xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 6b568964ba92ea5b05860623e80da2a4db2bfac0)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SlotIndexes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <algorithm>
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "codegen"
39 
40 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
41   : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
42     AddressTaken(false), CachedMCSymbol(nullptr) {
43   Insts.Parent = this;
44 }
45 
46 MachineBasicBlock::~MachineBasicBlock() {
47 }
48 
49 /// getSymbol - Return the MCSymbol for this basic block.
50 ///
51 MCSymbol *MachineBasicBlock::getSymbol() const {
52   if (!CachedMCSymbol) {
53     const MachineFunction *MF = getParent();
54     MCContext &Ctx = MF->getContext();
55     const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
56     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
57                                            Twine(MF->getFunctionNumber()) +
58                                            "_" + Twine(getNumber()));
59   }
60 
61   return CachedMCSymbol;
62 }
63 
64 
65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
66   MBB.print(OS);
67   return OS;
68 }
69 
70 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the
71 /// parent pointer of the MBB, the MBB numbering, and any instructions in the
72 /// MBB to be on the right operand list for registers.
73 ///
74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
75 /// gets the next available unique MBB number. If it is removed from a
76 /// MachineFunction, it goes back to being #-1.
77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
78   MachineFunction &MF = *N->getParent();
79   N->Number = MF.addToMBBNumbering(N);
80 
81   // Make sure the instructions have their operands in the reginfo lists.
82   MachineRegisterInfo &RegInfo = MF.getRegInfo();
83   for (MachineBasicBlock::instr_iterator
84          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
85     I->AddRegOperandsToUseLists(RegInfo);
86 }
87 
88 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
89   N->getParent()->removeFromMBBNumbering(N->Number);
90   N->Number = -1;
91 }
92 
93 
94 /// addNodeToList (MI) - When we add an instruction to a basic block
95 /// list, we update its parent pointer and add its operands from reg use/def
96 /// lists if appropriate.
97 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
98   assert(!N->getParent() && "machine instruction already in a basic block");
99   N->setParent(Parent);
100 
101   // Add the instruction's register operands to their corresponding
102   // use/def lists.
103   MachineFunction *MF = Parent->getParent();
104   N->AddRegOperandsToUseLists(MF->getRegInfo());
105 }
106 
107 /// removeNodeFromList (MI) - When we remove an instruction from a basic block
108 /// list, we update its parent pointer and remove its operands from reg use/def
109 /// lists if appropriate.
110 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
111   assert(N->getParent() && "machine instruction not in a basic block");
112 
113   // Remove from the use/def lists.
114   if (MachineFunction *MF = N->getParent()->getParent())
115     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
116 
117   N->setParent(nullptr);
118 }
119 
120 /// transferNodesFromList (MI) - When moving a range of instructions from one
121 /// MBB list to another, we need to update the parent pointers and the use/def
122 /// lists.
123 void ilist_traits<MachineInstr>::
124 transferNodesFromList(ilist_traits<MachineInstr> &fromList,
125                       ilist_iterator<MachineInstr> first,
126                       ilist_iterator<MachineInstr> last) {
127   assert(Parent->getParent() == fromList.Parent->getParent() &&
128         "MachineInstr parent mismatch!");
129 
130   // Splice within the same MBB -> no change.
131   if (Parent == fromList.Parent) return;
132 
133   // If splicing between two blocks within the same function, just update the
134   // parent pointers.
135   for (; first != last; ++first)
136     first->setParent(Parent);
137 }
138 
139 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
140   assert(!MI->getParent() && "MI is still in a block!");
141   Parent->getParent()->DeleteMachineInstr(MI);
142 }
143 
144 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
145   instr_iterator I = instr_begin(), E = instr_end();
146   while (I != E && I->isPHI())
147     ++I;
148   assert((I == E || !I->isInsideBundle()) &&
149          "First non-phi MI cannot be inside a bundle!");
150   return I;
151 }
152 
153 MachineBasicBlock::iterator
154 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
155   iterator E = end();
156   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue()))
157     ++I;
158   // FIXME: This needs to change if we wish to bundle labels / dbg_values
159   // inside the bundle.
160   assert((I == E || !I->isInsideBundle()) &&
161          "First non-phi / non-label instruction is inside a bundle!");
162   return I;
163 }
164 
165 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
166   iterator B = begin(), E = end(), I = E;
167   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
168     ; /*noop */
169   while (I != E && !I->isTerminator())
170     ++I;
171   return I;
172 }
173 
174 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
175   instr_iterator B = instr_begin(), E = instr_end(), I = E;
176   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
177     ; /*noop */
178   while (I != E && !I->isTerminator())
179     ++I;
180   return I;
181 }
182 
183 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
184   // Skip over begin-of-block dbg_value instructions.
