1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb) 42 : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false), 43 AddressTaken(false), CachedMCSymbol(nullptr) { 44 Insts.Parent = this; 45 } 46 47 MachineBasicBlock::~MachineBasicBlock() { 48 } 49 50 /// Return the MCSymbol for this basic block. 51 MCSymbol *MachineBasicBlock::getSymbol() const { 52 if (!CachedMCSymbol) { 53 const MachineFunction *MF = getParent(); 54 MCContext &Ctx = MF->getContext(); 55 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 56 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 57 Twine(MF->getFunctionNumber()) + 58 "_" + Twine(getNumber())); 59 } 60 61 return CachedMCSymbol; 62 } 63 64 65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 66 MBB.print(OS); 67 return OS; 68 } 69 70 /// When an MBB is added to an MF, we need to update the parent pointer of the 71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 72 /// operand list for registers. 73 /// 74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 75 /// gets the next available unique MBB number. If it is removed from a 76 /// MachineFunction, it goes back to being #-1. 77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 78 MachineFunction &MF = *N->getParent(); 79 N->Number = MF.addToMBBNumbering(N); 80 81 // Make sure the instructions have their operands in the reginfo lists. 82 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 83 for (MachineBasicBlock::instr_iterator 84 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 85 I->AddRegOperandsToUseLists(RegInfo); 86 } 87 88 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 89 N->getParent()->removeFromMBBNumbering(N->Number); 90 N->Number = -1; 91 } 92 93 /// When we add an instruction to a basic block list, we update its parent 94 /// pointer and add its operands from reg use/def lists if appropriate. 95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 96 assert(!N->getParent() && "machine instruction already in a basic block"); 97 N->setParent(Parent); 98 99 // Add the instruction's register operands to their corresponding 100 // use/def lists. 101 MachineFunction *MF = Parent->getParent(); 102 N->AddRegOperandsToUseLists(MF->getRegInfo()); 103 } 104 105 /// When we remove an instruction from a basic block list, we update its parent 106 /// pointer and remove its operands from reg use/def lists if appropriate. 107 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 108 assert(N->getParent() && "machine instruction not in a basic block"); 109 110 // Remove from the use/def lists. 111 if (MachineFunction *MF = N->getParent()->getParent()) 112 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 113 114 N->setParent(nullptr); 115 } 116 117 /// When moving a range of instructions from one MBB list to another, we need to 118 /// update the parent pointers and the use/def lists. 119 void ilist_traits<MachineInstr>:: 120 transferNodesFromList(ilist_traits<MachineInstr> &fromList, 121 ilist_iterator<MachineInstr> first, 122 ilist_iterator<MachineInstr> last) { 123 assert(Parent->getParent() == fromList.Parent->getParent() && 124 "MachineInstr parent mismatch!"); 125 126 // Splice within the same MBB -> no change. 127 if (Parent == fromList.Parent) return; 128 129 // If splicing between two blocks within the same function, just update the 130 // parent pointers. 131 for (; first != last; ++first) 132 first->setParent(Parent); 133 } 134 135 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 136 assert(!MI->getParent() && "MI is still in a block!"); 137 Parent->getParent()->DeleteMachineInstr(MI); 138 } 139 140 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 141 instr_iterator I = instr_begin(), E = instr_end(); 142 while (I != E && I->isPHI()) 143 ++I; 144 assert((I == E || !I->isInsideBundle()) && 145 "First non-phi MI cannot be inside a bundle!"); 146 return I; 147 } 148 149 MachineBasicBlock::iterator 150 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 151 iterator E = end(); 152 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 153 ++I; 154 // FIXME: This needs to change if we wish to bundle labels / dbg_values 155 // inside the bundle. 156 assert((I == E || !I->isInsideBundle()) && 157 "First non-phi / non-label instruction is inside a bundle!"); 158 return I; 159 } 160 161 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 162 iterator B = begin(), E = end(), I = E; 163 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 164 ; /*noop */ 165 while (I != E && !I->isTerminator()) 166 ++I; 167 return I; 168 } 169 170 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 171 instr_iterator B = instr_begin(), E = instr_end(), I = E; 172 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 173 ; /*noop */ 174 while (I != E && !I->isTerminator()) 175 ++I; 176 return I; 177 } 178 179 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 180 // Skip over begin-of-block dbg_value instructions. 