xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 79d0de2ac37b6b7d66720611935d1dd7fc4fbd43)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/StringExtras.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LivePhysRegs.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SlotIndexes.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/ModuleSlotTracker.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCContext.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <algorithm>
40 #include <cmath>
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "codegen"
44 
45 static cl::opt<bool> PrintSlotIndexes(
46     "print-slotindexes",
47     cl::desc("When printing machine IR, annotate instructions and blocks with "
48              "SlotIndexes when available"),
49     cl::init(true), cl::Hidden);
50 
51 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
52     : BB(B), Number(-1), xParent(&MF) {
53   Insts.Parent = this;
54   if (B)
55     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
56 }
57 
58 MachineBasicBlock::~MachineBasicBlock() = default;
59 
60 /// Return the MCSymbol for this basic block.
61 MCSymbol *MachineBasicBlock::getSymbol() const {
62   if (!CachedMCSymbol) {
63     const MachineFunction *MF = getParent();
64     MCContext &Ctx = MF->getContext();
65 
66     // We emit a non-temporary symbol -- with a descriptive name -- if it begins
67     // a section (with basic block sections). Otherwise we fall back to use temp
68     // label.
69     if (MF->hasBBSections() && isBeginSection()) {
70       SmallString<5> Suffix;
71       if (SectionID == MBBSectionID::ColdSectionID) {
72         Suffix += ".cold";
73       } else if (SectionID == MBBSectionID::ExceptionSectionID) {
74         Suffix += ".eh";
75       } else {
76         // For symbols that represent basic block sections, we add ".__part." to
77         // allow tools like symbolizers to know that this represents a part of
78         // the original function.
79         Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
80       }
81       CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
82     } else {
83       // If the block occurs as label in inline assembly, parsing the assembly
84       // needs an actual label name => set AlwaysEmit in these cases.
85       CachedMCSymbol = Ctx.createBlockSymbol(
86           "BB" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber()),
87           /*AlwaysEmit=*/hasLabelMustBeEmitted());
88     }
89   }
90   return CachedMCSymbol;
91 }
92 
93 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
94   if (!CachedEHCatchretMCSymbol) {
95     const MachineFunction *MF = getParent();
96     SmallString<128> SymbolName;
97     raw_svector_ostream(SymbolName)
98         << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
99     CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
100   }
101   return CachedEHCatchretMCSymbol;
102 }
103 
104 MCSymbol *MachineBasicBlock::getEndSymbol() const {
105   if (!CachedEndMCSymbol) {
106     const MachineFunction *MF = getParent();
107     MCContext &Ctx = MF->getContext();
108     CachedEndMCSymbol = Ctx.createBlockSymbol(
109         "BB_END" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber()),
110         /*AlwaysEmit=*/false);
111   }
112   return CachedEndMCSymbol;
113 }
114 
115 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
116   MBB.print(OS);
117   return OS;
118 }
119 
120 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
121   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
122 }
123 
124 /// When an MBB is added to an MF, we need to update the parent pointer of the
125 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
126 /// operand list for registers.
127 ///
128 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
129 /// gets the next available unique MBB number. If it is removed from a
130 /// MachineFunction, it goes back to being #-1.
131 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
132     MachineBasicBlock *N) {
133   MachineFunction &MF = *N->getParent();
134   N->Number = MF.addToMBBNumbering(N);
135 
136   // Make sure the instructions have their operands in the reginfo lists.
137   MachineRegisterInfo &RegInfo = MF.getRegInfo();
138   for (MachineInstr &MI : N->instrs())
139     MI.addRegOperandsToUseLists(RegInfo);
140 }
141 
142 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
143     MachineBasicBlock *N) {
144   N->getParent()->removeFromMBBNumbering(N->Number);
145   N->Number = -1;
146 }
147 
148 /// When we add an instruction to a basic block list, we update its parent
149 /// pointer and add its operands from reg use/def lists if appropriate.
150 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
151   assert(!N->getParent() && "machine instruction already in a basic block");
152   N->setParent(Parent);
153 
154   // Add the instruction's register operands to their corresponding
155   // use/def lists.
156   MachineFunction *MF = Parent->getParent();
157   N->addRegOperandsToUseLists(MF->getRegInfo());
158   MF->handleInsertion(*N);
159 }
160 
161 /// When we remove an instruction from a basic block list, we update its parent
162 /// pointer and remove its operands from reg use/def lists if appropriate.
163 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
164   assert(N->getParent() && "machine instruction not in a basic block");
165 
166   // Remove from the use/def lists.
167   if (MachineFunction *MF = N->getMF()) {
168     MF->handleRemoval(*N);
169     N->removeRegOperandsFromUseLists(MF->getRegInfo());
170   }
171 
172   N->setParent(nullptr);
173 }
174 
175 /// When moving a range of instructions from one MBB list to another, we need to
176 /// update the parent pointers and the use/def lists.
177 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
178                                                        instr_iterator First,
179                                                        instr_iterator Last) {
180   assert(Parent->getParent() == FromList.Parent->getParent() &&
181          "cannot transfer MachineInstrs between MachineFunctions");
182 
183   // If it's within the same BB, there's nothing to do.
184   if (this == &FromList)
185     return;
186 
187   assert(Parent != FromList.Parent && "Two lists have the same parent?");
188 
189   // If splicing between two blocks within the same function, just update the
190   // parent pointers.
191   for (; First != Last; ++First)
192     First->setParent(Parent);
193 }
194 
195 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
196   assert(!MI->getParent() && "MI is still in a block!");
197   Parent->getParent()->deleteMachineInstr(MI);
198 }
199 
200 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
201   instr_iterator I = instr_begin(), E = instr_end();
202   while (I != E && I->isPHI())
203     ++I;
204   assert((I == E || !I->isInsideBundle()) &&
205          "First non-phi MI cannot be inside a bundle!");
206   return I;
207 }
208 
209 MachineBasicBlock::iterator
210 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
211   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
212 
213   iterator E = end();
214   while (I != E && (I->isPHI() || I->isPosition() ||
215                     TII->isBasicBlockPrologue(*I)))
216     ++I;
217   // FIXME: This needs to change if we wish to bundle labels
218   // inside the bundle.
219   assert((I == E || !I->isInsideBundle()) &&
220          "First non-phi / non-label instruction is inside a bundle!");
221   return I;
222 }
223 
224 MachineBasicBlock::iterator
225 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
226                                           Register Reg, bool SkipPseudoOp) {
227   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
228 
229   iterator E = end();
230   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
231                     (SkipPseudoOp && I->isPseudoProbe()) ||
232                     TII->isBasicBlockPrologue(*I, Reg)))
233     ++I;
234   // FIXME: This needs to change if we wish to bundle labels / dbg_values
235   // inside the bundle.