185   iterator I = begin(), E = end();
186   while (I != E && I->isDebugValue())
187     ++I;
188   return I;
189 }
190 
191 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
192   // Skip over end-of-block dbg_value instructions.
193   instr_iterator B = instr_begin(), I = instr_end();
194   while (I != B) {
195     --I;
196     // Return instruction that starts a bundle.
197     if (I->isDebugValue() || I->isInsideBundle())
198       continue;
199     return I;
200   }
201   // The block is all debug values.
202   return end();
203 }
204 
205 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
206   // A block with a landing pad successor only has one other successor.
207   if (succ_size() > 2)
208     return nullptr;
209   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
210     if ((*I)->isLandingPad())
211       return *I;
212   return nullptr;
213 }
214 
215 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
216 void MachineBasicBlock::dump() const {
217   print(dbgs());
218 }
219 #endif
220 
221 StringRef MachineBasicBlock::getName() const {
222   if (const BasicBlock *LBB = getBasicBlock())
223     return LBB->getName();
224   else
225     return "(null)";
226 }
227 
228 /// Return a hopefully unique identifier for this block.
229 std::string MachineBasicBlock::getFullName() const {
230   std::string Name;
231   if (getParent())
232     Name = (getParent()->getName() + ":").str();
233   if (getBasicBlock())
234     Name += getBasicBlock()->getName();
235   else
236     Name += ("BB" + Twine(getNumber())).str();
237   return Name;
238 }
239 
240 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
241   const MachineFunction *MF = getParent();
242   if (!MF) {
243     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
244        << " is null\n";
245     return;
246   }
247 
248   if (Indexes)
249     OS << Indexes->getMBBStartIdx(this) << '\t';
250 
251   OS << "BB#" << getNumber() << ": ";
252 
253   const char *Comma = "";
254   if (const BasicBlock *LBB = getBasicBlock()) {
255     OS << Comma << "derived from LLVM BB ";
256     LBB->printAsOperand(OS, /*PrintType=*/false);
257     Comma = ", ";
258   }
259   if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
260   if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
261   if (Alignment)
262     OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
263        << " bytes)";
264 
265   OS << '\n';
266 
267   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
268   if (!livein_empty()) {
269     if (Indexes) OS << '\t';
270     OS << "    Live Ins:";
271     for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
272       OS << ' ' << PrintReg(*I, TRI);
273     OS << '\n';
274   }
275   // Print the preds of this block according to the CFG.
276   if (!pred_empty()) {
277     if (Indexes) OS << '\t';
278     OS << "    Predecessors according to CFG:";
279     for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
280       OS << " BB#" << (*PI)->getNumber();
281     OS << '\n';
282   }
283 
284   for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
285     if (Indexes) {
286       if (Indexes->hasIndex(I))
287         OS << Indexes->getInstructionIndex(I);
288       OS << '\t';
289     }
290     OS << '\t';
291     if (I->isInsideBundle())
292       OS << "  * ";
293     I->print(OS);
294   }
295 
296   // Print the successors of this block according to the CFG.
297   if (!succ_empty()) {
298     if (Indexes) OS << '\t';
299     OS << "    Successors according to CFG:";
300     for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
301       OS << " BB#" << (*SI)->getNumber();
302       if (!Weights.empty())
303         OS << '(' << *getWeightIterator(SI) << ')';
304     }
305     OS << '\n';
306   }
307 }
308 
309 void MachineBasicBlock::printAsOperand(raw_ostream &OS, bool /*PrintType*/) const {
310   OS << "BB#" << getNumber();
311 }
312 
313 void MachineBasicBlock::removeLiveIn(unsigned Reg) {
314   std::vector<unsigned>::iterator I =
315     std::find(LiveIns.begin(), LiveIns.end(), Reg);
316   if (I != LiveIns.end())
317     LiveIns.erase(I);
318 }
319 
320 bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
321   livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
322   return I != livein_end();
323 }
324 
325 unsigned
326 MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) {
327   assert(getParent() && "MBB must be inserted in function");
328   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
329   assert(RC && "Register class is required");
330   assert((isLandingPad() || this == &getParent()->front()) &&
331          "Only the entry block and landing pads can have physreg live ins");
332 
333   bool LiveIn = isLiveIn(PhysReg);
334   iterator I = SkipPHIsAndLabels(begin()), E = end();
335   MachineRegisterInfo &MRI = getParent()->getRegInfo();
336   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
337 
338   // Look for an existing copy.
339   if (LiveIn)
340     for (;I != E && I->isCopy(); ++I)
341       if (I->getOperand(1).getReg() == PhysReg) {
342         unsigned VirtReg = I->getOperand(0).getReg();
343         if (!MRI.constrainRegClass(VirtReg, RC))
344           llvm_unreachable("Incompatible live-in register class.");
345         return VirtReg;
346       }
347 
348   // No luck, create a virtual register.