181 iterator I = begin(), E = end(); 182 while (I != E && I->isDebugValue()) 183 ++I; 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 188 // Skip over end-of-block dbg_value instructions. 189 instr_iterator B = instr_begin(), I = instr_end(); 190 while (I != B) { 191 --I; 192 // Return instruction that starts a bundle. 193 if (I->isDebugValue() || I->isInsideBundle()) 194 continue; 195 return I; 196 } 197 // The block is all debug values. 198 return end(); 199 } 200 201 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 202 // A block with a landing pad successor only has one other successor. 203 if (succ_size() > 2) 204 return nullptr; 205 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 206 if ((*I)->isLandingPad()) 207 return *I; 208 return nullptr; 209 } 210 211 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 212 void MachineBasicBlock::dump() const { 213 print(dbgs()); 214 } 215 #endif 216 217 StringRef MachineBasicBlock::getName() const { 218 if (const BasicBlock *LBB = getBasicBlock()) 219 return LBB->getName(); 220 else 221 return "(null)"; 222 } 223 224 /// Return a hopefully unique identifier for this block. 225 std::string MachineBasicBlock::getFullName() const { 226 std::string Name; 227 if (getParent()) 228 Name = (getParent()->getName() + ":").str(); 229 if (getBasicBlock()) 230 Name += getBasicBlock()->getName(); 231 else 232 Name += ("BB" + Twine(getNumber())).str(); 233 return Name; 234 } 235 236 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 237 const MachineFunction *MF = getParent(); 238 if (!MF) { 239 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 240 << " is null\n"; 241 return; 242 } 243 const Function *F = MF->getFunction(); 244 const Module *M = F ? F->getParent() : nullptr; 245 ModuleSlotTracker MST(M); 246 print(OS, MST, Indexes); 247 } 248 249 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 250 SlotIndexes *Indexes) const { 251 const MachineFunction *MF = getParent(); 252 if (!MF) { 253 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 254 << " is null\n"; 255 return; 256 } 257 258 if (Indexes) 259 OS << Indexes->getMBBStartIdx(this) << '\t'; 260 261 OS << "BB#" << getNumber() << ": "; 262 263 const char *Comma = ""; 264 if (const BasicBlock *LBB = getBasicBlock()) { 265 OS << Comma << "derived from LLVM BB "; 266 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 267 Comma = ", "; 268 } 269 if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 270 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 271 if (Alignment) 272 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 273 << " bytes)"; 274 275 OS << '\n'; 276 277 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 278 if (!livein_empty()) { 279 if (Indexes) OS << '\t'; 280 OS << " Live Ins:"; 281 for (unsigned LI : make_range(livein_begin(), livein_end())) { 282 OS << ' ' << PrintReg(LI, TRI); 283 } 284 OS << '\n'; 285 } 286 // Print the preds of this block according to the CFG. 287 if (!pred_empty()) { 288 if (Indexes) OS << '\t'; 289 OS << " Predecessors according to CFG:"; 290 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 291 OS << " BB#" << (*PI)->getNumber(); 292 OS << '\n'; 293 } 294 295 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 296 if (Indexes) { 297 if (Indexes->hasIndex(I)) 298 OS << Indexes->getInstructionIndex(I); 299 OS << '\t'; 300 } 301 OS << '\t'; 302 if (I->isInsideBundle()) 303 OS << " * "; 304 I->print(OS, MST); 305 } 306 307 // Print the successors of this block according to the CFG. 308 if (!succ_empty()) { 309 if (Indexes) OS << '\t'; 310 OS << " Successors according to CFG:"; 311 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 312 OS << " BB#" << (*SI)->getNumber(); 313 if (!Weights.empty()) 314 OS << '(' << *getWeightIterator(SI) << ')'; 315 } 316 OS << '\n'; 317 } 318 } 319 320 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 321 bool /*PrintType*/) const { 322 OS << "BB#" << getNumber(); 323 } 324 325 void MachineBasicBlock::removeLiveIn(unsigned Reg) { 326 livein_iterator I = std::find(livein_begin(), livein_end(), Reg); 327 if (I != LiveIns.end()) 328 LiveIns.erase(I); 329 } 330 331 bool MachineBasicBlock::isLiveIn(unsigned Reg) const { 332 livein_iterator I = std::find(livein_begin(), livein_end(), Reg); 333 return I != livein_end(); 334 } 335 336 unsigned 337 MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) { 338 assert(getParent() && "MBB must be inserted in function"); 339 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 340 assert(RC && "Register class is required"); 341 assert((isLandingPad() || this == &getParent()->front()) && 342 "Only the entry block and landing pads can have physreg live ins"); 343 344 bool LiveIn = isLiveIn(PhysReg); 345 iterator I = SkipPHIsAndLabels(begin()), E = end(); 346 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 347 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 348 349 // Look for an existing copy. 350 if (LiveIn) 351 for (;I != E && I->isCopy(); ++I) 352 if (I->getOperand(1).getReg() == PhysReg) { 353 unsigned VirtReg = I->getOperand(0).getReg(); 354 if (!MRI.constrainRegClass(VirtReg, RC)) 355 llvm_unreachable("Incompatible live-in register class."); 356 return VirtReg; 357 } 358 359 // No luck, create a virtual register. 