBasicBlock::instr_iterator
917          i = Succ->instr_begin(),e = Succ->instr_end();
918        i != e && i->isPHI(); ++i)
919     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
920       if (i->getOperand(ni+1).getMBB() == this)
921         i->getOperand(ni+1).setMBB(NMBB);
922 
923   // Inherit live-ins from the successor
924   for (const auto &LI : Succ->liveins())
925     NMBB->addLiveIn(LI);
926 
927   // Update LiveVariables.
928   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
929   if (LV) {
930     // Restore kills of virtual registers that were killed by the terminators.
931     while (!KilledRegs.empty()) {
932       unsigned Reg = KilledRegs.pop_back_val();
933       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
934         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
935           continue;
936         if (TargetRegisterInfo::isVirtualRegister(Reg))
937           LV->getVarInfo(Reg).Kills.push_back(&*I);
938         DEBUG(dbgs() << "Restored terminator kill: " << *I);
939         break;
940       }
941     }
942     // Update relevant live-through information.
943     LV->addNewBlock(NMBB, this, Succ);
944   }
945 
946   if (LIS) {
947     // After splitting the edge and updating SlotIndexes, live intervals may be
948     // in one of two situations, depending on whether this block was the last in
949     // the function. If the original block was the last in the function, all
950     // live intervals will end prior to the beginning of the new split block. If
951     // the original block was not at the end of the function, all live intervals
952     // will extend to the end of the new split block.
953 
954     bool isLastMBB =
955       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
956 
957     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
958     SlotIndex PrevIndex = StartIndex.getPrevSlot();
959     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
960 
961     // Find the registers used from NMBB in PHIs in Succ.
962     SmallSet<unsigned, 8> PHISrcRegs;
963     for (MachineBasicBlock::instr_iterator
964          I = Succ->instr_begin(), E = Succ->instr_end();
965          I != E && I->isPHI(); ++I) {
966       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
967         if (I->getOperand(ni+1).getMBB() == NMBB) {
968           MachineOperand &MO = I->getOperand(ni);
969           unsigned Reg = MO.getReg();
970           PHISrcRegs.insert(Reg);
971           if (MO.isUndef())
972             continue;
973 
974           LiveInterval &LI = LIS->getInterval(Reg);
975           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
976           assert(VNI &&
977                  "PHI sources should be live out of their predecessors.");
978           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
979         }
980       }
981     }
982 
983     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
984     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
985       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
986       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
987         continue;
988 
989       LiveInterval &LI = LIS->getInterval(Reg);
990       if (!LI.liveAt(PrevIndex))
991         continue;
992 
993       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
994       if (isLiveOut && isLastMBB) {
995         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
996         assert(VNI && "LiveInterval should have VNInfo where it is live.");
997         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
998       } else if (!isLiveOut && !isLastMBB) {
999         LI.removeSegment(StartIndex, EndIndex);
1000       }
1001     }
1002 
1003     // Update all intervals for registers whose uses may have been modified by
1004     // updateTerminator().
1005     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1006   }
1007 
1008   if (MachineDominatorTree *MDT =
1009           P.getAnalysisIfAvailable<MachineDominatorTree>())
1010     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1011 
1012   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1013     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1014       // If one or the other blocks were not in a loop, the new block is not
1015       // either, and thus LI doesn't need to be updated.
1016       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1017         if (TIL == DestLoop) {
1018           // Both in the same loop, the NMBB joins loop.
1019           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1020         } else if (TIL->contains(DestLoop)) {
1021           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1022           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1023         } else if (DestLoop->contains(TIL)) {
1024           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1025           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1026         } else {
1027           // Edge from two loops with no containment relation.  Because these
1028           // are natural loops, we know that the destination block must be the
1029           // header of its loop (adding a branch into a loop elsewhere would
1030           // create an irreducible loop).
1031           assert(DestLoop->getHeader() == Succ &&
1032                  "Should not create irreducible loops!");
1033           if (MachineLoop *P = DestLoop->getParentLoop())
1034             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1035         }
1036       }
1037     }
1038 
1039   return NMBB;
1040 }
1041 
1042 bool MachineBasicBlock::canSplitCriticalEdge(
1043     const MachineBasicBlock *Succ) const {
1044   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1045   // it in this generic function.