349   unsigned VirtReg = MRI.createVirtualRegister(RC);
350   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
351     .addReg(PhysReg, RegState::Kill);
352   if (!LiveIn)
353     addLiveIn(PhysReg);
354   return VirtReg;
355 }
356 
357 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
358   getParent()->splice(NewAfter, this);
359 }
360 
361 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
362   MachineFunction::iterator BBI = NewBefore;
363   getParent()->splice(++BBI, this);
364 }
365 
366 void MachineBasicBlock::updateTerminator() {
367   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
368   // A block with no successors has no concerns with fall-through edges.
369   if (this->succ_empty()) return;
370 
371   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
372   SmallVector<MachineOperand, 4> Cond;
373   DebugLoc dl;  // FIXME: this is nowhere
374   bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
375   (void) B;
376   assert(!B && "UpdateTerminators requires analyzable predecessors!");
377   if (Cond.empty()) {
378     if (TBB) {
379       // The block has an unconditional branch. If its successor is now
380       // its layout successor, delete the branch.
381       if (isLayoutSuccessor(TBB))
382         TII->RemoveBranch(*this);
383     } else {
384       // The block has an unconditional fallthrough. If its successor is not
385       // its layout successor, insert a branch. First we have to locate the
386       // only non-landing-pad successor, as that is the fallthrough block.
387       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
388         if ((*SI)->isLandingPad())
389           continue;
390         assert(!TBB && "Found more than one non-landing-pad successor!");
391         TBB = *SI;
392       }
393 
394       // If there is no non-landing-pad successor, the block has no
395       // fall-through edges to be concerned with.
396       if (!TBB)
397         return;
398 
399       // Finally update the unconditional successor to be reached via a branch
400       // if it would not be reached by fallthrough.
401       if (!isLayoutSuccessor(TBB))
402         TII->InsertBranch(*this, TBB, nullptr, Cond, dl);
403     }
404   } else {
405     if (FBB) {
406       // The block has a non-fallthrough conditional branch. If one of its
407       // successors is its layout successor, rewrite it to a fallthrough
408       // conditional branch.
409       if (isLayoutSuccessor(TBB)) {
410         if (TII->ReverseBranchCondition(Cond))
411           return;
412         TII->RemoveBranch(*this);
413         TII->InsertBranch(*this, FBB, nullptr, Cond, dl);
414       } else if (isLayoutSuccessor(FBB)) {
415         TII->RemoveBranch(*this);
416         TII->InsertBranch(*this, TBB, nullptr, Cond, dl);
417       }
418     } else {
419       // Walk through the successors and find the successor which is not
420       // a landing pad and is not the conditional branch destination (in TBB)
421       // as the fallthrough successor.
422       MachineBasicBlock *FallthroughBB = nullptr;
423       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
424         if ((*SI)->isLandingPad() || *SI == TBB)
425           continue;
426         assert(!FallthroughBB && "Found more than one fallthrough successor.");
427         FallthroughBB = *SI;
428       }
429       if (!FallthroughBB && canFallThrough()) {
430         // We fallthrough to the same basic block as the conditional jump
431         // targets. Remove the conditional jump, leaving unconditional
432         // fallthrough.
433         // FIXME: This does not seem like a reasonable pattern to support, but it
434         // has been seen in the wild coming out of degenerate ARM test cases.
435         TII->RemoveBranch(*this);
436 
437         // Finally update the unconditional successor to be reached via a branch
438         // if it would not be reached by fallthrough.
439         if (!isLayoutSuccessor(TBB))
440           TII->InsertBranch(*this, TBB, nullptr, Cond, dl);
441         return;
442       }
443 
444       // The block has a fallthrough conditional branch.
445       if (isLayoutSuccessor(TBB)) {
446         if (TII->ReverseBranchCondition(Cond)) {
447           // We can't reverse the condition, add an unconditional branch.
448           Cond.clear();
449           TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl);
450           return;
451         }
452         TII->RemoveBranch(*this);
453         TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl);
454       } else if (!isLayoutSuccessor(FallthroughBB)) {
455         TII->RemoveBranch(*this);
456         TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl);
457       }
458     }
459   }
460 }
461 
462 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) {
463 
464   // If we see non-zero value for the first time it means we actually use Weight
465   // list, so we fill all Weights with 0's.
466   if (weight != 0 && Weights.empty())
467     Weights.resize(Successors.size());
468 
469   if (weight != 0 || !Weights.empty())
470     Weights.push_back(weight);
471 
472    Successors.push_back(succ);
473    succ->addPredecessor(this);
474  }
475 
476 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
477   succ->removePredecessor(this);
478   succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
479   assert(I != Successors.end() && "Not a current successor!");
480 
481   // If Weight list is empty it means we don't use it (disabled optimization).