360 unsigned VirtReg = MRI.createVirtualRegister(RC); 361 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 362 .addReg(PhysReg, RegState::Kill); 363 if (!LiveIn) 364 addLiveIn(PhysReg); 365 return VirtReg; 366 } 367 368 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 369 getParent()->splice(NewAfter, this); 370 } 371 372 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 373 MachineFunction::iterator BBI = NewBefore; 374 getParent()->splice(++BBI, this); 375 } 376 377 void MachineBasicBlock::updateTerminator() { 378 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 379 // A block with no successors has no concerns with fall-through edges. 380 if (this->succ_empty()) return; 381 382 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 383 SmallVector<MachineOperand, 4> Cond; 384 DebugLoc dl; // FIXME: this is nowhere 385 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 386 (void) B; 387 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 388 if (Cond.empty()) { 389 if (TBB) { 390 // The block has an unconditional branch. If its successor is now 391 // its layout successor, delete the branch. 392 if (isLayoutSuccessor(TBB)) 393 TII->RemoveBranch(*this); 394 } else { 395 // The block has an unconditional fallthrough. If its successor is not 396 // its layout successor, insert a branch. First we have to locate the 397 // only non-landing-pad successor, as that is the fallthrough block. 398 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 399 if ((*SI)->isLandingPad()) 400 continue; 401 assert(!TBB && "Found more than one non-landing-pad successor!"); 402 TBB = *SI; 403 } 404 405 // If there is no non-landing-pad successor, the block has no 406 // fall-through edges to be concerned with. 407 if (!TBB) 408 return; 409 410 // Finally update the unconditional successor to be reached via a branch 411 // if it would not be reached by fallthrough. 412 if (!isLayoutSuccessor(TBB)) 413 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 414 } 415 } else { 416 if (FBB) { 417 // The block has a non-fallthrough conditional branch. If one of its 418 // successors is its layout successor, rewrite it to a fallthrough 419 // conditional branch. 420 if (isLayoutSuccessor(TBB)) { 421 if (TII->ReverseBranchCondition(Cond)) 422 return; 423 TII->RemoveBranch(*this); 424 TII->InsertBranch(*this, FBB, nullptr, Cond, dl); 425 } else if (isLayoutSuccessor(FBB)) { 426 TII->RemoveBranch(*this); 427 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 428 } 429 } else { 430 // Walk through the successors and find the successor which is not 431 // a landing pad and is not the conditional branch destination (in TBB) 432 // as the fallthrough successor. 433 MachineBasicBlock *FallthroughBB = nullptr; 434 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 435 if ((*SI)->isLandingPad() || *SI == TBB) 436 continue; 437 assert(!FallthroughBB && "Found more than one fallthrough successor."); 438 FallthroughBB = *SI; 439 } 440 if (!FallthroughBB && canFallThrough()) { 441 // We fallthrough to the same basic block as the conditional jump 442 // targets. Remove the conditional jump, leaving unconditional 443 // fallthrough. 444 // FIXME: This does not seem like a reasonable pattern to support, but 445 // it has been seen in the wild coming out of degenerate ARM test cases. 446 TII->RemoveBranch(*this); 447 448 // Finally update the unconditional successor to be reached via a branch 449 // if it would not be reached by fallthrough. 450 if (!isLayoutSuccessor(TBB)) 451 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 452 return; 453 } 454 455 // The block has a fallthrough conditional branch. 456 if (isLayoutSuccessor(TBB)) { 457 if (TII->ReverseBranchCondition(Cond)) { 458 // We can't reverse the condition, add an unconditional branch. 459 Cond.clear(); 460 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 461 return; 462 } 463 TII->RemoveBranch(*this); 464 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 465 } else if (!isLayoutSuccessor(FallthroughBB)) { 466 TII->RemoveBranch(*this); 467 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl); 468 } 469 } 470 } 471 } 472 473 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) { 474 475 // If we see non-zero value for the first time it means we actually use Weight 476 // list, so we fill all Weights with 0's. 477 if (weight != 0 && Weights.empty()) 478 Weights.resize(Successors.size()); 479 480 if (weight != 0 || !Weights.empty()) 481 Weights.push_back(weight); 482 483 Successors.push_back(succ); 484 succ->addPredecessor(this); 485 } 486 487 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) { 488 succ->removePredecessor(this); 489 succ_iterator I = std::find(Successors.begin(), Successors.end(), succ); 490 assert(I != Successors.end() && "Not a current successor!"); 491 492 // If Weight list is empty it means we don't use it (disabled optimization). 