236   assert((I == E || !I->isInsideBundle()) &&
237          "First non-phi / non-label / non-debug "
238          "instruction is inside a bundle!");
239   return I;
240 }
241 
242 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
243   iterator B = begin(), E = end(), I = E;
244   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
245     ; /*noop */
246   while (I != E && !I->isTerminator())
247     ++I;
248   return I;
249 }
250 
251 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
252   instr_iterator B = instr_begin(), E = instr_end(), I = E;
253   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
254     ; /*noop */
255   while (I != E && !I->isTerminator())
256     ++I;
257   return I;
258 }
259 
260 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() {
261   return find_if(instrs(), [](auto &II) { return II.isTerminator(); });
262 }
263 
264 MachineBasicBlock::iterator
265 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
266   // Skip over begin-of-block dbg_value instructions.
267   return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
268 }
269 
270 MachineBasicBlock::iterator
271 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
272   // Skip over end-of-block dbg_value instructions.
273   instr_iterator B = instr_begin(), I = instr_end();
274   while (I != B) {
275     --I;
276     // Return instruction that starts a bundle.
277     if (I->isDebugInstr() || I->isInsideBundle())
278       continue;
279     if (SkipPseudoOp && I->isPseudoProbe())
280       continue;
281     return I;
282   }
283   // The block is all debug values.
284   return end();
285 }
286 
287 bool MachineBasicBlock::hasEHPadSuccessor() const {
288   for (const MachineBasicBlock *Succ : successors())
289     if (Succ->isEHPad())
290       return true;
291   return false;
292 }
293 
294 bool MachineBasicBlock::isEntryBlock() const {
295   return getParent()->begin() == getIterator();
296 }
297 
298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
299 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
300   print(dbgs());
301 }
302 #endif
303 
304 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
305   for (const MachineBasicBlock *Succ : successors()) {
306     if (Succ->isInlineAsmBrIndirectTarget())
307       return true;
308   }
309   return false;
310 }
311 
312 bool MachineBasicBlock::isLegalToHoistInto() const {
313   if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
314     return false;
315   return true;
316 }
317 
318 bool MachineBasicBlock::hasName() const {
319   if (const BasicBlock *LBB = getBasicBlock())
320     return LBB->hasName();
321   return false;
322 }
323 
324 StringRef MachineBasicBlock::getName() const {
325   if (const BasicBlock *LBB = getBasicBlock())
326     return LBB->getName();
327   else
328     return StringRef("", 0);
329 }
330 
331 /// Return a hopefully unique identifier for this block.
332 std::string MachineBasicBlock::getFullName() const {
333   std::string Name;
334   if (getParent())
335     Name = (getParent()->getName() + ":").str();
336   if (getBasicBlock())
337     Name += getBasicBlock()->getName();
338   else
339     Name += ("BB" + Twine(getNumber())).str();
340   return Name;
341 }
342 
343 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
344                               bool IsStandalone) const {
345   const MachineFunction *MF = getParent();
346   if (!MF) {
347     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
348        << " is null\n";
349     return;
350   }
351   const Function &F = MF->getFunction();
352   const Module *M = F.getParent();
353   ModuleSlotTracker MST(M);
354   MST.incorporateFunction(F);
355   print(OS, MST, Indexes, IsStandalone);
356 }
357 
358 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
359                               const SlotIndexes *Indexes,
360                               bool IsStandalone) const {
361   const MachineFunction *MF = getParent();
362   if (!MF) {
363     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
364        << " is null\n";
365     return;
366   }
367 
368   if (Indexes && PrintSlotIndexes)
369     OS << Indexes->getMBBStartIdx(this) << '\t';
370 
371   printName(OS, PrintNameIr | PrintNameAttributes, &MST);
372   OS << ":\n";
373 
374   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
375   const MachineRegisterInfo &MRI = MF->getRegInfo();
376   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
377   bool HasLineAttributes = false;
378 
379   // Print the preds of this block according to the CFG.
380   if (!pred_empty() && IsStandalone) {
381     if (Indexes) OS << '\t';
382     // Don't indent(2), align with previous line attributes.
383     OS << "; predecessors: ";
384     ListSeparator LS;
385     for (auto *Pred : predecessors())
386       OS << LS << printMBBReference(*Pred);
387     OS << '\n';
388     HasLineAttributes = true;
389   }
390 
391   if (!succ_empty()) {
392     if (Indexes) OS << '\t';
393     // Print the successors
394     OS.indent(2) << "successors: ";
395     ListSeparator LS;
396     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
397       OS << LS << printMBBReference(**I);
398       if (!Probs.empty())
399         OS << '('
400            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
401            << ')';
402     }
403     if (!Probs.empty() && IsStandalone) {
404       // Print human readable probabilities as comments.
405       OS << "; ";
406       ListSeparator LS;
407       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
408         const BranchProbability &BP = getSuccProbability(I);
409         OS << LS << printMBBReference(**I) << '('
410            << format("%.2f%%",
411                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
412                           100.0 * 100.0) /
413                          100.0)
414            << ')';
415       }
416     }
417 
418     OS << '\n';
419     HasLineAttributes = true;
420   }
421 
422   if (!livein_empty() && MRI.tracksLiveness()) {
423     if (Indexes) OS << '\t';
424     OS.indent(2) << "liveins: ";
425 
426     ListSeparator LS;
427     for (const auto &LI : liveins()) {
428       OS << LS << printReg(LI.PhysReg, TRI);
429       if (!LI.LaneMask.all())
430         OS << ":0x" << PrintLaneMask(LI.LaneMask);
431     }
432     HasLineAttributes = true;
433   }
434 
435   if (HasLineAttributes)
436     OS << '\n';
437 
438   bool IsInBundle = false;
439   for (const MachineInstr &MI : instrs()) {
440     if (Indexes && PrintSlotIndexes) {
441       if (Indexes->hasIndex(MI))
442         OS << Indexes->getInstructionIndex(MI);
443       OS << '\t';
444     }
445 
446     if (IsInBundle && !MI.isInsideBundle()) {
447       OS.indent(2) << "}\n";
448       IsInBundle = false;
449     }
450 
451     OS.indent(IsInBundle ? 4 : 2);
452     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
453              /*AddNewLine=*/false, &TII);
454 
455     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
456       OS << " {";
457       IsInBundle = true;
458     }
459     OS << '\n';
460   }
461 
462   if (IsInBundle)
463     OS.indent(2) << "}\n";
464 
465   if (IrrLoopHeaderWeight && IsStandalone) {
466     if (Indexes) OS << '\t';
467     OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight
468                  << '\n';
469   }
470 }
471 
472 /// Print the basic block's name as:
473 ///
474 ///    bb.{number}[.{ir-name}] [(attributes...)]
475 ///
476 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
477 /// (which is the default). If the IR block has no name, it is identified
478 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
479 ///
480 /// When the \ref PrintNameAttributes flag is passed, additional attributes
481 /// of the block are printed when set.
482 ///
483 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
484 ///                       the parts to print.
485 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
486 ///                          incorporate its own tracker when necessary to
487 ///                          determine the block's IR name.