482   if (!Weights.empty()) {
483     weight_iterator WI = getWeightIterator(I);
484     Weights.erase(WI);
485   }
486 
487   Successors.erase(I);
488 }
489 
490 MachineBasicBlock::succ_iterator
491 MachineBasicBlock::removeSuccessor(succ_iterator I) {
492   assert(I != Successors.end() && "Not a current successor!");
493 
494   // If Weight list is empty it means we don't use it (disabled optimization).
495   if (!Weights.empty()) {
496     weight_iterator WI = getWeightIterator(I);
497     Weights.erase(WI);
498   }
499 
500   (*I)->removePredecessor(this);
501   return Successors.erase(I);
502 }
503 
504 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
505                                          MachineBasicBlock *New) {
506   if (Old == New)
507     return;
508 
509   succ_iterator E = succ_end();
510   succ_iterator NewI = E;
511   succ_iterator OldI = E;
512   for (succ_iterator I = succ_begin(); I != E; ++I) {
513     if (*I == Old) {
514       OldI = I;
515       if (NewI != E)
516         break;
517     }
518     if (*I == New) {
519       NewI = I;
520       if (OldI != E)
521         break;
522     }
523   }
524   assert(OldI != E && "Old is not a successor of this block");
525   Old->removePredecessor(this);
526 
527   // If New isn't already a successor, let it take Old's place.
528   if (NewI == E) {
529     New->addPredecessor(this);
530     *OldI = New;
531     return;
532   }
533 
534   // New is already a successor.
535   // Update its weight instead of adding a duplicate edge.
536   if (!Weights.empty()) {
537     weight_iterator OldWI = getWeightIterator(OldI);
538     *getWeightIterator(NewI) += *OldWI;
539     Weights.erase(OldWI);
540   }
541   Successors.erase(OldI);
542 }
543 
544 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
545   Predecessors.push_back(pred);
546 }
547 
548 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
549   pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred);
550   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
551   Predecessors.erase(I);
552 }
553 
554 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
555   if (this == fromMBB)
556     return;
557 
558   while (!fromMBB->succ_empty()) {
559     MachineBasicBlock *Succ = *fromMBB->succ_begin();
560     uint32_t Weight = 0;
561 
562     // If Weight list is empty it means we don't use it (disabled optimization).
563     if (!fromMBB->Weights.empty())
564       Weight = *fromMBB->Weights.begin();
565 
566     addSuccessor(Succ, Weight);
567     fromMBB->removeSuccessor(Succ);
568   }
569 }
570 
571 void
572 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
573   if (this == fromMBB)
574     return;
575 
576   while (!fromMBB->succ_empty()) {
577     MachineBasicBlock *Succ = *fromMBB->succ_begin();
578     uint32_t Weight = 0;
579     if (!fromMBB->Weights.empty())
580       Weight = *fromMBB->Weights.begin();
581     addSuccessor(Succ, Weight);
582     fromMBB->removeSuccessor(Succ);
583 
584     // Fix up any PHI nodes in the successor.
585     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
586            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
587       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
588         MachineOperand &MO = MI->getOperand(i);
589         if (MO.getMBB() == fromMBB)
590           MO.setMBB(this);
591       }
592   }
593 }
594 
595 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
596   return std::find(pred_begin(), pred_end(), MBB) != pred_end();
597 }
598 
599 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
600   return std::find(succ_begin(), succ_end(), MBB) != succ_end();
601 }
602 
603 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
604   MachineFunction::const_iterator I(this);
605   return std::next(I) == MachineFunction::const_iterator(MBB);
606 }
607 
608 bool MachineBasicBlock::canFallThrough() {
609   MachineFunction::iterator Fallthrough = this;
610   ++Fallthrough;
611   // If FallthroughBlock is off the end of the function, it can't fall through.
612   if (Fallthrough == getParent()->end())
613     return false;
614 
615   // If FallthroughBlock isn't a successor, no fallthrough is possible.
616   if (!isSuccessor(Fallthrough))
617     return false;
618 
619   // Analyze the branches, if any, at the end of the block.
620   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
621   SmallVector<MachineOperand, 4> Cond;
622   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
623   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
624     // If we couldn't analyze the branch, examine the last instruction.
625     // If the block doesn't end in a known control barrier, assume fallthrough
626     // is possible. The isPredicated check is needed because this code can be
627     // called during IfConversion, where an instruction which is normally a
628     // Barrier is predicated and thus no longer an actual control barrier.
