1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/StringExtras.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LivePhysRegs.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SlotIndexes.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/DebugInfoMetadata.h" 33 #include "llvm/IR/ModuleSlotTracker.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCContext.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <algorithm> 40 #include <cmath> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "codegen" 44 45 static cl::opt<bool> PrintSlotIndexes( 46 "print-slotindexes", 47 cl::desc("When printing machine IR, annotate instructions and blocks with " 48 "SlotIndexes when available"), 49 cl::init(true), cl::Hidden); 50 51 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 52 : BB(B), Number(-1), xParent(&MF) { 53 Insts.Parent = this; 54 if (B) 55 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 56 } 57 58 MachineBasicBlock::~MachineBasicBlock() = default; 59 60 /// Return the MCSymbol for this basic block. 61 MCSymbol *MachineBasicBlock::getSymbol() const { 62 if (!CachedMCSymbol) { 63 const MachineFunction *MF = getParent(); 64 MCContext &Ctx = MF->getContext(); 65 66 // We emit a non-temporary symbol -- with a descriptive name -- if it begins 67 // a section (with basic block sections). Otherwise we fall back to use temp 68 // label. 69 if (MF->hasBBSections() && isBeginSection()) { 70 SmallString<5> Suffix; 71 if (SectionID == MBBSectionID::ColdSectionID) { 72 Suffix += ".cold"; 73 } else if (SectionID == MBBSectionID::ExceptionSectionID) { 74 Suffix += ".eh"; 75 } else { 76 // For symbols that represent basic block sections, we add ".__part." to 77 // allow tools like symbolizers to know that this represents a part of 78 // the original function. 79 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str(); 80 } 81 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix); 82 } else { 83 // If the block occurs as label in inline assembly, parsing the assembly 84 // needs an actual label name => set AlwaysEmit in these cases. 85 CachedMCSymbol = Ctx.createBlockSymbol( 86 "BB" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber()), 87 /*AlwaysEmit=*/hasLabelMustBeEmitted()); 88 } 89 } 90 return CachedMCSymbol; 91 } 92 93 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const { 94 if (!CachedEHCatchretMCSymbol) { 95 const MachineFunction *MF = getParent(); 96 SmallString<128> SymbolName; 97 raw_svector_ostream(SymbolName) 98 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber(); 99 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName); 100 } 101 return CachedEHCatchretMCSymbol; 102 } 103 104 MCSymbol *MachineBasicBlock::getEndSymbol() const { 105 if (!CachedEndMCSymbol) { 106 const MachineFunction *MF = getParent(); 107 MCContext &Ctx = MF->getContext(); 108 CachedEndMCSymbol = Ctx.createBlockSymbol( 109 "BB_END" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber()), 110 /*AlwaysEmit=*/false); 111 } 112 return CachedEndMCSymbol; 113 } 114 115 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 116 MBB.print(OS); 117 return OS; 118 } 119 120 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 121 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 122 } 123 124 /// When an MBB is added to an MF, we need to update the parent pointer of the 125 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 126 /// operand list for registers. 127 /// 128 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 129 /// gets the next available unique MBB number. If it is removed from a 130 /// MachineFunction, it goes back to being #-1. 131 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 132 MachineBasicBlock *N) { 133 MachineFunction &MF = *N->getParent(); 134 N->Number = MF.addToMBBNumbering(N); 135 136 // Make sure the instructions have their operands in the reginfo lists. 137 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 138 for (MachineInstr &MI : N->instrs()) 139 MI.addRegOperandsToUseLists(RegInfo); 140 } 141 142 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 143 MachineBasicBlock *N) { 144 N->getParent()->removeFromMBBNumbering(N->Number); 145 N->Number = -1; 146 } 147 148 /// When we add an instruction to a basic block list, we update its parent 149 /// pointer and add its operands from reg use/def lists if appropriate. 150 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 151 assert(!N->getParent() && "machine instruction already in a basic block"); 152 N->setParent(Parent); 153 154 // Add the instruction's register operands to their corresponding 155 // use/def lists. 156 MachineFunction *MF = Parent->getParent(); 157 N->addRegOperandsToUseLists(MF->getRegInfo()); 158 MF->handleInsertion(*N); 159 } 160 161 /// When we remove an instruction from a basic block list, we update its parent 162 /// pointer and remove its operands from reg use/def lists if appropriate. 163 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 164 assert(N->getParent() && "machine instruction not in a basic block"); 165 166 // Remove from the use/def lists. 167 if (MachineFunction *MF = N->getMF()) { 168 MF->handleRemoval(*N); 169 N->removeRegOperandsFromUseLists(MF->getRegInfo()); 170 } 171 172 N->setParent(nullptr); 173 } 174 175 /// When moving a range of instructions from one MBB list to another, we need to 176 /// update the parent pointers and the use/def lists. 177 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 178 instr_iterator First, 179 instr_iterator Last) { 180 assert(Parent->getParent() == FromList.Parent->getParent() && 181 "cannot transfer MachineInstrs between MachineFunctions"); 182 183 // If it's within the same BB, there's nothing to do. 184 if (this == &FromList) 185 return; 186 187 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 188 189 // If splicing between two blocks within the same function, just update the 190 // parent pointers. 191 for (; First != Last; ++First) 192 First->setParent(Parent); 193 } 194 195 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 196 assert(!MI->getParent() && "MI is still in a block!"); 197 Parent->getParent()->deleteMachineInstr(MI); 198 } 199 200 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 201 instr_iterator I = instr_begin(), E = instr_end(); 202 while (I != E && I->isPHI()) 203 ++I; 204 assert((I == E || !I->isInsideBundle()) && 205 "First non-phi MI cannot be inside a bundle!"); 206 return I; 207 } 208 209 MachineBasicBlock::iterator 210 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 211 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 212 213 iterator E = end(); 214 while (I != E && (I->isPHI() || I->isPosition() || 215 TII->isBasicBlockPrologue(*I))) 216 ++I; 217 // FIXME: This needs to change if we wish to bundle labels 218 // inside the bundle. 219 assert((I == E || !I->isInsideBundle()) && 220 "First non-phi / non-label instruction is inside a bundle!"); 221 return I; 222 } 223 224 MachineBasicBlock::iterator 225 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I, 226 Register Reg, bool SkipPseudoOp) { 227 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 228 229 iterator E = end(); 230 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 231 (SkipPseudoOp && I->isPseudoProbe()) || 232 TII->isBasicBlockPrologue(*I, Reg))) 233 ++I; 234 // FIXME: This needs to change if we wish to bundle labels / dbg_values 235 // inside the bundle. 