488 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
489                                   ModuleSlotTracker *moduleSlotTracker) const {
490   os << "bb." << getNumber();
491   bool hasAttributes = false;
492 
493   auto PrintBBRef = [&](const BasicBlock *bb) {
494     os << "%ir-block.";
495     if (bb->hasName()) {
496       os << bb->getName();
497     } else {
498       int slot = -1;
499 
500       if (moduleSlotTracker) {
501         slot = moduleSlotTracker->getLocalSlot(bb);
502       } else if (bb->getParent()) {
503         ModuleSlotTracker tmpTracker(bb->getModule(), false);
504         tmpTracker.incorporateFunction(*bb->getParent());
505         slot = tmpTracker.getLocalSlot(bb);
506       }
507 
508       if (slot == -1)
509         os << "<ir-block badref>";
510       else
511         os << slot;
512     }
513   };
514 
515   if (printNameFlags & PrintNameIr) {
516     if (const auto *bb = getBasicBlock()) {
517       if (bb->hasName()) {
518         os << '.' << bb->getName();
519       } else {
520         hasAttributes = true;
521         os << " (";
522         PrintBBRef(bb);
523       }
524     }
525   }
526 
527   if (printNameFlags & PrintNameAttributes) {
528     if (isMachineBlockAddressTaken()) {
529       os << (hasAttributes ? ", " : " (");
530       os << "machine-block-address-taken";
531       hasAttributes = true;
532     }
533     if (isIRBlockAddressTaken()) {
534       os << (hasAttributes ? ", " : " (");
535       os << "ir-block-address-taken ";
536       PrintBBRef(getAddressTakenIRBlock());
537       hasAttributes = true;
538     }
539     if (isEHPad()) {
540       os << (hasAttributes ? ", " : " (");
541       os << "landing-pad";
542       hasAttributes = true;
543     }
544     if (isInlineAsmBrIndirectTarget()) {
545       os << (hasAttributes ? ", " : " (");
546       os << "inlineasm-br-indirect-target";
547       hasAttributes = true;
548     }
549     if (isEHFuncletEntry()) {
550       os << (hasAttributes ? ", " : " (");
551       os << "ehfunclet-entry";
552       hasAttributes = true;
553     }
554     if (getAlignment() != Align(1)) {
555       os << (hasAttributes ? ", " : " (");
556       os << "align " << getAlignment().value();
557       hasAttributes = true;
558     }
559     if (getSectionID() != MBBSectionID(0)) {
560       os << (hasAttributes ? ", " : " (");
561       os << "bbsections ";
562       switch (getSectionID().Type) {
563       case MBBSectionID::SectionType::Exception:
564         os << "Exception";
565         break;
566       case MBBSectionID::SectionType::Cold:
567         os << "Cold";
568         break;
569       default:
570         os << getSectionID().Number;
571       }
572       hasAttributes = true;
573     }
574     if (getBBID().has_value()) {
575       os << (hasAttributes ? ", " : " (");
576       os << "bb_id " << getBBID()->BaseID;
577       if (getBBID()->CloneID != 0)
578         os << " " << getBBID()->CloneID;
579       hasAttributes = true;
580     }
581     if (CallFrameSize != 0) {
582       os << (hasAttributes ? ", " : " (");
583       os << "call-frame-size " << CallFrameSize;
584       hasAttributes = true;
585     }
586   }
587 
588   if (hasAttributes)
589     os << ')';
590 }
591 
592 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
593                                        bool /*PrintType*/) const {
594   OS << '%';
595   printName(OS, 0);
596 }
597 
598 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
599   LiveInVector::iterator I = find_if(
600       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
601   if (I == LiveIns.end())
602     return;
603 
604   I->LaneMask &= ~LaneMask;
605   if (I->LaneMask.none())
606     LiveIns.erase(I);
607 }
608 
609 MachineBasicBlock::livein_iterator
610 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
611   // Get non-const version of iterator.
612   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
613   return LiveIns.erase(LI);
614 }
615 
616 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
617   livein_iterator I = find_if(
618       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
619   return I != livein_end() && (I->LaneMask & LaneMask).any();
620 }
621 
622 void MachineBasicBlock::sortUniqueLiveIns() {
623   llvm::sort(LiveIns,
624              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
625                return LI0.PhysReg < LI1.PhysReg;
626              });
627   // Liveins are sorted by physreg now we can merge their lanemasks.
628   LiveInVector::const_iterator I = LiveIns.begin();
629   LiveInVector::const_iterator J;
630   LiveInVector::iterator Out = LiveIns.begin();
631   for (; I != LiveIns.end(); ++Out, I = J) {
632     MCRegister PhysReg = I->PhysReg;
633     LaneBitmask LaneMask = I->LaneMask;
634     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
635       LaneMask |= J->LaneMask;
636     Out->PhysReg = PhysReg;
637     Out->LaneMask = LaneMask;
638   }
639   LiveIns.erase(Out, LiveIns.end());
640 }
641 
642 Register
643 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
644   assert(getParent() && "MBB must be inserted in function");
645   assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
646   assert(RC && "Register class is required");
647   assert((isEHPad() || this == &getParent()->front()) &&
648          "Only the entry block and landing pads can have physreg live ins");
649 
650   bool LiveIn = isLiveIn(PhysReg);
651   iterator I = SkipPHIsAndLabels(begin()), E = end();
652   MachineRegisterInfo &MRI = getParent()->getRegInfo();
653   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
654 
655   // Look for an existing copy.
656   if (LiveIn)
657     for (;I != E && I->isCopy(); ++I)
658       if (I->getOperand(1).getReg() == PhysReg) {
659         Register VirtReg = I->getOperand(0).getReg();
660         if (!MRI.constrainRegClass(VirtReg, RC))
661           llvm_unreachable("Incompatible live-in register class.");
662         return VirtReg;
663       }
664 
665   // No luck, create a virtual register.
666   Register VirtReg = MRI.createVirtualRegister(RC);
667   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
668     .addReg(PhysReg, RegState::Kill);
669   if (!LiveIn)
670     addLiveIn(PhysReg);
671   return VirtReg;
672 }
673 
674 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
675   getParent()->splice(NewAfter->getIterator(), getIterator());
676 }
677 
678 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
679   getParent()->splice(++NewBefore->getIterator(), getIterator());
680 }
681 
682 static int findJumpTableIndex(const MachineBasicBlock &MBB) {
683   MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator();
684   if (TerminatorI == MBB.end())
685     return -1;
686   const MachineInstr &Terminator = *TerminatorI;
687   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
688   return TII->getJumpTableIndex(Terminator);
689 }
690 
691 void MachineBasicBlock::updateTerminator(
692     MachineBasicBlock *PreviousLayoutSuccessor) {
693   LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
694                     << "\n");
695 
696   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
697   // A block with no successors has no concerns with fall-through edges.
698   if (this->succ_empty())
699     return;
700 
701   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
702   SmallVector<MachineOperand, 4> Cond;
703   DebugLoc DL = findBranchDebugLoc();
704   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
705   (void) B;
706   assert(!B && "UpdateTerminators requires analyzable predecessors!");
707   if (Cond.empty()) {
708     if (TBB) {
709       // The block has an unconditional branch. If its successor is now its
710       // layout successor, delete the branch.
711       if (isLayoutSuccessor(TBB))
712         TII->removeBranch(*this);
713     } else {
714       // The block has an unconditional fallthrough, or the end of the block is
715       // unreachable.