493 if (!Weights.empty()) { 494 weight_iterator WI = getWeightIterator(I); 495 Weights.erase(WI); 496 } 497 498 Successors.erase(I); 499 } 500 501 MachineBasicBlock::succ_iterator 502 MachineBasicBlock::removeSuccessor(succ_iterator I) { 503 assert(I != Successors.end() && "Not a current successor!"); 504 505 // If Weight list is empty it means we don't use it (disabled optimization). 506 if (!Weights.empty()) { 507 weight_iterator WI = getWeightIterator(I); 508 Weights.erase(WI); 509 } 510 511 (*I)->removePredecessor(this); 512 return Successors.erase(I); 513 } 514 515 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 516 MachineBasicBlock *New) { 517 if (Old == New) 518 return; 519 520 succ_iterator E = succ_end(); 521 succ_iterator NewI = E; 522 succ_iterator OldI = E; 523 for (succ_iterator I = succ_begin(); I != E; ++I) { 524 if (*I == Old) { 525 OldI = I; 526 if (NewI != E) 527 break; 528 } 529 if (*I == New) { 530 NewI = I; 531 if (OldI != E) 532 break; 533 } 534 } 535 assert(OldI != E && "Old is not a successor of this block"); 536 Old->removePredecessor(this); 537 538 // If New isn't already a successor, let it take Old's place. 539 if (NewI == E) { 540 New->addPredecessor(this); 541 *OldI = New; 542 return; 543 } 544 545 // New is already a successor. 546 // Update its weight instead of adding a duplicate edge. 547 if (!Weights.empty()) { 548 weight_iterator OldWI = getWeightIterator(OldI); 549 *getWeightIterator(NewI) += *OldWI; 550 Weights.erase(OldWI); 551 } 552 Successors.erase(OldI); 553 } 554 555 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) { 556 Predecessors.push_back(pred); 557 } 558 559 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) { 560 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred); 561 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 562 Predecessors.erase(I); 563 } 564 565 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) { 566 if (this == fromMBB) 567 return; 568 569 while (!fromMBB->succ_empty()) { 570 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 571 uint32_t Weight = 0; 572 573 // If Weight list is empty it means we don't use it (disabled optimization). 574 if (!fromMBB->Weights.empty()) 575 Weight = *fromMBB->Weights.begin(); 576 577 addSuccessor(Succ, Weight); 578 fromMBB->removeSuccessor(Succ); 579 } 580 } 581 582 void 583 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) { 584 if (this == fromMBB) 585 return; 586 587 while (!fromMBB->succ_empty()) { 588 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 589 uint32_t Weight = 0; 590 if (!fromMBB->Weights.empty()) 591 Weight = *fromMBB->Weights.begin(); 592 addSuccessor(Succ, Weight); 593 fromMBB->removeSuccessor(Succ); 594 595 // Fix up any PHI nodes in the successor. 596 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 597 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 598 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 599 MachineOperand &MO = MI->getOperand(i); 600 if (MO.getMBB() == fromMBB) 601 MO.setMBB(this); 602 } 603 } 604 } 605 606 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 607 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 608 } 609 610 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 611 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 612 } 613 614 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 615 MachineFunction::const_iterator I(this); 616 return std::next(I) == MachineFunction::const_iterator(MBB); 617 } 618 619 bool MachineBasicBlock::canFallThrough() { 620 MachineFunction::iterator Fallthrough = this; 621 ++Fallthrough; 622 // If FallthroughBlock is off the end of the function, it can't fall through. 623 if (Fallthrough == getParent()->end()) 624 return false; 625 626 // If FallthroughBlock isn't a successor, no fallthrough is possible. 627 if (!isSuccessor(Fallthrough)) 628 return false; 629 630 // Analyze the branches, if any, at the end of the block. 631 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 632 SmallVector<MachineOperand, 4> Cond; 633 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 634 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 635 // If we couldn't analyze the branch, examine the last instruction. 636 // If the block doesn't end in a known control barrier, assume fallthrough 637 // is possible. The isPredicated check is needed because this code can be 638 // called during IfConversion, where an instruction which is normally a 639 // Barrier is predicated and thus no longer an actual control barrier. 640 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 641 } 642 643 // If there is no branch, control always falls through. 