629     return empty() || !back().isBarrier() || TII->isPredicated(&back());
630   }
631 
632   // If there is no branch, control always falls through.
633   if (!TBB) return true;
634 
635   // If there is some explicit branch to the fallthrough block, it can obviously
636   // reach, even though the branch should get folded to fall through implicitly.
637   if (MachineFunction::iterator(TBB) == Fallthrough ||
638       MachineFunction::iterator(FBB) == Fallthrough)
639     return true;
640 
641   // If it's an unconditional branch to some block not the fall through, it
642   // doesn't fall through.
643   if (Cond.empty()) return false;
644 
645   // Otherwise, if it is conditional and has no explicit false block, it falls
646   // through.
647   return FBB == nullptr;
648 }
649 
650 MachineBasicBlock *
651 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
652   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
653   // it in this generic function.
654   if (Succ->isLandingPad())
655     return nullptr;
656 
657   MachineFunction *MF = getParent();
658   DebugLoc dl;  // FIXME: this is nowhere
659 
660   // Performance might be harmed on HW that implements branching using exec mask
661   // where both sides of the branches are always executed.
662   if (MF->getTarget().requiresStructuredCFG())
663     return nullptr;
664 
665   // We may need to update this's terminator, but we can't do that if
666   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
667   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
668   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
669   SmallVector<MachineOperand, 4> Cond;
670   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
671     return nullptr;
672 
673   // Avoid bugpoint weirdness: A block may end with a conditional branch but
674   // jumps to the same MBB is either case. We have duplicate CFG edges in that
675   // case that we can't handle. Since this never happens in properly optimized
676   // code, just skip those edges.
677   if (TBB && TBB == FBB) {
678     DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
679                  << getNumber() << '\n');
680     return nullptr;
681   }
682 
683   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
684   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
685   DEBUG(dbgs() << "Splitting critical edge:"
686         " BB#" << getNumber()
687         << " -- BB#" << NMBB->getNumber()
688         << " -- BB#" << Succ->getNumber() << '\n');
689 
690   LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
691   SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
692   if (LIS)
693     LIS->insertMBBInMaps(NMBB);
694   else if (Indexes)
695     Indexes->insertMBBInMaps(NMBB);
696 
697   // On some targets like Mips, branches may kill virtual registers. Make sure
698   // that LiveVariables is properly updated after updateTerminator replaces the
699   // terminators.
700   LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
701 
702   // Collect a list of virtual registers killed by the terminators.
703   SmallVector<unsigned, 4> KilledRegs;
704   if (LV)
705     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
706          I != E; ++I) {
707       MachineInstr *MI = I;
708       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
709            OE = MI->operands_end(); OI != OE; ++OI) {
710         if (!OI->isReg() || OI->getReg() == 0 ||
711             !OI->isUse() || !OI->isKill() || OI->isUndef())
712           continue;
713         unsigned Reg = OI->getReg();
714         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
715             LV->getVarInfo(Reg).removeKill(MI)) {
716           KilledRegs.push_back(Reg);
717           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
718           OI->setIsKill(false);
719         }
720       }
721     }
722 
723   SmallVector<unsigned, 4> UsedRegs;
724   if (LIS) {
725     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
726          I != E; ++I) {
727       MachineInstr *MI = I;
728 
729       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
730            OE = MI->operands_end(); OI != OE; ++OI) {
731         if (!OI->isReg() || OI->getReg() == 0)
732           continue;
733 
734         unsigned Reg = OI->getReg();
735         if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
736           UsedRegs.push_back(Reg);
737       }
738     }
739   }
740 
741   ReplaceUsesOfBlockWith(Succ, NMBB);
742 
743   // If updateTerminator() removes instructions, we need to remove them from
744   // SlotIndexes.
745   SmallVector<MachineInstr*, 4> Terminators;
746   if (Indexes) {
747     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
748          I != E; ++I)
749       Terminators.push_back(I);
750   }
751 
752   updateTerminator();
753 
754   if (Indexes) {
755     SmallVector<MachineInstr*, 4> NewTerminators;
756     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
757          I != E; ++I)
758       NewTerminators.push_back(I);
759 
760     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
761         E = Terminators.end(); I != E; ++I) {
762       if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
763           NewTerminators.end())
764        Indexes->removeMachineInstrFromMaps(*I);
765     }
766   }
767 
768   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
769   NMBB->addSuccessor(Succ);
770   if (!NMBB->isLayoutSuccessor(Succ)) {
771     Cond.clear();
772     MF->getSubtarget().getInstrInfo()->InsertBranch(*NMBB, Succ, nullptr, Cond,
773                                                     dl);
774 
775     if (Indexes) {
776       for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
777            I != E; ++I) {
778         // Some instructions may have been moved to NMBB by updateTerminator(),
779         // so we first remove any instruction that already has an index.