716 
717       // Unfortunately, whether the end of the block is unreachable is not
718       // immediately obvious; we must fall back to checking the successor list,
719       // and assuming that if the passed in block is in the succesor list and
720       // not an EHPad, it must be the intended target.
721       if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
722           PreviousLayoutSuccessor->isEHPad())
723         return;
724 
725       // If the unconditional successor block is not the current layout
726       // successor, insert a branch to jump to it.
727       if (!isLayoutSuccessor(PreviousLayoutSuccessor))
728         TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
729     }
730     return;
731   }
732 
733   if (FBB) {
734     // The block has a non-fallthrough conditional branch. If one of its
735     // successors is its layout successor, rewrite it to a fallthrough
736     // conditional branch.
737     if (isLayoutSuccessor(TBB)) {
738       if (TII->reverseBranchCondition(Cond))
739         return;
740       TII->removeBranch(*this);
741       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
742     } else if (isLayoutSuccessor(FBB)) {
743       TII->removeBranch(*this);
744       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
745     }
746     return;
747   }
748 
749   // We now know we're going to fallthrough to PreviousLayoutSuccessor.
750   assert(PreviousLayoutSuccessor);
751   assert(!PreviousLayoutSuccessor->isEHPad());
752   assert(isSuccessor(PreviousLayoutSuccessor));
753 
754   if (PreviousLayoutSuccessor == TBB) {
755     // We had a fallthrough to the same basic block as the conditional jump
756     // targets.  Remove the conditional jump, leaving an unconditional
757     // fallthrough or an unconditional jump.
758     TII->removeBranch(*this);
759     if (!isLayoutSuccessor(TBB)) {
760       Cond.clear();
761       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
762     }
763     return;
764   }
765 
766   // The block has a fallthrough conditional branch.
767   if (isLayoutSuccessor(TBB)) {
768     if (TII->reverseBranchCondition(Cond)) {
769       // We can't reverse the condition, add an unconditional branch.
770       Cond.clear();
771       TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
772       return;
773     }
774     TII->removeBranch(*this);
775     TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
776   } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
777     TII->removeBranch(*this);
778     TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
779   }
780 }
781 
782 void MachineBasicBlock::validateSuccProbs() const {
783 #ifndef NDEBUG
784   int64_t Sum = 0;
785   for (auto Prob : Probs)
786     Sum += Prob.getNumerator();
787   // Due to precision issue, we assume that the sum of probabilities is one if
788   // the difference between the sum of their numerators and the denominator is
789   // no greater than the number of successors.
790   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
791              Probs.size() &&
792          "The sum of successors's probabilities exceeds one.");
793 #endif // NDEBUG
794 }
795 
796 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
797                                      BranchProbability Prob) {
798   // Probability list is either empty (if successor list isn't empty, this means
799   // disabled optimization) or has the same size as successor list.
800   if (!(Probs.empty() && !Successors.empty()))
801     Probs.push_back(Prob);
802   Successors.push_back(Succ);
803   Succ->addPredecessor(this);
804 }
805 
806 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
807   // We need to make sure probability list is either empty or has the same size
808   // of successor list. When this function is called, we can safely delete all
809   // probability in the list.
810   Probs.clear();
811   Successors.push_back(Succ);
812   Succ->addPredecessor(this);
813 }
814 
815 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
816                                        MachineBasicBlock *New,
817                                        bool NormalizeSuccProbs) {
818   succ_iterator OldI = llvm::find(successors(), Old);
819   assert(OldI != succ_end() && "Old is not a successor of this block!");
820   assert(!llvm::is_contained(successors(), New) &&
821          "New is already a successor of this block!");
822 
823   // Add a new successor with equal probability as the original one. Note
824   // that we directly copy the probability using the iterator rather than
825   // getting a potentially synthetic probability computed when unknown. This
826   // preserves the probabilities as-is and then we can renormalize them and
827   // query them effectively afterward.
828   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
829                                   : *getProbabilityIterator(OldI));
830   if (NormalizeSuccProbs)
831     normalizeSuccProbs();
832 }
833 
834 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
835                                         bool NormalizeSuccProbs) {
836   succ_iterator I = find(Successors, Succ);
837   removeSuccessor(I, NormalizeSuccProbs);
838 }
839 
840 MachineBasicBlock::succ_iterator
841 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
842   assert(I != Successors.end() && "Not a current successor!");
843 
844   // If probability list is empty it means we don't use it (disabled
845   // optimization).
846   if (!Probs.empty()) {
847     probability_iterator WI = getProbabilityIterator(I);
848     Probs.erase(WI);
849     if (NormalizeSuccProbs)
850       normalizeSuccProbs();
851   }
852 
853   (*I)->removePredecessor(this);
854   return Successors.erase(I);
855 }
856 
857 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
858                                          MachineBasicBlock *New) {
859   if (Old == New)
860     return;
861 
862   succ_iterator E = succ_end();
863   succ_iterator NewI = E;
864   succ_iterator OldI = E;
865   for (succ_iterator I = succ_begin(); I != E; ++I) {
866     if (*I == Old) {
867       OldI = I;
868       if (NewI != E)
869         break;
870     }
871     if (*I == New) {
872       NewI = I;
873       if (OldI != E)
874         break;
875     }
876   }
877   assert(OldI != E && "Old is not a successor of this block");
878 
879   // If New isn't already a successor, let it take Old's place.
880   if (NewI == E) {
881     Old->removePredecessor(this);
882     New->addPredecessor(this);
883     *OldI = New;
884     return;
885   }
886 
887   // New is already a successor.
888   // Update its probability instead of adding a duplicate edge.
889   if (!Probs.empty()) {
890     auto ProbIter = getProbabilityIterator(NewI);
891     if (!ProbIter->isUnknown())
892       *ProbIter += *getProbabilityIterator(OldI);
893   }
894   removeSuccessor(OldI);
895 }
896 
897 void MachineBasicBlock::copySuccessor(const MachineBasicBlock *Orig,
898                                       succ_iterator I) {
899   if (!Orig->Probs.empty())
900     addSuccessor(*I, Orig->getSuccProbability(I));
901   else
902     addSuccessorWithoutProb(*I);
903 }
904 
905 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
906   Predecessors.push_back(Pred);
907 }
908 
909 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
910   pred_iterator I = find(Predecessors, Pred);
911   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
912   Predecessors.erase(I);
913 }
914 
915 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
916   if (this == FromMBB)
917     return;
918 
919   while (!FromMBB->succ_empty()) {
920     MachineBasicBlock *Succ = *FromMBB->succ_begin();
921 
922     // If probability list is empty it means we don't use it (disabled
923     // optimization).
924     if (!FromMBB->Probs.empty()) {
925       auto Prob = *FromMBB->Probs.begin();
926       addSuccessor(Succ, Prob);
927     } else
928       addSuccessorWithoutProb(Succ);
929 
930     FromMBB->removeSuccessor(Succ);
931   }
932 }
933 
934 void
935 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
936   if (this == FromMBB)
937     return;
938 
939   while (!FromMBB->succ_empty()) {
940     MachineBasicBlock *Succ = *FromMBB->succ_begin();
941     if (!FromMBB->Probs.empty()) {
942       auto Prob = *FromMBB->Probs.begin();
943       addSuccessor(Succ, Prob);
944     } else
945       addSuccessorWithoutProb(Succ);
946     FromMBB->removeSuccessor(Succ);
947 
948     // Fix up any PHI nodes in the successor.