236 assert((I == E || !I->isInsideBundle()) && 237 "First non-phi / non-label / non-debug " 238 "instruction is inside a bundle!"); 239 return I; 240 } 241 242 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 243 iterator B = begin(), E = end(), I = E; 244 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 245 ; /*noop */ 246 while (I != E && !I->isTerminator()) 247 ++I; 248 return I; 249 } 250 251 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 252 instr_iterator B = instr_begin(), E = instr_end(), I = E; 253 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 254 ; /*noop */ 255 while (I != E && !I->isTerminator()) 256 ++I; 257 return I; 258 } 259 260 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() { 261 return find_if(instrs(), [](auto &II) { return II.isTerminator(); }); 262 } 263 264 MachineBasicBlock::iterator 265 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) { 266 // Skip over begin-of-block dbg_value instructions. 267 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp); 268 } 269 270 MachineBasicBlock::iterator 271 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) { 272 // Skip over end-of-block dbg_value instructions. 273 instr_iterator B = instr_begin(), I = instr_end(); 274 while (I != B) { 275 --I; 276 // Return instruction that starts a bundle. 277 if (I->isDebugInstr() || I->isInsideBundle()) 278 continue; 279 if (SkipPseudoOp && I->isPseudoProbe()) 280 continue; 281 return I; 282 } 283 // The block is all debug values. 284 return end(); 285 } 286 287 bool MachineBasicBlock::hasEHPadSuccessor() const { 288 for (const MachineBasicBlock *Succ : successors()) 289 if (Succ->isEHPad()) 290 return true; 291 return false; 292 } 293 294 bool MachineBasicBlock::isEntryBlock() const { 295 return getParent()->begin() == getIterator(); 296 } 297 298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 299 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 300 print(dbgs()); 301 } 302 #endif 303 304 bool MachineBasicBlock::mayHaveInlineAsmBr() const { 305 for (const MachineBasicBlock *Succ : successors()) { 306 if (Succ->isInlineAsmBrIndirectTarget()) 307 return true; 308 } 309 return false; 310 } 311 312 bool MachineBasicBlock::isLegalToHoistInto() const { 313 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr()) 314 return false; 315 return true; 316 } 317 318 bool MachineBasicBlock::hasName() const { 319 if (const BasicBlock *LBB = getBasicBlock()) 320 return LBB->hasName(); 321 return false; 322 } 323 324 StringRef MachineBasicBlock::getName() const { 325 if (const BasicBlock *LBB = getBasicBlock()) 326 return LBB->getName(); 327 else 328 return StringRef("", 0); 329 } 330 331 /// Return a hopefully unique identifier for this block. 332 std::string MachineBasicBlock::getFullName() const { 333 std::string Name; 334 if (getParent()) 335 Name = (getParent()->getName() + ":").str(); 336 if (getBasicBlock()) 337 Name += getBasicBlock()->getName(); 338 else 339 Name += ("BB" + Twine(getNumber())).str(); 340 return Name; 341 } 342 343 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 344 bool IsStandalone) const { 345 const MachineFunction *MF = getParent(); 346 if (!MF) { 347 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 348 << " is null\n"; 349 return; 350 } 351 const Function &F = MF->getFunction(); 352 const Module *M = F.getParent(); 353 ModuleSlotTracker MST(M); 354 MST.incorporateFunction(F); 355 print(OS, MST, Indexes, IsStandalone); 356 } 357 358 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 359 const SlotIndexes *Indexes, 360 bool IsStandalone) const { 361 const MachineFunction *MF = getParent(); 362 if (!MF) { 363 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 364 << " is null\n"; 365 return; 366 } 367 368 if (Indexes && PrintSlotIndexes) 369 OS << Indexes->getMBBStartIdx(this) << '\t'; 370 371 printName(OS, PrintNameIr | PrintNameAttributes, &MST); 372 OS << ":\n"; 373 374 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 375 const MachineRegisterInfo &MRI = MF->getRegInfo(); 376 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 377 bool HasLineAttributes = false; 378 379 // Print the preds of this block according to the CFG. 380 if (!pred_empty() && IsStandalone) { 381 if (Indexes) OS << '\t'; 382 // Don't indent(2), align with previous line attributes. 383 OS << "; predecessors: "; 384 ListSeparator LS; 385 for (auto *Pred : predecessors()) 386 OS << LS << printMBBReference(*Pred); 387 OS << '\n'; 388 HasLineAttributes = true; 389 } 390 391 if (!succ_empty()) { 392 if (Indexes) OS << '\t'; 393 // Print the successors 394 OS.indent(2) << "successors: "; 395 ListSeparator LS; 396 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 397 OS << LS << printMBBReference(**I); 398 if (!Probs.empty()) 399 OS << '(' 400 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 401 << ')'; 402 } 403 if (!Probs.empty() && IsStandalone) { 404 // Print human readable probabilities as comments. 405 OS << "; "; 406 ListSeparator LS; 407 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 408 const BranchProbability &BP = getSuccProbability(I); 409 OS << LS << printMBBReference(**I) << '(' 410 << format("%.2f%%", 411 rint(((double)BP.getNumerator() / BP.getDenominator()) * 412 100.0 * 100.0) / 413 100.0) 414 << ')'; 415 } 416 } 417 418 OS << '\n'; 419 HasLineAttributes = true; 420 } 421 422 if (!livein_empty() && MRI.tracksLiveness()) { 423 if (Indexes) OS << '\t'; 424 OS.indent(2) << "liveins: "; 425 426 ListSeparator LS; 427 for (const auto &LI : liveins()) { 428 OS << LS << printReg(LI.PhysReg, TRI); 429 if (!LI.LaneMask.all()) 430 OS << ":0x" << PrintLaneMask(LI.LaneMask); 431 } 432 HasLineAttributes = true; 433 } 434 435 if (HasLineAttributes) 436 OS << '\n'; 437 438 bool IsInBundle = false; 439 for (const MachineInstr &MI : instrs()) { 440 if (Indexes && PrintSlotIndexes) { 441 if (Indexes->hasIndex(MI)) 442 OS << Indexes->getInstructionIndex(MI); 443 OS << '\t'; 444 } 445 446 if (IsInBundle && !MI.isInsideBundle()) { 447 OS.indent(2) << "}\n"; 448 IsInBundle = false; 449 } 450 451 OS.indent(IsInBundle ? 4 : 2); 452 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 453 /*AddNewLine=*/false, &TII); 454 455 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 456 OS << " {"; 457 IsInBundle = true; 458 } 459 OS << '\n'; 460 } 461 462 if (IsInBundle) 463 OS.indent(2) << "}\n"; 464 465 if (IrrLoopHeaderWeight && IsStandalone) { 466 if (Indexes) OS << '\t'; 467 OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight 468 << '\n'; 469 } 470 } 471 472 /// Print the basic block's name as: 473 /// 474 /// bb.{number}[.{ir-name}] [(attributes...)] 475 /// 476 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed 477 /// (which is the default). If the IR block has no name, it is identified 478 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})". 479 /// 480 /// When the \ref PrintNameAttributes flag is passed, additional attributes 481 /// of the block are printed when set. 482 /// 483 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating 484 /// the parts to print. 