1046   if (Succ->isEHPad())
1047     return false;
1048 
1049   const MachineFunction *MF = getParent();
1050 
1051   // Performance might be harmed on HW that implements branching using exec mask
1052   // where both sides of the branches are always executed.
1053   if (MF->getTarget().requiresStructuredCFG())
1054     return false;
1055 
1056   // We may need to update this's terminator, but we can't do that if
1057   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1058   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1059   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1060   SmallVector<MachineOperand, 4> Cond;
1061   // AnalyzeBanch should modify this, since we did not allow modification.
1062   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1063                          /*AllowModify*/ false))
1064     return false;
1065 
1066   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1067   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1068   // case that we can't handle. Since this never happens in properly optimized
1069   // code, just skip those edges.
1070   if (TBB && TBB == FBB) {
1071     DEBUG(dbgs() << "Won't split critical edge after degenerate "
1072                  << printMBBReference(*this) << '\n');
1073     return false;
1074   }
1075   return true;
1076 }
1077 
1078 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1079 /// neighboring instructions so the bundle won't be broken by removing MI.
1080 static void unbundleSingleMI(MachineInstr *MI) {
1081   // Removing the first instruction in a bundle.
1082   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1083     MI->unbundleFromSucc();
1084   // Removing the last instruction in a bundle.
1085   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1086     MI->unbundleFromPred();
1087   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1088   // are already fine.
1089 }
1090 
1091 MachineBasicBlock::instr_iterator
1092 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1093   unbundleSingleMI(&*I);
1094   return Insts.erase(I);
1095 }
1096 
1097 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1098   unbundleSingleMI(MI);
1099   MI->clearFlag(MachineInstr::BundledPred);
1100   MI->clearFlag(MachineInstr::BundledSucc);
1101   return Insts.remove(MI);
1102 }
1103 
1104 MachineBasicBlock::instr_iterator
1105 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1106   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1107          "Cannot insert instruction with bundle flags");
1108   // Set the bundle flags when inserting inside a bundle.
1109   if (I != instr_end() && I->isBundledWithPred()) {
1110     MI->setFlag(MachineInstr::BundledPred);
1111     MI->setFlag(MachineInstr::BundledSucc);
1112   }
1113   return Insts.insert(I, MI);
1114 }
1115 
1116 /// This method unlinks 'this' from the containing function, and returns it, but
1117 /// does not delete it.
1118 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1119   assert(getParent() && "Not embedded in a function!");
1120   getParent()->remove(this);
1121   return this;
1122 }
1123 
1124 /// This method unlinks 'this' from the containing function, and deletes it.
1125 void MachineBasicBlock::eraseFromParent() {
1126   assert(getParent() && "Not embedded in a function!");
1127   getParent()->erase(this);
1128 }
1129 
1130 /// Given a machine basic block that branched to 'Old', change the code and CFG
1131 /// so that it branches to 'New' instead.
1132 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1133                                                MachineBasicBlock *New) {
1134   assert(Old != New && "Cannot replace self with self!");
1135 
1136   MachineBasicBlock::instr_iterator I = instr_end();
1137   while (I != instr_begin()) {
1138     --I;
1139     if (!I->isTerminator()) break;
1140 
1141     // Scan the operands of this machine instruction, replacing any uses of Old
1142     // with New.
1143     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1144       if (I->getOperand(i).isMBB() &&
1145           I->getOperand(i).getMBB() == Old)
1146         I->getOperand(i).setMBB(New);
1147   }
1148 
1149   // Update the successor information.
1150   replaceSuccessor(Old, New);
1151 }
1152 
1153 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1154 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1155 /// MBB successors from the CFG.  DestA and DestB can be null.
1156 ///
1157 /// Besides DestA and DestB, retain other edges leading to LandingPads
1158 /// (currently there can be only one; we don't check or require that here).
1159 /// Note it is possible that DestA and/or DestB are LandingPads.