949     Succ->replacePhiUsesWith(FromMBB, this);
950   }
951   normalizeSuccProbs();
952 }
953 
954 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
955   return is_contained(predecessors(), MBB);
956 }
957 
958 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
959   return is_contained(successors(), MBB);
960 }
961 
962 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
963   MachineFunction::const_iterator I(this);
964   return std::next(I) == MachineFunction::const_iterator(MBB);
965 }
966 
967 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const {
968   return Successors.size() == 1 ? Successors[0] : nullptr;
969 }
970 
971 const MachineBasicBlock *MachineBasicBlock::getSinglePredecessor() const {
972   return Predecessors.size() == 1 ? Predecessors[0] : nullptr;
973 }
974 
975 MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) {
976   MachineFunction::iterator Fallthrough = getIterator();
977   ++Fallthrough;
978   // If FallthroughBlock is off the end of the function, it can't fall through.
979   if (Fallthrough == getParent()->end())
980     return nullptr;
981 
982   // If FallthroughBlock isn't a successor, no fallthrough is possible.
983   if (!isSuccessor(&*Fallthrough))
984     return nullptr;
985 
986   // Analyze the branches, if any, at the end of the block.
987   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
988   SmallVector<MachineOperand, 4> Cond;
989   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
990   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
991     // If we couldn't analyze the branch, examine the last instruction.
992     // If the block doesn't end in a known control barrier, assume fallthrough
993     // is possible. The isPredicated check is needed because this code can be
994     // called during IfConversion, where an instruction which is normally a
995     // Barrier is predicated and thus no longer an actual control barrier.
996     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
997                ? &*Fallthrough
998                : nullptr;
999   }
1000 
1001   // If there is no branch, control always falls through.
1002   if (!TBB) return &*Fallthrough;
1003 
1004   // If there is some explicit branch to the fallthrough block, it can obviously
1005   // reach, even though the branch should get folded to fall through implicitly.
1006   if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough ||
1007                             MachineFunction::iterator(FBB) == Fallthrough))
1008     return &*Fallthrough;
1009 
1010   // If it's an unconditional branch to some block not the fall through, it
1011   // doesn't fall through.
1012   if (Cond.empty()) return nullptr;
1013 
1014   // Otherwise, if it is conditional and has no explicit false block, it falls
1015   // through.
1016   return (FBB == nullptr) ? &*Fallthrough : nullptr;
1017 }
1018 
1019 bool MachineBasicBlock::canFallThrough() {
1020   return getFallThrough() != nullptr;
1021 }
1022 
1023 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
1024                                               bool UpdateLiveIns,
1025                                               LiveIntervals *LIS) {
1026   MachineBasicBlock::iterator SplitPoint(&MI);
1027   ++SplitPoint;
1028 
1029   if (SplitPoint == end()) {
1030     // Don't bother with a new block.
1031     return this;
1032   }
1033 
1034   MachineFunction *MF = getParent();
1035 
1036   LivePhysRegs LiveRegs;
1037   if (UpdateLiveIns) {
1038     // Make sure we add any physregs we define in the block as liveins to the
1039     // new block.
1040     MachineBasicBlock::iterator Prev(&MI);
1041     LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
1042     LiveRegs.addLiveOuts(*this);
1043     for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
1044       LiveRegs.stepBackward(*I);
1045   }
1046 
1047   MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
1048 
1049   MF->insert(++MachineFunction::iterator(this), SplitBB);
1050   SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
1051 
1052   SplitBB->transferSuccessorsAndUpdatePHIs(this);
1053   addSuccessor(SplitBB);
1054 
1055   if (UpdateLiveIns)
1056     addLiveIns(*SplitBB, LiveRegs);
1057 
1058   if (LIS)
1059     LIS->insertMBBInMaps(SplitBB);
1060 
1061   return SplitBB;
1062 }
1063 
1064 // Returns `true` if there are possibly other users of the jump table at
1065 // `JumpTableIndex` except for the ones in `IgnoreMBB`.
1066 static bool jumpTableHasOtherUses(const MachineFunction &MF,
1067                                   const MachineBasicBlock &IgnoreMBB,
1068                                   int JumpTableIndex) {
1069   assert(JumpTableIndex >= 0 && "need valid index");
1070   const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo();
1071   const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex];
1072   // Take any basic block from the table; every user of the jump table must
1073   // show up in the predecessor list.
1074   const MachineBasicBlock *MBB = nullptr;
1075   for (MachineBasicBlock *B : MJTE.MBBs) {
1076     if (B != nullptr) {
1077       MBB = B;
1078       break;
1079     }
1080   }
1081   if (MBB == nullptr)
1082     return true; // can't rule out other users if there isn't any block.
1083   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1084   SmallVector<MachineOperand, 4> Cond;
1085   for (MachineBasicBlock *Pred : MBB->predecessors()) {
1086     if (Pred == &IgnoreMBB)
1087       continue;
1088     MachineBasicBlock *DummyT = nullptr;
1089     MachineBasicBlock *DummyF = nullptr;
1090     Cond.clear();
1091     if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond,
1092                            /*AllowModify=*/false)) {
1093       // analyzable direct jump
1094       continue;
1095     }
1096     int PredJTI = findJumpTableIndex(*Pred);
1097     if (PredJTI >= 0) {
1098       if (PredJTI == JumpTableIndex)
1099         return true;
1100       continue;
1101     }
1102     // Be conservative for unanalyzable jumps.
1103     return true;
1104   }
1105   return false;
1106 }
1107 
1108 class SlotIndexUpdateDelegate : public MachineFunction::Delegate {
1109 private:
1110   MachineFunction &MF;
1111   SlotIndexes *Indexes;
1112   SmallSetVector<MachineInstr *, 2> Insertions;
1113 
1114 public:
1115   SlotIndexUpdateDelegate(MachineFunction &MF, SlotIndexes *Indexes)
1116       : MF(MF), Indexes(Indexes) {
1117     MF.setDelegate(this);
1118   }
1119 
1120   ~SlotIndexUpdateDelegate() {
1121     MF.resetDelegate(this);
1122     for (auto MI : Insertions)
1123       Indexes->insertMachineInstrInMaps(*MI);
1124   }
1125 
1126   void MF_HandleInsertion(MachineInstr &MI) override {
1127     // This is called before MI is inserted into block so defer index update.
1128     if (Indexes)
1129       Insertions.insert(&MI);
1130   }
1131 
1132   void MF_HandleRemoval(MachineInstr &MI) override {
1133     if (Indexes && !Insertions.remove(&MI))
1134       Indexes->removeMachineInstrFromMaps(MI);
1135   }
1136 };
1137 
1138 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1139     MachineBasicBlock *Succ, Pass &P,
1140     std::vector<SparseBitVector<>> *LiveInSets) {
1141   if (!canSplitCriticalEdge(Succ))
1142     return nullptr;
1143 
1144   MachineFunction *MF = getParent();
1145   MachineBasicBlock *PrevFallthrough = getNextNode();
1146 
1147   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1148   NMBB->setCallFrameSize(Succ->getCallFrameSize());
1149 
1150   // Is there an indirect jump with jump table?