485 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will 486 /// incorporate its own tracker when necessary to 487 /// determine the block's IR name. 488 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags, 489 ModuleSlotTracker *moduleSlotTracker) const { 490 os << "bb." << getNumber(); 491 bool hasAttributes = false; 492 493 auto PrintBBRef = [&](const BasicBlock *bb) { 494 os << "%ir-block."; 495 if (bb->hasName()) { 496 os << bb->getName(); 497 } else { 498 int slot = -1; 499 500 if (moduleSlotTracker) { 501 slot = moduleSlotTracker->getLocalSlot(bb); 502 } else if (bb->getParent()) { 503 ModuleSlotTracker tmpTracker(bb->getModule(), false); 504 tmpTracker.incorporateFunction(*bb->getParent()); 505 slot = tmpTracker.getLocalSlot(bb); 506 } 507 508 if (slot == -1) 509 os << "<ir-block badref>"; 510 else 511 os << slot; 512 } 513 }; 514 515 if (printNameFlags & PrintNameIr) { 516 if (const auto *bb = getBasicBlock()) { 517 if (bb->hasName()) { 518 os << '.' << bb->getName(); 519 } else { 520 hasAttributes = true; 521 os << " ("; 522 PrintBBRef(bb); 523 } 524 } 525 } 526 527 if (printNameFlags & PrintNameAttributes) { 528 if (isMachineBlockAddressTaken()) { 529 os << (hasAttributes ? ", " : " ("); 530 os << "machine-block-address-taken"; 531 hasAttributes = true; 532 } 533 if (isIRBlockAddressTaken()) { 534 os << (hasAttributes ? ", " : " ("); 535 os << "ir-block-address-taken "; 536 PrintBBRef(getAddressTakenIRBlock()); 537 hasAttributes = true; 538 } 539 if (isEHPad()) { 540 os << (hasAttributes ? ", " : " ("); 541 os << "landing-pad"; 542 hasAttributes = true; 543 } 544 if (isInlineAsmBrIndirectTarget()) { 545 os << (hasAttributes ? ", " : " ("); 546 os << "inlineasm-br-indirect-target"; 547 hasAttributes = true; 548 } 549 if (isEHFuncletEntry()) { 550 os << (hasAttributes ? ", " : " ("); 551 os << "ehfunclet-entry"; 552 hasAttributes = true; 553 } 554 if (getAlignment() != Align(1)) { 555 os << (hasAttributes ? ", " : " ("); 556 os << "align " << getAlignment().value(); 557 hasAttributes = true; 558 } 559 if (getSectionID() != MBBSectionID(0)) { 560 os << (hasAttributes ? ", " : " ("); 561 os << "bbsections "; 562 switch (getSectionID().Type) { 563 case MBBSectionID::SectionType::Exception: 564 os << "Exception"; 565 break; 566 case MBBSectionID::SectionType::Cold: 567 os << "Cold"; 568 break; 569 default: 570 os << getSectionID().Number; 571 } 572 hasAttributes = true; 573 } 574 if (getBBID().has_value()) { 575 os << (hasAttributes ? ", " : " ("); 576 os << "bb_id " << getBBID()->BaseID; 577 if (getBBID()->CloneID != 0) 578 os << " " << getBBID()->CloneID; 579 hasAttributes = true; 580 } 581 if (CallFrameSize != 0) { 582 os << (hasAttributes ? ", " : " ("); 583 os << "call-frame-size " << CallFrameSize; 584 hasAttributes = true; 585 } 586 } 587 588 if (hasAttributes) 589 os << ')'; 590 } 591 592 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 593 bool /*PrintType*/) const { 594 OS << '%'; 595 printName(OS, 0); 596 } 597 598 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 599 LiveInVector::iterator I = find_if( 600 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 601 if (I == LiveIns.end()) 602 return; 603 604 I->LaneMask &= ~LaneMask; 605 if (I->LaneMask.none()) 606 LiveIns.erase(I); 607 } 608 609 MachineBasicBlock::livein_iterator 610 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 611 // Get non-const version of iterator. 612 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 613 return LiveIns.erase(LI); 614 } 615 616 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 617 livein_iterator I = find_if( 618 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 619 return I != livein_end() && (I->LaneMask & LaneMask).any(); 620 } 621 622 void MachineBasicBlock::sortUniqueLiveIns() { 623 llvm::sort(LiveIns, 624 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 625 return LI0.PhysReg < LI1.PhysReg; 626 }); 627 // Liveins are sorted by physreg now we can merge their lanemasks. 628 LiveInVector::const_iterator I = LiveIns.begin(); 629 LiveInVector::const_iterator J; 630 LiveInVector::iterator Out = LiveIns.begin(); 631 for (; I != LiveIns.end(); ++Out, I = J) { 632 MCRegister PhysReg = I->PhysReg; 633 LaneBitmask LaneMask = I->LaneMask; 634 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 635 LaneMask |= J->LaneMask; 636 Out->PhysReg = PhysReg; 637 Out->LaneMask = LaneMask; 638 } 639 LiveIns.erase(Out, LiveIns.end()); 640 } 641 642 Register 643 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 644 assert(getParent() && "MBB must be inserted in function"); 645 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg"); 646 assert(RC && "Register class is required"); 647 assert((isEHPad() || this == &getParent()->front()) && 648 "Only the entry block and landing pads can have physreg live ins"); 649 650 bool LiveIn = isLiveIn(PhysReg); 651 iterator I = SkipPHIsAndLabels(begin()), E = end(); 652 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 653 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 654 655 // Look for an existing copy. 656 if (LiveIn) 657 for (;I != E && I->isCopy(); ++I) 658 if (I->getOperand(1).getReg() == PhysReg) { 659 Register VirtReg = I->getOperand(0).getReg(); 660 if (!MRI.constrainRegClass(VirtReg, RC)) 661 llvm_unreachable("Incompatible live-in register class."); 662 return VirtReg; 663 } 664 665 // No luck, create a virtual register. 666 Register VirtReg = MRI.createVirtualRegister(RC); 667 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 668 .addReg(PhysReg, RegState::Kill); 669 if (!LiveIn) 670 addLiveIn(PhysReg); 671 return VirtReg; 672 } 673 674 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 675 getParent()->splice(NewAfter->getIterator(), getIterator()); 676 } 677 678 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 679 getParent()->splice(++NewBefore->getIterator(), getIterator()); 680 } 681 682 static int findJumpTableIndex(const MachineBasicBlock &MBB) { 683 MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator(); 684 if (TerminatorI == MBB.end()) 685 return -1; 686 const MachineInstr &Terminator = *TerminatorI; 687 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 688 return TII->getJumpTableIndex(Terminator); 689 } 690 691 void MachineBasicBlock::updateTerminator( 692 MachineBasicBlock *PreviousLayoutSuccessor) { 693 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this) 694 << "\n"); 695 696 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 697 // A block with no successors has no concerns with fall-through edges. 698 if (this->succ_empty()) 699 return; 700 701 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 702 SmallVector<MachineOperand, 4> Cond; 703 DebugLoc DL = findBranchDebugLoc(); 704 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 705 (void) B; 706 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 707 if (Cond.empty()) { 708 if (TBB) { 709 // The block has an unconditional branch. If its successor is now its 710 // layout successor, delete the branch. 711 if (isLayoutSuccessor(TBB)) 712 TII->removeBranch(*this); 713 } else { 714 // The block has an unconditional fallthrough, or the end of the block is 715 // unreachable. 716 717 // Unfortunately, whether the end of the block is unreachable is not 718 // immediately obvious; we must fall back to checking the successor list, 719 // and assuming that if the passed in block is in the succesor list and 720 // not an EHPad, it must be the intended target. 