644 if (!TBB) return true; 645 646 // If there is some explicit branch to the fallthrough block, it can obviously 647 // reach, even though the branch should get folded to fall through implicitly. 648 if (MachineFunction::iterator(TBB) == Fallthrough || 649 MachineFunction::iterator(FBB) == Fallthrough) 650 return true; 651 652 // If it's an unconditional branch to some block not the fall through, it 653 // doesn't fall through. 654 if (Cond.empty()) return false; 655 656 // Otherwise, if it is conditional and has no explicit false block, it falls 657 // through. 658 return FBB == nullptr; 659 } 660 661 MachineBasicBlock * 662 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 663 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 664 // it in this generic function. 665 if (Succ->isLandingPad()) 666 return nullptr; 667 668 MachineFunction *MF = getParent(); 669 DebugLoc dl; // FIXME: this is nowhere 670 671 // Performance might be harmed on HW that implements branching using exec mask 672 // where both sides of the branches are always executed. 673 if (MF->getTarget().requiresStructuredCFG()) 674 return nullptr; 675 676 // We may need to update this's terminator, but we can't do that if 677 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 678 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 679 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 680 SmallVector<MachineOperand, 4> Cond; 681 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 682 return nullptr; 683 684 // Avoid bugpoint weirdness: A block may end with a conditional branch but 685 // jumps to the same MBB is either case. We have duplicate CFG edges in that 686 // case that we can't handle. Since this never happens in properly optimized 687 // code, just skip those edges. 688 if (TBB && TBB == FBB) { 689 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 690 << getNumber() << '\n'); 691 return nullptr; 692 } 693 694 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 695 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 696 DEBUG(dbgs() << "Splitting critical edge:" 697 " BB#" << getNumber() 698 << " -- BB#" << NMBB->getNumber() 699 << " -- BB#" << Succ->getNumber() << '\n'); 700 701 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 702 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 703 if (LIS) 704 LIS->insertMBBInMaps(NMBB); 705 else if (Indexes) 706 Indexes->insertMBBInMaps(NMBB); 707 708 // On some targets like Mips, branches may kill virtual registers. Make sure 709 // that LiveVariables is properly updated after updateTerminator replaces the 710 // terminators. 711 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 712 713 // Collect a list of virtual registers killed by the terminators. 714 SmallVector<unsigned, 4> KilledRegs; 715 if (LV) 716 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 717 I != E; ++I) { 718 MachineInstr *MI = I; 719 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 720 OE = MI->operands_end(); OI != OE; ++OI) { 721 if (!OI->isReg() || OI->getReg() == 0 || 722 !OI->isUse() || !OI->isKill() || OI->isUndef()) 723 continue; 724 unsigned Reg = OI->getReg(); 725 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 726 LV->getVarInfo(Reg).removeKill(MI)) { 727 KilledRegs.push_back(Reg); 728 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 729 OI->setIsKill(false); 730 } 731 } 732 } 733 734 SmallVector<unsigned, 4> UsedRegs; 735 if (LIS) { 736 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 737 I != E; ++I) { 738 MachineInstr *MI = I; 739 740 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 741 OE = MI->operands_end(); OI != OE; ++OI) { 742 if (!OI->isReg() || OI->getReg() == 0) 743 continue; 744 745 unsigned Reg = OI->getReg(); 746 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 747 UsedRegs.push_back(Reg); 748 } 749 } 750 } 751 752 ReplaceUsesOfBlockWith(Succ, NMBB); 753 754 // If updateTerminator() removes instructions, we need to remove them from 755 // SlotIndexes. 756 SmallVector<MachineInstr*, 4> Terminators; 757 if (Indexes) { 758 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 759 I != E; ++I) 760 Terminators.push_back(I); 761 } 762 763 updateTerminator(); 764 765 if (Indexes) { 766 SmallVector<MachineInstr*, 4> NewTerminators; 767 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 768 I != E; ++I) 769 NewTerminators.push_back(I); 770 771 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 772 E = Terminators.end(); I != E; ++I) { 773 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 774 NewTerminators.end()) 775 Indexes->removeMachineInstrFromMaps(*I); 776 } 777 } 778 779 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 780 NMBB->addSuccessor(Succ); 781 if (!NMBB->isLayoutSuccessor(Succ)) { 782 Cond.clear(); 783 MF->getSubtarget().getInstrInfo()->InsertBranch(*NMBB, Succ, nullptr, Cond, 784 dl); 785 786 if (Indexes) { 787 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 788 I != E; ++I) { 789 // Some instructions may have been moved to NMBB by updateTerminator(), 790 // so we first remove any instruction that already has an index. 