780         if (Indexes->hasIndex(I))
781           Indexes->removeMachineInstrFromMaps(I);
782         Indexes->insertMachineInstrInMaps(I);
783       }
784     }
785   }
786 
787   // Fix PHI nodes in Succ so they refer to NMBB instead of this
788   for (MachineBasicBlock::instr_iterator
789          i = Succ->instr_begin(),e = Succ->instr_end();
790        i != e && i->isPHI(); ++i)
791     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
792       if (i->getOperand(ni+1).getMBB() == this)
793         i->getOperand(ni+1).setMBB(NMBB);
794 
795   // Inherit live-ins from the successor
796   for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
797          E = Succ->livein_end(); I != E; ++I)
798     NMBB->addLiveIn(*I);
799 
800   // Update LiveVariables.
801   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
802   if (LV) {
803     // Restore kills of virtual registers that were killed by the terminators.
804     while (!KilledRegs.empty()) {
805       unsigned Reg = KilledRegs.pop_back_val();
806       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
807         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
808           continue;
809         if (TargetRegisterInfo::isVirtualRegister(Reg))
810           LV->getVarInfo(Reg).Kills.push_back(I);
811         DEBUG(dbgs() << "Restored terminator kill: " << *I);
812         break;
813       }
814     }
815     // Update relevant live-through information.
816     LV->addNewBlock(NMBB, this, Succ);
817   }
818 
819   if (LIS) {
820     // After splitting the edge and updating SlotIndexes, live intervals may be
821     // in one of two situations, depending on whether this block was the last in
822     // the function. If the original block was the last in the function, all live
823     // intervals will end prior to the beginning of the new split block. If the
824     // original block was not at the end of the function, all live intervals will
825     // extend to the end of the new split block.
826 
827     bool isLastMBB =
828       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
829 
830     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
831     SlotIndex PrevIndex = StartIndex.getPrevSlot();
832     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
833 
834     // Find the registers used from NMBB in PHIs in Succ.
835     SmallSet<unsigned, 8> PHISrcRegs;
836     for (MachineBasicBlock::instr_iterator
837          I = Succ->instr_begin(), E = Succ->instr_end();
838          I != E && I->isPHI(); ++I) {
839       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
840         if (I->getOperand(ni+1).getMBB() == NMBB) {
841           MachineOperand &MO = I->getOperand(ni);
842           unsigned Reg = MO.getReg();
843           PHISrcRegs.insert(Reg);
844           if (MO.isUndef())
845             continue;
846 
847           LiveInterval &LI = LIS->getInterval(Reg);
848           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
849           assert(VNI && "PHI sources should be live out of their predecessors.");
850           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
851         }
852       }
853     }
854 
855     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
856     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
857       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
858       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
859         continue;
860 
861       LiveInterval &LI = LIS->getInterval(Reg);
862       if (!LI.liveAt(PrevIndex))
863         continue;
864 
865       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
866       if (isLiveOut && isLastMBB) {
867         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
868         assert(VNI && "LiveInterval should have VNInfo where it is live.");
869         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
870       } else if (!isLiveOut && !isLastMBB) {
871         LI.removeSegment(StartIndex, EndIndex);
872       }
873     }
874 
875     // Update all intervals for registers whose uses may have been modified by
876     // updateTerminator().
877     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
878   }
879 
880   if (MachineDominatorTree *MDT =
881       P->getAnalysisIfAvailable<MachineDominatorTree>())
882     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
883 
884   if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
885     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
886       // If one or the other blocks were not in a loop, the new block is not
887       // either, and thus LI doesn't need to be updated.
888       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
889         if (TIL == DestLoop) {
890           // Both in the same loop, the NMBB joins loop.
891           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
892         } else if (TIL->contains(DestLoop)) {
893           // Edge from an outer loop to an inner loop.  Add to the outer loop.
894           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
895         } else if (DestLoop->contains(TIL)) {
896           // Edge from an inner loop to an outer loop.  Add to the outer loop.
897           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
898         } else {
899           // Edge from two loops with no containment relation.  Because these
900           // are natural loops, we know that the destination block must be the
901           // header of its loop (adding a branch into a loop elsewhere would
902           // create an irreducible loop).
903           assert(DestLoop->getHeader() == Succ &&
904                  "Should not create irreducible loops!");
905           if (MachineLoop *P = DestLoop->getParentLoop())
906             P->addBasicBlockToLoop(NMBB, MLI->getBase());
907         }
908       }
909     }
910 
911   return NMBB;
912 }
913 
914 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
915 /// neighboring instructions so the bundle won't be broken by removing MI.
916 static void unbundleSingleMI(MachineInstr *MI) {
917   // Removing the first instruction in a bundle.