1151   bool ChangedIndirectJump = false;
1152   int JTI = findJumpTableIndex(*this);
1153   if (JTI >= 0) {
1154     MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo();
1155     MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB);
1156     ChangedIndirectJump = true;
1157   }
1158 
1159   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1160   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1161                     << " -- " << printMBBReference(*NMBB) << " -- "
1162                     << printMBBReference(*Succ) << '\n');
1163 
1164   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1165   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1166   if (LIS)
1167     LIS->insertMBBInMaps(NMBB);
1168   else if (Indexes)
1169     Indexes->insertMBBInMaps(NMBB);
1170 
1171   // On some targets like Mips, branches may kill virtual registers. Make sure
1172   // that LiveVariables is properly updated after updateTerminator replaces the
1173   // terminators.
1174   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1175 
1176   // Collect a list of virtual registers killed by the terminators.
1177   SmallVector<Register, 4> KilledRegs;
1178   if (LV)
1179     for (MachineInstr &MI :
1180          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1181       for (MachineOperand &MO : MI.all_uses()) {
1182         if (MO.getReg() == 0 || !MO.isKill() || MO.isUndef())
1183           continue;
1184         Register Reg = MO.getReg();
1185         if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) {
1186           KilledRegs.push_back(Reg);
1187           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1188           MO.setIsKill(false);
1189         }
1190       }
1191     }
1192 
1193   SmallVector<Register, 4> UsedRegs;
1194   if (LIS) {
1195     for (MachineInstr &MI :
1196          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1197       for (const MachineOperand &MO : MI.operands()) {
1198         if (!MO.isReg() || MO.getReg() == 0)
1199           continue;
1200 
1201         Register Reg = MO.getReg();
1202         if (!is_contained(UsedRegs, Reg))
1203           UsedRegs.push_back(Reg);
1204       }
1205     }
1206   }
1207 
1208   ReplaceUsesOfBlockWith(Succ, NMBB);
1209 
1210   // Since we replaced all uses of Succ with NMBB, that should also be treated
1211   // as the fallthrough successor
1212   if (Succ == PrevFallthrough)
1213     PrevFallthrough = NMBB;
1214 
1215   if (!ChangedIndirectJump) {
1216     SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes);
1217     updateTerminator(PrevFallthrough);
1218   }
1219 
1220   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1221   NMBB->addSuccessor(Succ);
1222   if (!NMBB->isLayoutSuccessor(Succ)) {
1223     SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes);
1224     SmallVector<MachineOperand, 4> Cond;
1225     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1226 
1227     // In original 'this' BB, there must be a branch instruction targeting at
1228     // Succ. We can not find it out since currently getBranchDestBlock was not
1229     // implemented for all targets. However, if the merged DL has column or line
1230     // number, the scope and non-zero column and line number is same with that
1231     // branch instruction so we can safely use it.
1232     DebugLoc DL, MergedDL = findBranchDebugLoc();
1233     if (MergedDL && (MergedDL.getLine() || MergedDL.getCol()))
1234       DL = MergedDL;
1235     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1236   }
1237 
1238   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1239   Succ->replacePhiUsesWith(this, NMBB);
1240 
1241   // Inherit live-ins from the successor
1242   for (const auto &LI : Succ->liveins())
1243     NMBB->addLiveIn(LI);
1244 
1245   // Update LiveVariables.
1246   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1247   if (LV) {
1248     // Restore kills of virtual registers that were killed by the terminators.
1249     while (!KilledRegs.empty()) {
1250       Register Reg = KilledRegs.pop_back_val();
1251       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1252         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1253           continue;
1254         if (Reg.isVirtual())
1255           LV->getVarInfo(Reg).Kills.push_back(&*I);
1256         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1257         break;
1258       }
1259     }
1260     // Update relevant live-through information.
1261     if (LiveInSets != nullptr)
1262       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1263     else
1264       LV->addNewBlock(NMBB, this, Succ);
1265   }
1266 
1267   if (LIS) {
1268     // After splitting the edge and updating SlotIndexes, live intervals may be
1269     // in one of two situations, depending on whether this block was the last in
1270     // the function. If the original block was the last in the function, all
1271     // live intervals will end prior to the beginning of the new split block. If
1272     // the original block was not at the end of the function, all live intervals
1273     // will extend to the end of the new split block.
1274 
1275     bool isLastMBB =
1276       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1277 
1278     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1279     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1280     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1281 
1282     // Find the registers used from NMBB in PHIs in Succ.
1283     SmallSet<Register, 8> PHISrcRegs;
1284     for (MachineBasicBlock::instr_iterator
1285          I = Succ->instr_begin(), E = Succ->instr_end();
1286          I != E && I->isPHI(); ++I) {
1287       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1288         if (I->getOperand(ni+1).getMBB() == NMBB) {
1289           MachineOperand &MO = I->getOperand(ni);
1290           Register Reg = MO.getReg();
1291           PHISrcRegs.insert(Reg);
1292           if (MO.isUndef())
1293             continue;
1294 
1295           LiveInterval &LI = LIS->getInterval(Reg);
1296           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1297           assert(VNI &&
1298                  "PHI sources should be live out of their predecessors.");
1299           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1300           for (auto &SR : LI.subranges())
1301             SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1302         }
1303       }
1304     }
1305 
1306     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1307     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1308       Register Reg = Register::index2VirtReg(i);
1309       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1310         continue;
1311 
1312       LiveInterval &LI = LIS->getInterval(Reg);
1313       if (!LI.liveAt(PrevIndex))
1314         continue;
1315 
1316       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1317       if (isLiveOut && isLastMBB) {
1318         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1319         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1320         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1321         // Update subranges with live values
1322         for (auto &SR : LI.subranges()) {
1323           VNInfo *VNI = SR.getVNInfoAt(PrevIndex);
1324           if (VNI)
1325             SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1326         }
1327       } else if (!isLiveOut && !isLastMBB) {
1328         LI.removeSegment(StartIndex, EndIndex);
1329         for (auto &SR : LI.subranges())
1330           SR.removeSegment(StartIndex, EndIndex);
1331       }
1332     }
1333 
1334     // Update all intervals for registers whose uses may have been modified by
1335     // updateTerminator().
1336     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1337   }
1338 
1339   if (auto *MDTWrapper =
1340           P.getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>())
1341     MDTWrapper->getDomTree().recordSplitCriticalEdge(this, Succ, NMBB);
1342 
1343   auto *MLIWrapper = P.getAnalysisIfAvailable<MachineLoopInfoWrapperPass>();
1344   if (MachineLoopInfo *MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr)
1345     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1346       // If one or the other blocks were not in a loop, the new block is not
1347       // either, and thus LI doesn't need to be updated.
1348       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1349         if (TIL == DestLoop) {
1350           // Both in the same loop, the NMBB joins loop.