791 if (Indexes->hasIndex(I)) 792 Indexes->removeMachineInstrFromMaps(I); 793 Indexes->insertMachineInstrInMaps(I); 794 } 795 } 796 } 797 798 // Fix PHI nodes in Succ so they refer to NMBB instead of this 799 for (MachineBasicBlock::instr_iterator 800 i = Succ->instr_begin(),e = Succ->instr_end(); 801 i != e && i->isPHI(); ++i) 802 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 803 if (i->getOperand(ni+1).getMBB() == this) 804 i->getOperand(ni+1).setMBB(NMBB); 805 806 // Inherit live-ins from the successor 807 for (unsigned LI : Succ->liveins()) 808 NMBB->addLiveIn(LI); 809 810 // Update LiveVariables. 811 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 812 if (LV) { 813 // Restore kills of virtual registers that were killed by the terminators. 814 while (!KilledRegs.empty()) { 815 unsigned Reg = KilledRegs.pop_back_val(); 816 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 817 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 818 continue; 819 if (TargetRegisterInfo::isVirtualRegister(Reg)) 820 LV->getVarInfo(Reg).Kills.push_back(I); 821 DEBUG(dbgs() << "Restored terminator kill: " << *I); 822 break; 823 } 824 } 825 // Update relevant live-through information. 826 LV->addNewBlock(NMBB, this, Succ); 827 } 828 829 if (LIS) { 830 // After splitting the edge and updating SlotIndexes, live intervals may be 831 // in one of two situations, depending on whether this block was the last in 832 // the function. If the original block was the last in the function, all 833 // live intervals will end prior to the beginning of the new split block. If 834 // the original block was not at the end of the function, all live intervals 835 // will extend to the end of the new split block. 836 837 bool isLastMBB = 838 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 839 840 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 841 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 842 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 843 844 // Find the registers used from NMBB in PHIs in Succ. 845 SmallSet<unsigned, 8> PHISrcRegs; 846 for (MachineBasicBlock::instr_iterator 847 I = Succ->instr_begin(), E = Succ->instr_end(); 848 I != E && I->isPHI(); ++I) { 849 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 850 if (I->getOperand(ni+1).getMBB() == NMBB) { 851 MachineOperand &MO = I->getOperand(ni); 852 unsigned Reg = MO.getReg(); 853 PHISrcRegs.insert(Reg); 854 if (MO.isUndef()) 855 continue; 856 857 LiveInterval &LI = LIS->getInterval(Reg); 858 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 859 assert(VNI && 860 "PHI sources should be live out of their predecessors."); 861 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 862 } 863 } 864 } 865 866 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 867 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 868 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 869 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 870 continue; 871 872 LiveInterval &LI = LIS->getInterval(Reg); 873 if (!LI.liveAt(PrevIndex)) 874 continue; 875 876 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 877 if (isLiveOut && isLastMBB) { 878 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 879 assert(VNI && "LiveInterval should have VNInfo where it is live."); 880 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 881 } else if (!isLiveOut && !isLastMBB) { 882 LI.removeSegment(StartIndex, EndIndex); 883 } 884 } 885 886 // Update all intervals for registers whose uses may have been modified by 887 // updateTerminator(). 888 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 889 } 890 891 if (MachineDominatorTree *MDT = 892 P->getAnalysisIfAvailable<MachineDominatorTree>()) 893 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 894 895 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 896 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 897 // If one or the other blocks were not in a loop, the new block is not 898 // either, and thus LI doesn't need to be updated. 899 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 900 if (TIL == DestLoop) { 901 // Both in the same loop, the NMBB joins loop. 902 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 903 } else if (TIL->contains(DestLoop)) { 904 // Edge from an outer loop to an inner loop. Add to the outer loop. 905 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 906 } else if (DestLoop->contains(TIL)) { 907 // Edge from an inner loop to an outer loop. Add to the outer loop. 908 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 909 } else { 910 // Edge from two loops with no containment relation. Because these 911 // are natural loops, we know that the destination block must be the 912 // header of its loop (adding a branch into a loop elsewhere would 913 // create an irreducible loop). 