721 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) || 722 PreviousLayoutSuccessor->isEHPad()) 723 return; 724 725 // If the unconditional successor block is not the current layout 726 // successor, insert a branch to jump to it. 727 if (!isLayoutSuccessor(PreviousLayoutSuccessor)) 728 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 729 } 730 return; 731 } 732 733 if (FBB) { 734 // The block has a non-fallthrough conditional branch. If one of its 735 // successors is its layout successor, rewrite it to a fallthrough 736 // conditional branch. 737 if (isLayoutSuccessor(TBB)) { 738 if (TII->reverseBranchCondition(Cond)) 739 return; 740 TII->removeBranch(*this); 741 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 742 } else if (isLayoutSuccessor(FBB)) { 743 TII->removeBranch(*this); 744 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 745 } 746 return; 747 } 748 749 // We now know we're going to fallthrough to PreviousLayoutSuccessor. 750 assert(PreviousLayoutSuccessor); 751 assert(!PreviousLayoutSuccessor->isEHPad()); 752 assert(isSuccessor(PreviousLayoutSuccessor)); 753 754 if (PreviousLayoutSuccessor == TBB) { 755 // We had a fallthrough to the same basic block as the conditional jump 756 // targets. Remove the conditional jump, leaving an unconditional 757 // fallthrough or an unconditional jump. 758 TII->removeBranch(*this); 759 if (!isLayoutSuccessor(TBB)) { 760 Cond.clear(); 761 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 762 } 763 return; 764 } 765 766 // The block has a fallthrough conditional branch. 767 if (isLayoutSuccessor(TBB)) { 768 if (TII->reverseBranchCondition(Cond)) { 769 // We can't reverse the condition, add an unconditional branch. 770 Cond.clear(); 771 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 772 return; 773 } 774 TII->removeBranch(*this); 775 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 776 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) { 777 TII->removeBranch(*this); 778 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL); 779 } 780 } 781 782 void MachineBasicBlock::validateSuccProbs() const { 783 #ifndef NDEBUG 784 int64_t Sum = 0; 785 for (auto Prob : Probs) 786 Sum += Prob.getNumerator(); 787 // Due to precision issue, we assume that the sum of probabilities is one if 788 // the difference between the sum of their numerators and the denominator is 789 // no greater than the number of successors. 790 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 791 Probs.size() && 792 "The sum of successors's probabilities exceeds one."); 793 #endif // NDEBUG 794 } 795 796 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 797 BranchProbability Prob) { 798 // Probability list is either empty (if successor list isn't empty, this means 799 // disabled optimization) or has the same size as successor list. 800 if (!(Probs.empty() && !Successors.empty())) 801 Probs.push_back(Prob); 802 Successors.push_back(Succ); 803 Succ->addPredecessor(this); 804 } 805 806 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 807 // We need to make sure probability list is either empty or has the same size 808 // of successor list. When this function is called, we can safely delete all 809 // probability in the list. 810 Probs.clear(); 811 Successors.push_back(Succ); 812 Succ->addPredecessor(this); 813 } 814 815 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 816 MachineBasicBlock *New, 817 bool NormalizeSuccProbs) { 818 succ_iterator OldI = llvm::find(successors(), Old); 819 assert(OldI != succ_end() && "Old is not a successor of this block!"); 820 assert(!llvm::is_contained(successors(), New) && 821 "New is already a successor of this block!"); 822 823 // Add a new successor with equal probability as the original one. Note 824 // that we directly copy the probability using the iterator rather than 825 // getting a potentially synthetic probability computed when unknown. This 826 // preserves the probabilities as-is and then we can renormalize them and 827 // query them effectively afterward. 828 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 829 : *getProbabilityIterator(OldI)); 830 if (NormalizeSuccProbs) 831 normalizeSuccProbs(); 832 } 833 834 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 835 bool NormalizeSuccProbs) { 836 succ_iterator I = find(Successors, Succ); 837 removeSuccessor(I, NormalizeSuccProbs); 838 } 839 840 MachineBasicBlock::succ_iterator 841 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 842 assert(I != Successors.end() && "Not a current successor!"); 843 844 // If probability list is empty it means we don't use it (disabled 845 // optimization). 846 if (!Probs.empty()) { 847 probability_iterator WI = getProbabilityIterator(I); 848 Probs.erase(WI); 849 if (NormalizeSuccProbs) 850 normalizeSuccProbs(); 851 } 852 853 (*I)->removePredecessor(this); 854 return Successors.erase(I); 855 } 856 857 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 858 MachineBasicBlock *New) { 859 if (Old == New) 860 return; 861 862 succ_iterator E = succ_end(); 863 succ_iterator NewI = E; 864 succ_iterator OldI = E; 865 for (succ_iterator I = succ_begin(); I != E; ++I) { 866 if (*I == Old) { 867 OldI = I; 868 if (NewI != E) 869 break; 870 } 871 if (*I == New) { 872 NewI = I; 873 if (OldI != E) 874 break; 875 } 876 } 877 assert(OldI != E && "Old is not a successor of this block"); 878 879 // If New isn't already a successor, let it take Old's place. 880 if (NewI == E) { 881 Old->removePredecessor(this); 882 New->addPredecessor(this); 883 *OldI = New; 884 return; 885 } 886 887 // New is already a successor. 888 // Update its probability instead of adding a duplicate edge. 889 if (!Probs.empty()) { 890 auto ProbIter = getProbabilityIterator(NewI); 891 if (!ProbIter->isUnknown()) 892 *ProbIter += *getProbabilityIterator(OldI); 893 } 894 removeSuccessor(OldI); 895 } 896 897 void MachineBasicBlock::copySuccessor(const MachineBasicBlock *Orig, 898 succ_iterator I) { 899 if (!Orig->Probs.empty()) 900 addSuccessor(*I, Orig->getSuccProbability(I)); 901 else 902 addSuccessorWithoutProb(*I); 903 } 904 905 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 906 Predecessors.push_back(Pred); 907 } 908 909 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 910 pred_iterator I = find(Predecessors, Pred); 911 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 912 Predecessors.erase(I); 913 } 914 915 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 916 if (this == FromMBB) 917 return; 918 919 while (!FromMBB->succ_empty()) { 920 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 921 922 // If probability list is empty it means we don't use it (disabled 923 // optimization). 924 if (!FromMBB->Probs.empty()) { 925 auto Prob = *FromMBB->Probs.begin(); 926 addSuccessor(Succ, Prob); 927 } else 928 addSuccessorWithoutProb(Succ); 929 930 FromMBB->removeSuccessor(Succ); 931 } 932 } 933 934 void 935 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 936 if (this == FromMBB) 937 return; 938 939 while (!FromMBB->succ_empty()) { 940 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 941 if (!FromMBB->Probs.empty()) { 942 auto Prob = *FromMBB->Probs.begin(); 943 addSuccessor(Succ, Prob); 944 } else 945 addSuccessorWithoutProb(Succ); 946 FromMBB->removeSuccessor(Succ); 947 948 // Fix up any PHI nodes in the successor. 