1351           DestLoop->addBasicBlockToLoop(NMBB, *MLI);
1352         } else if (TIL->contains(DestLoop)) {
1353           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1354           TIL->addBasicBlockToLoop(NMBB, *MLI);
1355         } else if (DestLoop->contains(TIL)) {
1356           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1357           DestLoop->addBasicBlockToLoop(NMBB, *MLI);
1358         } else {
1359           // Edge from two loops with no containment relation.  Because these
1360           // are natural loops, we know that the destination block must be the
1361           // header of its loop (adding a branch into a loop elsewhere would
1362           // create an irreducible loop).
1363           assert(DestLoop->getHeader() == Succ &&
1364                  "Should not create irreducible loops!");
1365           if (MachineLoop *P = DestLoop->getParentLoop())
1366             P->addBasicBlockToLoop(NMBB, *MLI);
1367         }
1368       }
1369     }
1370 
1371   return NMBB;
1372 }
1373 
1374 bool MachineBasicBlock::canSplitCriticalEdge(
1375     const MachineBasicBlock *Succ) const {
1376   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1377   // it in this generic function.
1378   if (Succ->isEHPad())
1379     return false;
1380 
1381   // Splitting the critical edge to a callbr's indirect block isn't advised.
1382   // Don't do it in this generic function.
1383   if (Succ->isInlineAsmBrIndirectTarget())
1384     return false;
1385 
1386   const MachineFunction *MF = getParent();
1387   // Performance might be harmed on HW that implements branching using exec mask
1388   // where both sides of the branches are always executed.
1389   if (MF->getTarget().requiresStructuredCFG())
1390     return false;
1391 
1392   // Do we have an Indirect jump with a jumptable that we can rewrite?
1393   int JTI = findJumpTableIndex(*this);
1394   if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI))
1395     return true;
1396 
1397   // We may need to update this's terminator, but we can't do that if
1398   // analyzeBranch fails.
1399   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1400   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1401   SmallVector<MachineOperand, 4> Cond;
1402   // AnalyzeBanch should modify this, since we did not allow modification.
1403   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1404                          /*AllowModify*/ false))
1405     return false;
1406 
1407   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1408   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1409   // case that we can't handle. Since this never happens in properly optimized
1410   // code, just skip those edges.
1411   if (TBB && TBB == FBB) {
1412     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1413                       << printMBBReference(*this) << '\n');
1414     return false;
1415   }
1416   return true;
1417 }
1418 
1419 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1420 /// neighboring instructions so the bundle won't be broken by removing MI.
1421 static void unbundleSingleMI(MachineInstr *MI) {
1422   // Removing the first instruction in a bundle.
1423   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1424     MI->unbundleFromSucc();
1425   // Removing the last instruction in a bundle.
1426   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1427     MI->unbundleFromPred();
1428   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1429   // are already fine.
1430 }
1431 
1432 MachineBasicBlock::instr_iterator
1433 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1434   unbundleSingleMI(&*I);
1435   return Insts.erase(I);
1436 }
1437 
1438 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1439   unbundleSingleMI(MI);
1440   MI->clearFlag(MachineInstr::BundledPred);
1441   MI->clearFlag(MachineInstr::BundledSucc);
1442   return Insts.remove(MI);
1443 }
1444 
1445 MachineBasicBlock::instr_iterator
1446 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1447   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1448          "Cannot insert instruction with bundle flags");
1449   // Set the bundle flags when inserting inside a bundle.
1450   if (I != instr_end() && I->isBundledWithPred()) {
1451     MI->setFlag(MachineInstr::BundledPred);
1452     MI->setFlag(MachineInstr::BundledSucc);
1453   }
1454   return Insts.insert(I, MI);
1455 }
1456 
1457 /// This method unlinks 'this' from the containing function, and returns it, but
1458 /// does not delete it.
1459 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1460   assert(getParent() && "Not embedded in a function!");
1461   getParent()->remove(this);
1462   return this;
1463 }
1464 
1465 /// This method unlinks 'this' from the containing function, and deletes it.
1466 void MachineBasicBlock::eraseFromParent() {
1467   assert(getParent() && "Not embedded in a function!");
1468   getParent()->erase(this);
1469 }
1470 
1471 /// Given a machine basic block that branched to 'Old', change the code and CFG
1472 /// so that it branches to 'New' instead.
1473 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1474                                                MachineBasicBlock *New) {
1475   assert(Old != New && "Cannot replace self with self!");
1476 
1477   MachineBasicBlock::instr_iterator I = instr_end();
1478   while (I != instr_begin()) {
1479     --I;
1480     if (!I->isTerminator()) break;
1481 
1482     // Scan the operands of this machine instruction, replacing any uses of Old
1483     // with New.
1484     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1485       if (I->getOperand(i).isMBB() &&
1486           I->getOperand(i).getMBB() == Old)
1487         I->getOperand(i).setMBB(New);
1488   }
1489 
1490   // Update the successor information.
1491   replaceSuccessor(Old, New);
1492 }
1493 
1494 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1495                                            MachineBasicBlock *New) {
1496   for (MachineInstr &MI : phis())
1497     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1498       MachineOperand &MO = MI.getOperand(i);
1499       if (MO.getMBB() == Old)
1500         MO.setMBB(New);
1501     }
1502 }
1503 
1504 /// Find the next valid DebugLoc starting at MBBI, skipping any debug
1505 /// instructions.  Return UnknownLoc if there is none.
1506 DebugLoc
1507 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1508   // Skip debug declarations, we don't want a DebugLoc from them.
1509   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1510   if (MBBI != instr_end())
1511     return MBBI->getDebugLoc();
1512   return {};
1513 }
1514 
1515 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1516   if (MBBI == instr_rend())
1517     return findDebugLoc(instr_begin());
1518   // Skip debug declarations, we don't want a DebugLoc from them.
1519   MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1520   if (!MBBI->isDebugInstr())
1521     return MBBI->getDebugLoc();
1522   return {};
1523 }
1524 
1525 /// Find the previous valid DebugLoc preceding MBBI, skipping any debug
1526 /// instructions.  Return UnknownLoc if there is none.
1527 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1528   if (MBBI == instr_begin())
1529     return {};
1530   // Skip debug instructions, we don't want a DebugLoc from them.
1531   MBBI = prev_nodbg(MBBI, instr_begin());
1532   if (!MBBI->isDebugInstr())
1533     return MBBI->getDebugLoc();
1534   return {};
1535 }
1536 
1537 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1538   if (MBBI == instr_rend())
1539     return {};
1540   // Skip debug declarations, we don't want a DebugLoc from them.
1541   MBBI = next_nodbg(MBBI, instr_rend());
1542   if (MBBI != instr_rend())
1543     return MBBI->getDebugLoc();
1544   return {};
1545 }
1546 
1547 /// Find and return the merged DebugLoc of the branch instructions of the block.
1548 /// Return UnknownLoc if there is none.
1549 DebugLoc
1550 MachineBasicBlock::findBranchDebugLoc() {
1551   DebugLoc DL;
1552   auto TI = getFirstTerminator();
1553   while (TI != end() && !TI->isBranch())
1554     ++TI;
1555 
1556   if (TI != end()) {
1557     DL = TI->getDebugLoc();
1558     for (++TI ; TI != end() ; ++TI)
1559       if (TI->isBranch())
1560         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1561   }
1562   return DL;
1563 }
1564 
1565 /// Return probability of the edge from this block to MBB.