918   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
919     MI->unbundleFromSucc();
920   // Removing the last instruction in a bundle.
921   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
922     MI->unbundleFromPred();
923   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
924   // are already fine.
925 }
926 
927 MachineBasicBlock::instr_iterator
928 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
929   unbundleSingleMI(I);
930   return Insts.erase(I);
931 }
932 
933 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
934   unbundleSingleMI(MI);
935   MI->clearFlag(MachineInstr::BundledPred);
936   MI->clearFlag(MachineInstr::BundledSucc);
937   return Insts.remove(MI);
938 }
939 
940 MachineBasicBlock::instr_iterator
941 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
942   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
943          "Cannot insert instruction with bundle flags");
944   // Set the bundle flags when inserting inside a bundle.
945   if (I != instr_end() && I->isBundledWithPred()) {
946     MI->setFlag(MachineInstr::BundledPred);
947     MI->setFlag(MachineInstr::BundledSucc);
948   }
949   return Insts.insert(I, MI);
950 }
951 
952 /// removeFromParent - This method unlinks 'this' from the containing function,
953 /// and returns it, but does not delete it.
954 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
955   assert(getParent() && "Not embedded in a function!");
956   getParent()->remove(this);
957   return this;
958 }
959 
960 
961 /// eraseFromParent - This method unlinks 'this' from the containing function,
962 /// and deletes it.
963 void MachineBasicBlock::eraseFromParent() {
964   assert(getParent() && "Not embedded in a function!");
965   getParent()->erase(this);
966 }
967 
968 
969 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
970 /// 'Old', change the code and CFG so that it branches to 'New' instead.
971 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
972                                                MachineBasicBlock *New) {
973   assert(Old != New && "Cannot replace self with self!");
974 
975   MachineBasicBlock::instr_iterator I = instr_end();
976   while (I != instr_begin()) {
977     --I;
978     if (!I->isTerminator()) break;
979 
980     // Scan the operands of this machine instruction, replacing any uses of Old
981     // with New.
982     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
983       if (I->getOperand(i).isMBB() &&
984           I->getOperand(i).getMBB() == Old)
985         I->getOperand(i).setMBB(New);
986   }
987 
988   // Update the successor information.
989   replaceSuccessor(Old, New);
990 }
991 
992 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
993 /// CFG to be inserted.  If we have proven that MBB can only branch to DestA and
994 /// DestB, remove any other MBB successors from the CFG.  DestA and DestB can be
995 /// null.
996 ///
997 /// Besides DestA and DestB, retain other edges leading to LandingPads
998 /// (currently there can be only one; we don't check or require that here).
999 /// Note it is possible that DestA and/or DestB are LandingPads.
1000 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1001                                              MachineBasicBlock *DestB,
1002                                              bool isCond) {
1003   // The values of DestA and DestB frequently come from a call to the
1004   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1005   // values from there.
1006   //
1007   // 1. If both DestA and DestB are null, then the block ends with no branches
1008   //    (it falls through to its successor).
1009   // 2. If DestA is set, DestB is null, and isCond is false, then the block ends
1010   //    with only an unconditional branch.
1011   // 3. If DestA is set, DestB is null, and isCond is true, then the block ends
1012   //    with a conditional branch that falls through to a successor (DestB).
1013   // 4. If DestA and DestB is set and isCond is true, then the block ends with a
1014   //    conditional branch followed by an unconditional branch. DestA is the
1015   //    'true' destination and DestB is the 'false' destination.
1016 
1017   bool Changed = false;
1018 
1019   MachineFunction::iterator FallThru =
1020     std::next(MachineFunction::iterator(this));
1021 
1022   if (!DestA && !DestB) {
1023     // Block falls through to successor.
1024     DestA = FallThru;
1025     DestB = FallThru;
1026   } else if (DestA && !DestB) {
1027     if (isCond)
1028       // Block ends in conditional jump that falls through to successor.
1029       DestB = FallThru;
1030   } else {
1031     assert(DestA && DestB && isCond &&
1032            "CFG in a bad state. Cannot correct CFG edges");
1033   }
1034 
1035   // Remove superfluous edges. I.e., those which aren't destinations of this
1036   // basic block, duplicate edges, or landing pads.
1037   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1038   MachineBasicBlock::succ_iterator SI = succ_begin();
1039   while (SI != succ_end()) {
1040     const MachineBasicBlock *MBB = *SI;
1041     if (!SeenMBBs.insert(MBB).second ||
1042         (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
1043       // This is a superfluous edge, remove it.