1160 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1161                                              MachineBasicBlock *DestB,
1162                                              bool IsCond) {
1163   // The values of DestA and DestB frequently come from a call to the
1164   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1165   // values from there.
1166   //
1167   // 1. If both DestA and DestB are null, then the block ends with no branches
1168   //    (it falls through to its successor).
1169   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1170   //    with only an unconditional branch.
1171   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1172   //    with a conditional branch that falls through to a successor (DestB).
1173   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1174   //    conditional branch followed by an unconditional branch. DestA is the
1175   //    'true' destination and DestB is the 'false' destination.
1176 
1177   bool Changed = false;
1178 
1179   MachineBasicBlock *FallThru = getNextNode();
1180 
1181   if (!DestA && !DestB) {
1182     // Block falls through to successor.
1183     DestA = FallThru;
1184     DestB = FallThru;
1185   } else if (DestA && !DestB) {
1186     if (IsCond)
1187       // Block ends in conditional jump that falls through to successor.
1188       DestB = FallThru;
1189   } else {
1190     assert(DestA && DestB && IsCond &&
1191            "CFG in a bad state. Cannot correct CFG edges");
1192   }
1193 
1194   // Remove superfluous edges. I.e., those which aren't destinations of this
1195   // basic block, duplicate edges, or landing pads.
1196   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1197   MachineBasicBlock::succ_iterator SI = succ_begin();
1198   while (SI != succ_end()) {
1199     const MachineBasicBlock *MBB = *SI;
1200     if (!SeenMBBs.insert(MBB).second ||
1201         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1202       // This is a superfluous edge, remove it.
1203       SI = removeSuccessor(SI);
1204       Changed = true;
1205     } else {
1206       ++SI;
1207     }
1208   }
1209 
1210   if (Changed)
1211     normalizeSuccProbs();
1212   return Changed;
1213 }
1214 
1215 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1216 /// instructions.  Return UnknownLoc if there is none.
1217 DebugLoc
1218 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1219   // Skip debug declarations, we don't want a DebugLoc from them.
1220   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1221   if (MBBI != instr_end())
1222     return MBBI->getDebugLoc();
1223   return {};
1224 }
1225 
1226 /// Find and return the merged DebugLoc of the branch instructions of the block.
1227 /// Return UnknownLoc if there is none.
1228 DebugLoc
1229 MachineBasicBlock::findBranchDebugLoc() {
1230   DebugLoc DL;
1231   auto TI = getFirstTerminator();
1232   while (TI != end() && !TI->isBranch())
1233     ++TI;
1234 
1235   if (TI != end()) {
1236     DL = TI->getDebugLoc();
1237     for (++TI ; TI != end() ; ++TI)
1238       if (TI->isBranch())
1239         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1240   }
1241   return DL;
1242 }
1243 
1244 /// Return probability of the edge from this block to MBB.
1245 BranchProbability
1246 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1247   if (Probs.empty())
1248     return BranchProbability(1, succ_size());
1249 
1250   const auto &Prob = *getProbabilityIterator(Succ);
1251   if (Prob.isUnknown()) {
1252     // For unknown probabilities, collect the sum of all known ones, and evenly
1253     // ditribute the complemental of the sum to each unknown probability.
1254     unsigned KnownProbNum = 0;
1255     auto Sum = BranchProbability::getZero();
1256     for (auto &P : Probs) {
1257       if (!P.isUnknown()) {
1258         Sum += P;
1259         KnownProbNum++;
1260       }
1261     }
1262     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1263   } else
1264     return Prob;
1265 }
1266 
1267 /// Set successor probability of a given iterator.
1268 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1269                                            BranchProbability Prob) {
1270   assert(!Prob.isUnknown());
1271   if (Probs.empty())
1272     return;
1273   *getProbabilityIterator(I) = Prob;
1274 }
1275 
1276 /// Return probability iterator corresonding to the I successor iterator
1277 MachineBasicBlock::const_probability_iterator
1278 MachineBasicBlock::getProbabilityIterator(
1279     MachineBasicBlock::const_succ_iterator I) const {
1280   assert(Probs.size() == Successors.size() && "Async probability list!");
1281   const size_t index = std::distance(Successors.begin(), I);
1282   assert(index < Probs.size() && "Not a current successor!");
1283   return Probs.begin() + index;
1284 }
1285 
1286 /// Return probability iterator corresonding to the I successor iterator.