1566 BranchProbability
1567 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1568   if (Probs.empty())
1569     return BranchProbability(1, succ_size());
1570 
1571   const auto &Prob = *getProbabilityIterator(Succ);
1572   if (Prob.isUnknown()) {
1573     // For unknown probabilities, collect the sum of all known ones, and evenly
1574     // ditribute the complemental of the sum to each unknown probability.
1575     unsigned KnownProbNum = 0;
1576     auto Sum = BranchProbability::getZero();
1577     for (const auto &P : Probs) {
1578       if (!P.isUnknown()) {
1579         Sum += P;
1580         KnownProbNum++;
1581       }
1582     }
1583     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1584   } else
1585     return Prob;
1586 }
1587 
1588 /// Set successor probability of a given iterator.
1589 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1590                                            BranchProbability Prob) {
1591   assert(!Prob.isUnknown());
1592   if (Probs.empty())
1593     return;
1594   *getProbabilityIterator(I) = Prob;
1595 }
1596 
1597 /// Return probability iterator corresonding to the I successor iterator
1598 MachineBasicBlock::const_probability_iterator
1599 MachineBasicBlock::getProbabilityIterator(
1600     MachineBasicBlock::const_succ_iterator I) const {
1601   assert(Probs.size() == Successors.size() && "Async probability list!");
1602   const size_t index = std::distance(Successors.begin(), I);
1603   assert(index < Probs.size() && "Not a current successor!");
1604   return Probs.begin() + index;
1605 }
1606 
1607 /// Return probability iterator corresonding to the I successor iterator.
1608 MachineBasicBlock::probability_iterator
1609 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1610   assert(Probs.size() == Successors.size() && "Async probability list!");
1611   const size_t index = std::distance(Successors.begin(), I);
1612   assert(index < Probs.size() && "Not a current successor!");
1613   return Probs.begin() + index;
1614 }
1615 
1616 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1617 /// as of just before "MI".
1618 ///
1619 /// Search is localised to a neighborhood of
1620 /// Neighborhood instructions before (searching for defs or kills) and N
1621 /// instructions after (searching just for defs) MI.
1622 MachineBasicBlock::LivenessQueryResult
1623 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1624                                            MCRegister Reg, const_iterator Before,
1625                                            unsigned Neighborhood) const {
1626   unsigned N = Neighborhood;
1627 
1628   // Try searching forwards from Before, looking for reads or defs.
1629   const_iterator I(Before);
1630   for (; I != end() && N > 0; ++I) {
1631     if (I->isDebugOrPseudoInstr())
1632       continue;
1633 
1634     --N;
1635 
1636     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1637 
1638     // Register is live when we read it here.
1639     if (Info.Read)
1640       return LQR_Live;
1641     // Register is dead if we can fully overwrite or clobber it here.
1642     if (Info.FullyDefined || Info.Clobbered)
1643       return LQR_Dead;
1644   }
1645 
1646   // If we reached the end, it is safe to clobber Reg at the end of a block of
1647   // no successor has it live in.
1648   if (I == end()) {
1649     for (MachineBasicBlock *S : successors()) {
1650       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1651         if (TRI->regsOverlap(LI.PhysReg, Reg))
1652           return LQR_Live;
1653       }
1654     }
1655 
1656     return LQR_Dead;
1657   }
1658 
1659 
1660   N = Neighborhood;
1661 
1662   // Start by searching backwards from Before, looking for kills, reads or defs.
1663   I = const_iterator(Before);
1664   // If this is the first insn in the block, don't search backwards.
1665   if (I != begin()) {
1666     do {
1667       --I;
1668 
1669       if (I->isDebugOrPseudoInstr())
1670         continue;
1671 
1672       --N;
1673 
1674       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1675 
1676       // Defs happen after uses so they take precedence if both are present.
1677 
1678       // Register is dead after a dead def of the full register.
1679       if (Info.DeadDef)
1680         return LQR_Dead;
1681       // Register is (at least partially) live after a def.
1682       if (Info.Defined) {
1683         if (!Info.PartialDeadDef)
1684           return LQR_Live;
1685         // As soon as we saw a partial definition (dead or not),
1686         // we cannot tell if the value is partial live without
1687         // tracking the lanemasks. We are not going to do this,
1688         // so fall back on the remaining of the analysis.
1689         break;
1690       }
1691       // Register is dead after a full kill or clobber and no def.
1692       if (Info.Killed || Info.Clobbered)
1693         return LQR_Dead;
1694       // Register must be live if we read it.
1695       if (Info.Read)
1696         return LQR_Live;
1697 
1698     } while (I != begin() && N > 0);
1699   }
1700 
1701   // If all the instructions before this in the block are debug instructions,
1702   // skip over them.
1703   while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1704     --I;
1705 
1706   // Did we get to the start of the block?
1707   if (I == begin()) {
1708     // If so, the register's state is definitely defined by the live-in state.
1709     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1710       if (TRI->regsOverlap(LI.PhysReg, Reg))
1711         return LQR_Live;
1712 
1713     return LQR_Dead;
1714   }
1715 
1716   // At this point we have no idea of the liveness of the register.
1717   return LQR_Unknown;
1718 }
1719 
1720 const uint32_t *
1721 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1722   // EH funclet entry does not preserve any registers.
1723   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1724 }
1725 
1726 const uint32_t *
1727 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1728   // If we see a return block with successors, this must be a funclet return,
1729   // which does not preserve any registers. If there are no successors, we don't
1730   // care what kind of return it is, putting a mask after it is a no-op.
1731   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1732 }
1733 
1734 void MachineBasicBlock::clearLiveIns() {
1735   LiveIns.clear();
1736 }
1737 
1738 void MachineBasicBlock::clearLiveIns(
1739     std::vector<RegisterMaskPair> &OldLiveIns) {
1740   assert(OldLiveIns.empty() && "Vector must be empty");
1741   std::swap(LiveIns, OldLiveIns);
1742 }
1743 
1744 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1745   assert(getParent()->getProperties().hasProperty(
1746       MachineFunctionProperties::Property::TracksLiveness) &&
1747       "Liveness information is accurate");
1748   return LiveIns.begin();
1749 }
1750 
1751 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1752   const MachineFunction &MF = *getParent();
1753   assert(MF.getProperties().hasProperty(
1754       MachineFunctionProperties::Property::TracksLiveness) &&
1755       "Liveness information is accurate");
1756 
1757   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1758   MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1759   if (MF.getFunction().hasPersonalityFn()) {
1760     auto PersonalityFn = MF.getFunction().getPersonalityFn();
1761     ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1762     ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1763   }
1764 
1765   return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1766 }
1767 
1768 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const {
1769   unsigned Cntr = 0;
1770   auto R = instructionsWithoutDebug(begin(), end());
1771   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1772     if (++Cntr > Limit)
1773       return true;
1774   }
1775   return false;
1776 }
1777 
1778 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1779 const MBBSectionID
1780     MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1781