914 assert(DestLoop->getHeader() == Succ && 915 "Should not create irreducible loops!"); 916 if (MachineLoop *P = DestLoop->getParentLoop()) 917 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 918 } 919 } 920 } 921 922 return NMBB; 923 } 924 925 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 926 /// neighboring instructions so the bundle won't be broken by removing MI. 927 static void unbundleSingleMI(MachineInstr *MI) { 928 // Removing the first instruction in a bundle. 929 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 930 MI->unbundleFromSucc(); 931 // Removing the last instruction in a bundle. 932 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 933 MI->unbundleFromPred(); 934 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 935 // are already fine. 936 } 937 938 MachineBasicBlock::instr_iterator 939 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 940 unbundleSingleMI(I); 941 return Insts.erase(I); 942 } 943 944 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 945 unbundleSingleMI(MI); 946 MI->clearFlag(MachineInstr::BundledPred); 947 MI->clearFlag(MachineInstr::BundledSucc); 948 return Insts.remove(MI); 949 } 950 951 MachineBasicBlock::instr_iterator 952 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 953 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 954 "Cannot insert instruction with bundle flags"); 955 // Set the bundle flags when inserting inside a bundle. 956 if (I != instr_end() && I->isBundledWithPred()) { 957 MI->setFlag(MachineInstr::BundledPred); 958 MI->setFlag(MachineInstr::BundledSucc); 959 } 960 return Insts.insert(I, MI); 961 } 962 963 /// This method unlinks 'this' from the containing function, and returns it, but 964 /// does not delete it. 965 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 966 assert(getParent() && "Not embedded in a function!"); 967 getParent()->remove(this); 968 return this; 969 } 970 971 /// This method unlinks 'this' from the containing function, and deletes it. 972 void MachineBasicBlock::eraseFromParent() { 973 assert(getParent() && "Not embedded in a function!"); 974 getParent()->erase(this); 975 } 976 977 /// Given a machine basic block that branched to 'Old', change the code and CFG 978 /// so that it branches to 'New' instead. 979 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 980 MachineBasicBlock *New) { 981 assert(Old != New && "Cannot replace self with self!"); 982 983 MachineBasicBlock::instr_iterator I = instr_end(); 984 while (I != instr_begin()) { 985 --I; 986 if (!I->isTerminator()) break; 987 988 // Scan the operands of this machine instruction, replacing any uses of Old 989 // with New. 990 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 991 if (I->getOperand(i).isMBB() && 992 I->getOperand(i).getMBB() == Old) 993 I->getOperand(i).setMBB(New); 994 } 995 996 // Update the successor information. 997 replaceSuccessor(Old, New); 998 } 999 1000 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1001 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1002 /// MBB successors from the CFG. DestA and DestB can be null. 1003 /// 1004 /// Besides DestA and DestB, retain other edges leading to LandingPads 1005 /// (currently there can be only one; we don't check or require that here). 1006 /// Note it is possible that DestA and/or DestB are LandingPads. 1007 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1008 MachineBasicBlock *DestB, 1009 bool isCond) { 1010 // The values of DestA and DestB frequently come from a call to the 1011 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1012 // values from there. 1013 // 1014 // 1. If both DestA and DestB are null, then the block ends with no branches 1015 // (it falls through to its successor). 1016 // 2. If DestA is set, DestB is null, and isCond is false, then the block ends 1017 // with only an unconditional branch. 1018 // 3. If DestA is set, DestB is null, and isCond is true, then the block ends 1019 // with a conditional branch that falls through to a successor (DestB). 1020 // 4. If DestA and DestB is set and isCond is true, then the block ends with a 1021 // conditional branch followed by an unconditional branch. DestA is the 1022 // 'true' destination and DestB is the 'false' destination. 1023 1024 bool Changed = false; 1025 1026 MachineFunction::iterator FallThru = 1027 std::next(MachineFunction::iterator(this)); 1028 1029 if (!DestA && !DestB) { 1030 // Block falls through to successor. 1031 DestA = FallThru; 1032 DestB = FallThru; 1033 } else if (DestA && !DestB) { 1034 if (isCond) 1035 // Block ends in conditional jump that falls through to successor. 