949 Succ->replacePhiUsesWith(FromMBB, this); 950 } 951 normalizeSuccProbs(); 952 } 953 954 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 955 return is_contained(predecessors(), MBB); 956 } 957 958 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 959 return is_contained(successors(), MBB); 960 } 961 962 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 963 MachineFunction::const_iterator I(this); 964 return std::next(I) == MachineFunction::const_iterator(MBB); 965 } 966 967 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const { 968 return Successors.size() == 1 ? Successors[0] : nullptr; 969 } 970 971 const MachineBasicBlock *MachineBasicBlock::getSinglePredecessor() const { 972 return Predecessors.size() == 1 ? Predecessors[0] : nullptr; 973 } 974 975 MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) { 976 MachineFunction::iterator Fallthrough = getIterator(); 977 ++Fallthrough; 978 // If FallthroughBlock is off the end of the function, it can't fall through. 979 if (Fallthrough == getParent()->end()) 980 return nullptr; 981 982 // If FallthroughBlock isn't a successor, no fallthrough is possible. 983 if (!isSuccessor(&*Fallthrough)) 984 return nullptr; 985 986 // Analyze the branches, if any, at the end of the block. 987 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 988 SmallVector<MachineOperand, 4> Cond; 989 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 990 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 991 // If we couldn't analyze the branch, examine the last instruction. 992 // If the block doesn't end in a known control barrier, assume fallthrough 993 // is possible. The isPredicated check is needed because this code can be 994 // called during IfConversion, where an instruction which is normally a 995 // Barrier is predicated and thus no longer an actual control barrier. 996 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 997 ? &*Fallthrough 998 : nullptr; 999 } 1000 1001 // If there is no branch, control always falls through. 1002 if (!TBB) return &*Fallthrough; 1003 1004 // If there is some explicit branch to the fallthrough block, it can obviously 1005 // reach, even though the branch should get folded to fall through implicitly. 1006 if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough || 1007 MachineFunction::iterator(FBB) == Fallthrough)) 1008 return &*Fallthrough; 1009 1010 // If it's an unconditional branch to some block not the fall through, it 1011 // doesn't fall through. 1012 if (Cond.empty()) return nullptr; 1013 1014 // Otherwise, if it is conditional and has no explicit false block, it falls 1015 // through. 1016 return (FBB == nullptr) ? &*Fallthrough : nullptr; 1017 } 1018 1019 bool MachineBasicBlock::canFallThrough() { 1020 return getFallThrough() != nullptr; 1021 } 1022 1023 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI, 1024 bool UpdateLiveIns, 1025 LiveIntervals *LIS) { 1026 MachineBasicBlock::iterator SplitPoint(&MI); 1027 ++SplitPoint; 1028 1029 if (SplitPoint == end()) { 1030 // Don't bother with a new block. 1031 return this; 1032 } 1033 1034 MachineFunction *MF = getParent(); 1035 1036 LivePhysRegs LiveRegs; 1037 if (UpdateLiveIns) { 1038 // Make sure we add any physregs we define in the block as liveins to the 1039 // new block. 1040 MachineBasicBlock::iterator Prev(&MI); 1041 LiveRegs.init(*MF->getSubtarget().getRegisterInfo()); 1042 LiveRegs.addLiveOuts(*this); 1043 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I) 1044 LiveRegs.stepBackward(*I); 1045 } 1046 1047 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock()); 1048 1049 MF->insert(++MachineFunction::iterator(this), SplitBB); 1050 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end()); 1051 1052 SplitBB->transferSuccessorsAndUpdatePHIs(this); 1053 addSuccessor(SplitBB); 1054 1055 if (UpdateLiveIns) 1056 addLiveIns(*SplitBB, LiveRegs); 1057 1058 if (LIS) 1059 LIS->insertMBBInMaps(SplitBB); 1060 1061 return SplitBB; 1062 } 1063 1064 // Returns `true` if there are possibly other users of the jump table at 1065 // `JumpTableIndex` except for the ones in `IgnoreMBB`. 1066 static bool jumpTableHasOtherUses(const MachineFunction &MF, 1067 const MachineBasicBlock &IgnoreMBB, 1068 int JumpTableIndex) { 1069 assert(JumpTableIndex >= 0 && "need valid index"); 1070 const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo(); 1071 const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex]; 1072 // Take any basic block from the table; every user of the jump table must 1073 // show up in the predecessor list. 1074 const MachineBasicBlock *MBB = nullptr; 1075 for (MachineBasicBlock *B : MJTE.MBBs) { 1076 if (B != nullptr) { 1077 MBB = B; 1078 break; 1079 } 1080 } 1081 if (MBB == nullptr) 1082 return true; // can't rule out other users if there isn't any block. 1083 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1084 SmallVector<MachineOperand, 4> Cond; 1085 for (MachineBasicBlock *Pred : MBB->predecessors()) { 1086 if (Pred == &IgnoreMBB) 1087 continue; 1088 MachineBasicBlock *DummyT = nullptr; 1089 MachineBasicBlock *DummyF = nullptr; 1090 Cond.clear(); 1091 if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond, 1092 /*AllowModify=*/false)) { 1093 // analyzable direct jump 1094 continue; 1095 } 1096 int PredJTI = findJumpTableIndex(*Pred); 1097 if (PredJTI >= 0) { 1098 if (PredJTI == JumpTableIndex) 1099 return true; 1100 continue; 1101 } 1102 // Be conservative for unanalyzable jumps. 1103 return true; 1104 } 1105 return false; 1106 } 1107 1108 class SlotIndexUpdateDelegate : public MachineFunction::Delegate { 1109 private: 1110 MachineFunction &MF; 1111 SlotIndexes *Indexes; 1112 SmallSetVector<MachineInstr *, 2> Insertions; 1113 1114 public: 1115 SlotIndexUpdateDelegate(MachineFunction &MF, SlotIndexes *Indexes) 1116 : MF(MF), Indexes(Indexes) { 1117 MF.setDelegate(this); 1118 } 1119 1120 ~SlotIndexUpdateDelegate() { 1121 MF.resetDelegate(this); 1122 for (auto MI : Insertions) 1123 Indexes->insertMachineInstrInMaps(*MI); 1124 } 1125 1126 void MF_HandleInsertion(MachineInstr &MI) override { 1127 // This is called before MI is inserted into block so defer index update. 1128 if (Indexes) 1129 Insertions.insert(&MI); 1130 } 1131 1132 void MF_HandleRemoval(MachineInstr &MI) override { 1133 if (Indexes && !Insertions.remove(&MI)) 1134 Indexes->removeMachineInstrFromMaps(MI); 1135 } 1136 }; 1137 1138 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( 1139 MachineBasicBlock *Succ, Pass &P, 1140 std::vector<SparseBitVector<>> *LiveInSets) { 1141 if (!canSplitCriticalEdge(Succ)) 1142 return nullptr; 1143 1144 MachineFunction *MF = getParent(); 1145 MachineBasicBlock *PrevFallthrough = getNextNode(); 1146 1147 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 1148 NMBB->setCallFrameSize(Succ->getCallFrameSize()); 1149 1150 // Is there an indirect jump with jump table? 1151 bool ChangedIndirectJump = false; 1152 int JTI = findJumpTableIndex(*this); 1153 if (JTI >= 0) { 1154 MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo(); 1155 MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB); 1156 ChangedIndirectJump = true; 1157 } 1158 1159 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 1160 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 1161 << " -- " << printMBBReference(*NMBB) << " -- " 1162 << printMBBReference(*Succ) << '\n'); 1163 1164 auto *LISWrapper = P.getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); 1165 LiveIntervals *LIS = LISWrapper ? &LISWrapper->getLIS() : nullptr; 1166 auto *SIWrapper = P.getAnalysisIfAvailable<SlotIndexesWrapperPass>(); 1167 SlotIndexes *Indexes = SIWrapper ? &SIWrapper->getSI() : nullptr; 1168 if (LIS) 1169 LIS->insertMBBInMaps(NMBB); 1170 else if (Indexes) 1171 Indexes->insertMBBInMaps(NMBB); 1172 1173 // On some targets like Mips, branches may kill virtual registers. Make sure 1174 // that LiveVariables is properly updated after updateTerminator replaces the 1175 // terminators. 