1044       SI = removeSuccessor(SI);
1045       Changed = true;
1046     } else {
1047       ++SI;
1048     }
1049   }
1050 
1051   return Changed;
1052 }
1053 
1054 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
1055 /// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
1056 DebugLoc
1057 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1058   DebugLoc DL;
1059   instr_iterator E = instr_end();
1060   if (MBBI == E)
1061     return DL;
1062 
1063   // Skip debug declarations, we don't want a DebugLoc from them.
1064   while (MBBI != E && MBBI->isDebugValue())
1065     MBBI++;
1066   if (MBBI != E)
1067     DL = MBBI->getDebugLoc();
1068   return DL;
1069 }
1070 
1071 /// getSuccWeight - Return weight of the edge from this block to MBB.
1072 ///
1073 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const {
1074   if (Weights.empty())
1075     return 0;
1076 
1077   return *getWeightIterator(Succ);
1078 }
1079 
1080 /// Set successor weight of a given iterator.
1081 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t weight) {
1082   if (Weights.empty())
1083     return;
1084   *getWeightIterator(I) = weight;
1085 }
1086 
1087 /// getWeightIterator - Return wight iterator corresonding to the I successor
1088 /// iterator
1089 MachineBasicBlock::weight_iterator MachineBasicBlock::
1090 getWeightIterator(MachineBasicBlock::succ_iterator I) {
1091   assert(Weights.size() == Successors.size() && "Async weight list!");
1092   size_t index = std::distance(Successors.begin(), I);
1093   assert(index < Weights.size() && "Not a current successor!");
1094   return Weights.begin() + index;
1095 }
1096 
1097 /// getWeightIterator - Return wight iterator corresonding to the I successor
1098 /// iterator
1099 MachineBasicBlock::const_weight_iterator MachineBasicBlock::
1100 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const {
1101   assert(Weights.size() == Successors.size() && "Async weight list!");
1102   const size_t index = std::distance(Successors.begin(), I);
1103   assert(index < Weights.size() && "Not a current successor!");
1104   return Weights.begin() + index;
1105 }
1106 
1107 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1108 /// as of just before "MI".
1109 ///
1110 /// Search is localised to a neighborhood of
1111 /// Neighborhood instructions before (searching for defs or kills) and N
1112 /// instructions after (searching just for defs) MI.
1113 MachineBasicBlock::LivenessQueryResult
1114 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1115                                            unsigned Reg, const_iterator Before,
1116                                            unsigned Neighborhood) const {
1117   unsigned N = Neighborhood;
1118 
1119   // Start by searching backwards from Before, looking for kills, reads or defs.
1120   const_iterator I(Before);
1121   // If this is the first insn in the block, don't search backwards.
1122   if (I != begin()) {
1123     do {
1124       --I;
1125 
1126       MachineOperandIteratorBase::PhysRegInfo Analysis =
1127         ConstMIOperands(I).analyzePhysReg(Reg, TRI);
1128 
1129       if (Analysis.Defines)
1130         // Outputs happen after inputs so they take precedence if both are
1131         // present.
1132         return Analysis.DefinesDead ? LQR_Dead : LQR_Live;
1133 
1134       if (Analysis.Kills || Analysis.Clobbers)
1135         // Register killed, so isn't live.
1136         return LQR_Dead;
1137 
1138       else if (Analysis.ReadsOverlap)
1139         // Defined or read without a previous kill - live.
1140         return Analysis.Reads ? LQR_Live : LQR_OverlappingLive;
1141 
1142     } while (I != begin() && --N > 0);
1143   }
1144 
1145   // Did we get to the start of the block?
1146   if (I == begin()) {
1147     // If so, the register's state is definitely defined by the live-in state.
1148     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true);
1149          RAI.isValid(); ++RAI) {
1150       if (isLiveIn(*RAI))
1151         return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive;
1152     }
1153 
1154     return LQR_Dead;
1155   }
1156 
1157   N = Neighborhood;
1158 
1159   // Try searching forwards from Before, looking for reads or defs.
1160   I = const_iterator(Before);
1161   // If this is the last insn in the block, don't search forwards.
1162   if (I != end()) {
1163     for (++I; I != end() && N > 0; ++I, --N) {
1164       MachineOperandIteratorBase::PhysRegInfo Analysis =
1165         ConstMIOperands(I).analyzePhysReg(Reg, TRI);
1166 
1167       if (Analysis.ReadsOverlap)
1168         // Used, therefore must have been live.
1169         return (Analysis.Reads) ?
1170           LQR_Live : LQR_OverlappingLive;
1171 
1172       else if (Analysis.Clobbers || Analysis.Defines)
1173         // Defined (but not read) therefore cannot have been live.
1174         return LQR_Dead;
1175     }
1176   }
1177 
1178   // At this point we have no idea of the liveness of the register.
1179   return LQR_Unknown;
1180 }
1181