1036 DestB = FallThru; 1037 } else { 1038 assert(DestA && DestB && isCond && 1039 "CFG in a bad state. Cannot correct CFG edges"); 1040 } 1041 1042 // Remove superfluous edges. I.e., those which aren't destinations of this 1043 // basic block, duplicate edges, or landing pads. 1044 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1045 MachineBasicBlock::succ_iterator SI = succ_begin(); 1046 while (SI != succ_end()) { 1047 const MachineBasicBlock *MBB = *SI; 1048 if (!SeenMBBs.insert(MBB).second || 1049 (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) { 1050 // This is a superfluous edge, remove it. 1051 SI = removeSuccessor(SI); 1052 Changed = true; 1053 } else { 1054 ++SI; 1055 } 1056 } 1057 1058 return Changed; 1059 } 1060 1061 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1062 /// instructions. Return UnknownLoc if there is none. 1063 DebugLoc 1064 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1065 DebugLoc DL; 1066 instr_iterator E = instr_end(); 1067 if (MBBI == E) 1068 return DL; 1069 1070 // Skip debug declarations, we don't want a DebugLoc from them. 1071 while (MBBI != E && MBBI->isDebugValue()) 1072 MBBI++; 1073 if (MBBI != E) 1074 DL = MBBI->getDebugLoc(); 1075 return DL; 1076 } 1077 1078 /// Return weight of the edge from this block to MBB. 1079 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { 1080 if (Weights.empty()) 1081 return 0; 1082 1083 return *getWeightIterator(Succ); 1084 } 1085 1086 /// Set successor weight of a given iterator. 1087 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t weight) { 1088 if (Weights.empty()) 1089 return; 1090 *getWeightIterator(I) = weight; 1091 } 1092 1093 /// Return wight iterator corresonding to the I successor iterator. 1094 MachineBasicBlock::weight_iterator MachineBasicBlock:: 1095 getWeightIterator(MachineBasicBlock::succ_iterator I) { 1096 assert(Weights.size() == Successors.size() && "Async weight list!"); 1097 size_t index = std::distance(Successors.begin(), I); 1098 assert(index < Weights.size() && "Not a current successor!"); 1099 return Weights.begin() + index; 1100 } 1101 1102 /// Return wight iterator corresonding to the I successor iterator. 1103 MachineBasicBlock::const_weight_iterator MachineBasicBlock:: 1104 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { 1105 assert(Weights.size() == Successors.size() && "Async weight list!"); 1106 const size_t index = std::distance(Successors.begin(), I); 1107 assert(index < Weights.size() && "Not a current successor!"); 1108 return Weights.begin() + index; 1109 } 1110 1111 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1112 /// as of just before "MI". 1113 /// 1114 /// Search is localised to a neighborhood of 1115 /// Neighborhood instructions before (searching for defs or kills) and N 1116 /// instructions after (searching just for defs) MI. 1117 MachineBasicBlock::LivenessQueryResult 1118 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1119 unsigned Reg, const_iterator Before, 1120 unsigned Neighborhood) const { 1121 unsigned N = Neighborhood; 1122 1123 // Start by searching backwards from Before, looking for kills, reads or defs. 1124 const_iterator I(Before); 1125 // If this is the first insn in the block, don't search backwards. 1126 if (I != begin()) { 1127 do { 1128 --I; 1129 1130 MachineOperandIteratorBase::PhysRegInfo Analysis = 1131 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1132 1133 if (Analysis.Defines) 1134 // Outputs happen after inputs so they take precedence if both are 1135 // present. 1136 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 1137 1138 if (Analysis.Kills || Analysis.Clobbers) 1139 // Register killed, so isn't live. 1140 return LQR_Dead; 1141 1142 else if (Analysis.ReadsOverlap) 1143 // Defined or read without a previous kill - live. 1144 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 1145 1146 } while (I != begin() && --N > 0); 1147 } 1148 1149 // Did we get to the start of the block? 1150 if (I == begin()) { 1151 // If so, the register's state is definitely defined by the live-in state. 1152 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 1153 RAI.isValid(); ++RAI) { 1154 if (isLiveIn(*RAI)) 1155 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 1156 } 1157 1158 return LQR_Dead; 1159 } 1160 1161 N = Neighborhood; 1162 1163 // Try searching forwards from Before, looking for reads or defs. 1164 I = const_iterator(Before); 1165 // If this is the last insn in the block, don't search forwards. 1166 if (I != end()) { 1167 for (++I; I != end() && N > 0; ++I, --N) { 1168 MachineOperandIteratorBase::PhysRegInfo Analysis = 1169 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1170 1171 if (Analysis.ReadsOverlap) 1172 // Used, therefore must have been live. 1173 return (Analysis.Reads) ? 1174 LQR_Live : LQR_OverlappingLive; 1175 1176 else if (Analysis.Clobbers || Analysis.Defines) 1177 // Defined (but not read) therefore cannot have been live. 1178 return LQR_Dead; 1179 } 1180 } 1181 1182 // At this point we have no idea of the liveness of the register. 1183 return LQR_Unknown; 1184 } 1185