1176 auto *LVWrapper = P.getAnalysisIfAvailable<LiveVariablesWrapperPass>(); 1177 LiveVariables *LV = LVWrapper ? &LVWrapper->getLV() : nullptr; 1178 1179 // Collect a list of virtual registers killed by the terminators. 1180 SmallVector<Register, 4> KilledRegs; 1181 if (LV) 1182 for (MachineInstr &MI : 1183 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1184 for (MachineOperand &MO : MI.all_uses()) { 1185 if (MO.getReg() == 0 || !MO.isKill() || MO.isUndef()) 1186 continue; 1187 Register Reg = MO.getReg(); 1188 if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) { 1189 KilledRegs.push_back(Reg); 1190 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI); 1191 MO.setIsKill(false); 1192 } 1193 } 1194 } 1195 1196 SmallVector<Register, 4> UsedRegs; 1197 if (LIS) { 1198 for (MachineInstr &MI : 1199 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1200 for (const MachineOperand &MO : MI.operands()) { 1201 if (!MO.isReg() || MO.getReg() == 0) 1202 continue; 1203 1204 Register Reg = MO.getReg(); 1205 if (!is_contained(UsedRegs, Reg)) 1206 UsedRegs.push_back(Reg); 1207 } 1208 } 1209 } 1210 1211 ReplaceUsesOfBlockWith(Succ, NMBB); 1212 1213 // Since we replaced all uses of Succ with NMBB, that should also be treated 1214 // as the fallthrough successor 1215 if (Succ == PrevFallthrough) 1216 PrevFallthrough = NMBB; 1217 1218 if (!ChangedIndirectJump) { 1219 SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes); 1220 updateTerminator(PrevFallthrough); 1221 } 1222 1223 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 1224 NMBB->addSuccessor(Succ); 1225 if (!NMBB->isLayoutSuccessor(Succ)) { 1226 SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes); 1227 SmallVector<MachineOperand, 4> Cond; 1228 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 1229 1230 // In original 'this' BB, there must be a branch instruction targeting at 1231 // Succ. We can not find it out since currently getBranchDestBlock was not 1232 // implemented for all targets. However, if the merged DL has column or line 1233 // number, the scope and non-zero column and line number is same with that 1234 // branch instruction so we can safely use it. 1235 DebugLoc DL, MergedDL = findBranchDebugLoc(); 1236 if (MergedDL && (MergedDL.getLine() || MergedDL.getCol())) 1237 DL = MergedDL; 1238 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 1239 } 1240 1241 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 1242 Succ->replacePhiUsesWith(this, NMBB); 1243 1244 // Inherit live-ins from the successor 1245 for (const auto &LI : Succ->liveins()) 1246 NMBB->addLiveIn(LI); 1247 1248 // Update LiveVariables. 1249 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1250 if (LV) { 1251 // Restore kills of virtual registers that were killed by the terminators. 1252 while (!KilledRegs.empty()) { 1253 Register Reg = KilledRegs.pop_back_val(); 1254 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 1255 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 1256 continue; 1257 if (Reg.isVirtual()) 1258 LV->getVarInfo(Reg).Kills.push_back(&*I); 1259 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1260 break; 1261 } 1262 } 1263 // Update relevant live-through information. 1264 if (LiveInSets != nullptr) 1265 LV->addNewBlock(NMBB, this, Succ, *LiveInSets); 1266 else 1267 LV->addNewBlock(NMBB, this, Succ); 1268 } 1269 1270 if (LIS) { 1271 // After splitting the edge and updating SlotIndexes, live intervals may be 1272 // in one of two situations, depending on whether this block was the last in 1273 // the function. If the original block was the last in the function, all 1274 // live intervals will end prior to the beginning of the new split block. If 1275 // the original block was not at the end of the function, all live intervals 1276 // will extend to the end of the new split block. 1277 1278 bool isLastMBB = 1279 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1280 1281 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1282 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1283 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1284 1285 // Find the registers used from NMBB in PHIs in Succ. 1286 SmallSet<Register, 8> PHISrcRegs; 1287 for (MachineBasicBlock::instr_iterator 1288 I = Succ->instr_begin(), E = Succ->instr_end(); 1289 I != E && I->isPHI(); ++I) { 1290 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1291 if (I->getOperand(ni+1).getMBB() == NMBB) { 1292 MachineOperand &MO = I->getOperand(ni); 1293 Register Reg = MO.getReg(); 1294 PHISrcRegs.insert(Reg); 1295 if (MO.isUndef()) 1296 continue; 1297 1298 LiveInterval &LI = LIS->getInterval(Reg); 1299 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1300 assert(VNI && 1301 "PHI sources should be live out of their predecessors."); 1302 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1303 for (auto &SR : LI.subranges()) 1304 SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1305 } 1306 } 1307 } 1308 1309 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1310 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1311 Register Reg = Register::index2VirtReg(i); 1312 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1313 continue; 1314 1315 LiveInterval &LI = LIS->getInterval(Reg); 1316 if (!LI.liveAt(PrevIndex)) 1317 continue; 1318 1319 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1320 if (isLiveOut && isLastMBB) { 1321 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1322 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1323 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1324 // Update subranges with live values 1325 for (auto &SR : LI.subranges()) { 1326 VNInfo *VNI = SR.getVNInfoAt(PrevIndex); 1327 if (VNI) 1328 SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1329 } 1330 } else if (!isLiveOut && !isLastMBB) { 1331 LI.removeSegment(StartIndex, EndIndex); 1332 for (auto &SR : LI.subranges()) 1333 SR.removeSegment(StartIndex, EndIndex); 1334 } 1335 } 1336 1337 // Update all intervals for registers whose uses may have been modified by 1338 // updateTerminator(). 1339 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1340 } 1341 1342 if (auto *MDTWrapper = 1343 P.getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>()) 1344 MDTWrapper->getDomTree().recordSplitCriticalEdge(this, Succ, NMBB); 1345 1346 auto *MLIWrapper = P.getAnalysisIfAvailable<MachineLoopInfoWrapperPass>(); 1347 if (MachineLoopInfo *MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr) 1348 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1349 // If one or the other blocks were not in a loop, the new block is not 1350 // either, and thus LI doesn't need to be updated. 1351 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1352 if (TIL == DestLoop) { 1353 // Both in the same loop, the NMBB joins loop. 1354 DestLoop->addBasicBlockToLoop(NMBB, *MLI); 1355 } else if (TIL->contains(DestLoop)) { 1356 // Edge from an outer loop to an inner loop. Add to the outer loop. 1357 TIL->addBasicBlockToLoop(NMBB, *MLI); 1358 } else if (DestLoop->contains(TIL)) { 1359 // Edge from an inner loop to an outer loop. Add to the outer loop. 1360 DestLoop->addBasicBlockToLoop(NMBB, *MLI); 1361 } else { 1362 // Edge from two loops with no containment relation. Because these 1363 // are natural loops, we know that the destination block must be the 1364 // header of its loop (adding a branch into a loop elsewhere would 1365 // create an irreducible loop). 