1287 MachineBasicBlock::probability_iterator
1288 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1289   assert(Probs.size() == Successors.size() && "Async probability list!");
1290   const size_t index = std::distance(Successors.begin(), I);
1291   assert(index < Probs.size() && "Not a current successor!");
1292   return Probs.begin() + index;
1293 }
1294 
1295 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1296 /// as of just before "MI".
1297 ///
1298 /// Search is localised to a neighborhood of
1299 /// Neighborhood instructions before (searching for defs or kills) and N
1300 /// instructions after (searching just for defs) MI.
1301 MachineBasicBlock::LivenessQueryResult
1302 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1303                                            unsigned Reg, const_iterator Before,
1304                                            unsigned Neighborhood) const {
1305   unsigned N = Neighborhood;
1306 
1307   // Start by searching backwards from Before, looking for kills, reads or defs.
1308   const_iterator I(Before);
1309   // If this is the first insn in the block, don't search backwards.
1310   if (I != begin()) {
1311     do {
1312       --I;
1313 
1314       MachineOperandIteratorBase::PhysRegInfo Info =
1315           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1316 
1317       // Defs happen after uses so they take precedence if both are present.
1318 
1319       // Register is dead after a dead def of the full register.
1320       if (Info.DeadDef)
1321         return LQR_Dead;
1322       // Register is (at least partially) live after a def.
1323       if (Info.Defined) {
1324         if (!Info.PartialDeadDef)
1325           return LQR_Live;
1326         // As soon as we saw a partial definition (dead or not),
1327         // we cannot tell if the value is partial live without
1328         // tracking the lanemasks. We are not going to do this,
1329         // so fall back on the remaining of the analysis.
1330         break;
1331       }
1332       // Register is dead after a full kill or clobber and no def.
1333       if (Info.Killed || Info.Clobbered)
1334         return LQR_Dead;
1335       // Register must be live if we read it.
1336       if (Info.Read)
1337         return LQR_Live;
1338     } while (I != begin() && --N > 0);
1339   }
1340 
1341   // Did we get to the start of the block?
1342   if (I == begin()) {
1343     // If so, the register's state is definitely defined by the live-in state.
1344     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
1345          ++RAI)
1346       if (isLiveIn(*RAI))
1347         return LQR_Live;
1348 
1349     return LQR_Dead;
1350   }
1351 
1352   N = Neighborhood;
1353 
1354   // Try searching forwards from Before, looking for reads or defs.
1355   I = const_iterator(Before);
1356   // If this is the last insn in the block, don't search forwards.
1357   if (I != end()) {
1358     for (++I; I != end() && N > 0; ++I, --N) {
1359       MachineOperandIteratorBase::PhysRegInfo Info =
1360           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1361 
1362       // Register is live when we read it here.
1363       if (Info.Read)
1364         return LQR_Live;
1365       // Register is dead if we can fully overwrite or clobber it here.
1366       if (Info.FullyDefined || Info.Clobbered)
1367         return LQR_Dead;
1368     }
1369   }
1370 
1371   // At this point we have no idea of the liveness of the register.
1372   return LQR_Unknown;
1373 }
1374 
1375 const uint32_t *
1376 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1377   // EH funclet entry does not preserve any registers.
1378   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1379 }
1380 
1381 const uint32_t *
1382 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1383   // If we see a return block with successors, this must be a funclet return,
1384   // which does not preserve any registers. If there are no successors, we don't
1385   // care what kind of return it is, putting a mask after it is a no-op.
1386   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1387 }
1388 
1389 void MachineBasicBlock::clearLiveIns() {
1390   LiveIns.clear();
1391 }
1392 
1393 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1394   assert(getParent()->getProperties().hasProperty(
1395       MachineFunctionProperties::Property::TracksLiveness) &&
1396       "Liveness information is accurate");
1397   return LiveIns.begin();
1398 }
1399