1366 assert(DestLoop->getHeader() == Succ && 1367 "Should not create irreducible loops!"); 1368 if (MachineLoop *P = DestLoop->getParentLoop()) 1369 P->addBasicBlockToLoop(NMBB, *MLI); 1370 } 1371 } 1372 } 1373 1374 return NMBB; 1375 } 1376 1377 bool MachineBasicBlock::canSplitCriticalEdge( 1378 const MachineBasicBlock *Succ) const { 1379 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1380 // it in this generic function. 1381 if (Succ->isEHPad()) 1382 return false; 1383 1384 // Splitting the critical edge to a callbr's indirect block isn't advised. 1385 // Don't do it in this generic function. 1386 if (Succ->isInlineAsmBrIndirectTarget()) 1387 return false; 1388 1389 const MachineFunction *MF = getParent(); 1390 // Performance might be harmed on HW that implements branching using exec mask 1391 // where both sides of the branches are always executed. 1392 if (MF->getTarget().requiresStructuredCFG()) 1393 return false; 1394 1395 // Do we have an Indirect jump with a jumptable that we can rewrite? 1396 int JTI = findJumpTableIndex(*this); 1397 if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI)) 1398 return true; 1399 1400 // We may need to update this's terminator, but we can't do that if 1401 // analyzeBranch fails. 1402 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1403 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1404 SmallVector<MachineOperand, 4> Cond; 1405 // AnalyzeBanch should modify this, since we did not allow modification. 1406 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1407 /*AllowModify*/ false)) 1408 return false; 1409 1410 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1411 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1412 // case that we can't handle. Since this never happens in properly optimized 1413 // code, just skip those edges. 1414 if (TBB && TBB == FBB) { 1415 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1416 << printMBBReference(*this) << '\n'); 1417 return false; 1418 } 1419 return true; 1420 } 1421 1422 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1423 /// neighboring instructions so the bundle won't be broken by removing MI. 1424 static void unbundleSingleMI(MachineInstr *MI) { 1425 // Removing the first instruction in a bundle. 1426 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1427 MI->unbundleFromSucc(); 1428 // Removing the last instruction in a bundle. 1429 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1430 MI->unbundleFromPred(); 1431 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1432 // are already fine. 1433 } 1434 1435 MachineBasicBlock::instr_iterator 1436 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1437 unbundleSingleMI(&*I); 1438 return Insts.erase(I); 1439 } 1440 1441 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1442 unbundleSingleMI(MI); 1443 MI->clearFlag(MachineInstr::BundledPred); 1444 MI->clearFlag(MachineInstr::BundledSucc); 1445 return Insts.remove(MI); 1446 } 1447 1448 MachineBasicBlock::instr_iterator 1449 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1450 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1451 "Cannot insert instruction with bundle flags"); 1452 // Set the bundle flags when inserting inside a bundle. 1453 if (I != instr_end() && I->isBundledWithPred()) { 1454 MI->setFlag(MachineInstr::BundledPred); 1455 MI->setFlag(MachineInstr::BundledSucc); 1456 } 1457 return Insts.insert(I, MI); 1458 } 1459 1460 /// This method unlinks 'this' from the containing function, and returns it, but 1461 /// does not delete it. 1462 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1463 assert(getParent() && "Not embedded in a function!"); 1464 getParent()->remove(this); 1465 return this; 1466 } 1467 1468 /// This method unlinks 'this' from the containing function, and deletes it. 1469 void MachineBasicBlock::eraseFromParent() { 1470 assert(getParent() && "Not embedded in a function!"); 1471 getParent()->erase(this); 1472 } 1473 1474 /// Given a machine basic block that branched to 'Old', change the code and CFG 1475 /// so that it branches to 'New' instead. 1476 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1477 MachineBasicBlock *New) { 1478 assert(Old != New && "Cannot replace self with self!"); 1479 1480 MachineBasicBlock::instr_iterator I = instr_end(); 1481 while (I != instr_begin()) { 1482 --I; 1483 if (!I->isTerminator()) break; 1484 1485 // Scan the operands of this machine instruction, replacing any uses of Old 1486 // with New. 1487 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1488 if (I->getOperand(i).isMBB() && 1489 I->getOperand(i).getMBB() == Old) 1490 I->getOperand(i).setMBB(New); 1491 } 1492 1493 // Update the successor information. 1494 replaceSuccessor(Old, New); 1495 } 1496 1497 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1498 MachineBasicBlock *New) { 1499 for (MachineInstr &MI : phis()) 1500 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1501 MachineOperand &MO = MI.getOperand(i); 1502 if (MO.getMBB() == Old) 1503 MO.setMBB(New); 1504 } 1505 } 1506 1507 /// Find the next valid DebugLoc starting at MBBI, skipping any debug 1508 /// instructions. Return UnknownLoc if there is none. 1509 DebugLoc 1510 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1511 // Skip debug declarations, we don't want a DebugLoc from them. 1512 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1513 if (MBBI != instr_end()) 1514 return MBBI->getDebugLoc(); 1515 return {}; 1516 } 1517 1518 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) { 1519 if (MBBI == instr_rend()) 1520 return findDebugLoc(instr_begin()); 1521 // Skip debug declarations, we don't want a DebugLoc from them. 1522 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin()); 1523 if (!MBBI->isDebugInstr()) 1524 return MBBI->getDebugLoc(); 1525 return {}; 1526 } 1527 1528 /// Find the previous valid DebugLoc preceding MBBI, skipping any debug 1529 /// instructions. Return UnknownLoc if there is none. 1530 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1531 if (MBBI == instr_begin()) 1532 return {}; 1533 // Skip debug instructions, we don't want a DebugLoc from them. 1534 MBBI = prev_nodbg(MBBI, instr_begin()); 1535 if (!MBBI->isDebugInstr()) 1536 return MBBI->getDebugLoc(); 1537 return {}; 1538 } 1539 1540 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) { 1541 if (MBBI == instr_rend()) 1542 return {}; 1543 // Skip debug declarations, we don't want a DebugLoc from them. 1544 MBBI = next_nodbg(MBBI, instr_rend()); 1545 if (MBBI != instr_rend()) 1546 return MBBI->getDebugLoc(); 1547 return {}; 1548 } 1549 1550 /// Find and return the merged DebugLoc of the branch instructions of the block. 1551 /// Return UnknownLoc if there is none. 1552 DebugLoc 1553 MachineBasicBlock::findBranchDebugLoc() { 1554 DebugLoc DL; 1555 auto TI = getFirstTerminator(); 1556 while (TI != end() && !TI->isBranch()) 1557 ++TI; 1558 1559 if (TI != end()) { 1560 DL = TI->getDebugLoc(); 1561 for (++TI ; TI != end() ; ++TI) 1562 if (TI->isBranch()) 1563 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1564 } 1565 return DL; 1566 } 1567 1568 /// Return probability of the edge from this block to MBB. 1569 BranchProbability 1570 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1571 if (Probs.empty()) 1572 return BranchProbability(1, succ_size()); 1573 1574 const auto &Prob = *getProbabilityIterator(Succ); 1575 if (Prob.isUnknown()) { 1576 // For unknown probabilities, collect the sum of all known ones, and evenly 1577 // ditribute the complemental of the sum to each unknown probability. 1578 unsigned KnownProbNum = 0; 1579 auto Sum = BranchProbability::getZero(); 1580 for (const auto &P : Probs) { 1581 if (!P.isUnknown()) { 1582 Sum += P; 1583 KnownProbNum++; 1584 } 1585 } 1586 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1587 } else 1588 return Prob; 1589 } 1590 1591 /// Set successor probability of a given iterator. 1592 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1593 BranchProbability Prob) { 1594 assert(!Prob.isUnknown()); 1595 if (Probs.empty()) 1596 return; 1597 *getProbabilityIterator(I) = Prob; 1598 } 1599 1600 /// Return probability iterator corresonding to the I successor iterator 1601 MachineBasicBlock::const_probability_iterator 1602 MachineBasicBlock::getProbabilityIterator( 1603 MachineBasicBlock::const_succ_iterator I) const { 1604 assert(Probs.size() == Successors.size() && "Async probability list!"); 1605 const size_t index = std::distance(Successors.begin(), I); 1606 assert(index < Probs.size() && "Not a current successor!"); 1607 return Probs.begin() + index; 1608 } 1609 1610 /// Return probability iterator corresonding to the I successor iterator. 1611 MachineBasicBlock::probability_iterator 1612 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1613 assert(Probs.size() == Successors.size() && "Async probability list!"); 1614 const size_t index = std::distance(Successors.begin(), I); 1615 assert(index < Probs.size() && "Not a current successor!"); 1616 return Probs.begin() + index; 1617 } 1618 1619 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1620 /// as of just before "MI". 1621 /// 1622 /// Search is localised to a neighborhood of 1623 /// Neighborhood instructions before (searching for defs or kills) and N 1624 /// instructions after (searching just for defs) MI. 1625 MachineBasicBlock::LivenessQueryResult 1626 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1627 MCRegister Reg, const_iterator Before, 1628 unsigned Neighborhood) const { 1629 unsigned N = Neighborhood; 1630 1631 // Try searching forwards from Before, looking for reads or defs. 1632 const_iterator I(Before); 1633 for (; I != end() && N > 0; ++I) { 1634 if (I->isDebugOrPseudoInstr()) 1635 continue; 1636 1637 --N; 1638 1639 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1640 1641 // Register is live when we read it here. 1642 if (Info.Read) 1643 return LQR_Live; 1644 // Register is dead if we can fully overwrite or clobber it here. 1645 if (Info.FullyDefined || Info.Clobbered) 1646 return LQR_Dead; 1647 } 1648 1649 // If we reached the end, it is safe to clobber Reg at the end of a block of 1650 // no successor has it live in. 1651 if (I == end()) { 1652 for (MachineBasicBlock *S : successors()) { 1653 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1654 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1655 return LQR_Live; 1656 } 1657 } 1658 1659 return LQR_Dead; 1660 } 1661 1662 1663 N = Neighborhood; 1664 1665 // Start by searching backwards from Before, looking for kills, reads or defs. 1666 I = const_iterator(Before); 1667 // If this is the first insn in the block, don't search backwards. 1668 if (I != begin()) { 1669 do { 1670 --I; 1671 1672 if (I->isDebugOrPseudoInstr()) 1673 continue; 1674 1675 --N; 1676 1677 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1678 1679 // Defs happen after uses so they take precedence if both are present. 1680 1681 // Register is dead after a dead def of the full register. 1682 if (Info.DeadDef) 1683 return LQR_Dead; 1684 // Register is (at least partially) live after a def. 1685 if (Info.Defined) { 1686 if (!Info.PartialDeadDef) 1687 return LQR_Live; 1688 // As soon as we saw a partial definition (dead or not), 1689 // we cannot tell if the value is partial live without 1690 // tracking the lanemasks. We are not going to do this, 1691 // so fall back on the remaining of the analysis. 1692 break; 1693 } 1694 // Register is dead after a full kill or clobber and no def. 1695 if (Info.Killed || Info.Clobbered) 1696 return LQR_Dead; 1697 // Register must be live if we read it. 1698 if (Info.Read) 1699 return LQR_Live; 1700 1701 } while (I != begin() && N > 0); 1702 } 1703 1704 // If all the instructions before this in the block are debug instructions, 1705 // skip over them. 1706 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr()) 1707 --I; 1708 1709 // Did we get to the start of the block? 1710 if (I == begin()) { 1711 // If so, the register's state is definitely defined by the live-in state. 1712 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1713 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1714 return LQR_Live; 1715 1716 return LQR_Dead; 1717 } 1718 1719 // At this point we have no idea of the liveness of the register. 1720 return LQR_Unknown; 1721 } 1722 1723 const uint32_t * 1724 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1725 // EH funclet entry does not preserve any registers. 1726 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1727 } 1728 1729 const uint32_t * 1730 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1731 // If we see a return block with successors, this must be a funclet return, 1732 // which does not preserve any registers. If there are no successors, we don't 1733 // care what kind of return it is, putting a mask after it is a no-op. 1734 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1735 } 1736 1737 void MachineBasicBlock::clearLiveIns() { 1738 LiveIns.clear(); 1739 } 1740 1741 void MachineBasicBlock::clearLiveIns( 1742 std::vector<RegisterMaskPair> &OldLiveIns) { 1743 assert(OldLiveIns.empty() && "Vector must be empty"); 1744 std::swap(LiveIns, OldLiveIns); 1745 } 1746 1747 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1748 assert(getParent()->getProperties().hasProperty( 1749 MachineFunctionProperties::Property::TracksLiveness) && 1750 "Liveness information is accurate"); 1751 return LiveIns.begin(); 1752 } 1753 1754 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const { 1755 const MachineFunction &MF = *getParent(); 1756 assert(MF.getProperties().hasProperty( 1757 MachineFunctionProperties::Property::TracksLiveness) && 1758 "Liveness information is accurate"); 1759 1760 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1761 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0; 1762 if (MF.getFunction().hasPersonalityFn()) { 1763 auto PersonalityFn = MF.getFunction().getPersonalityFn(); 1764 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn); 1765 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn); 1766 } 1767 1768 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false); 1769 } 1770 1771 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const { 1772 unsigned Cntr = 0; 1773 auto R = instructionsWithoutDebug(begin(), end()); 1774 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1775 if (++Cntr > Limit) 1776 return true; 1777 } 1778 return false; 1779 } 1780 1781 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); 1782 const MBBSectionID 1783 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception); 1784