1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/StringExtras.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LivePhysRegs.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SlotIndexes.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/DebugInfoMetadata.h" 33 #include "llvm/IR/ModuleSlotTracker.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCContext.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <algorithm> 40 #include <cmath> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "codegen" 44 45 static cl::opt<bool> PrintSlotIndexes( 46 "print-slotindexes", 47 cl::desc("When printing machine IR, annotate instructions and blocks with " 48 "SlotIndexes when available"), 49 cl::init(true), cl::Hidden); 50 51 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 52 : BB(B), Number(-1), xParent(&MF) { 53 Insts.Parent = this; 54 if (B) 55 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 56 } 57 58 MachineBasicBlock::~MachineBasicBlock() = default; 59 60 /// Return the MCSymbol for this basic block. 61 MCSymbol *MachineBasicBlock::getSymbol() const { 62 if (!CachedMCSymbol) { 63 const MachineFunction *MF = getParent(); 64 MCContext &Ctx = MF->getContext(); 65 66 // We emit a non-temporary symbol -- with a descriptive name -- if it begins 67 // a section (with basic block sections). Otherwise we fall back to use temp 68 // label. 69 if (MF->hasBBSections() && isBeginSection()) { 70 SmallString<5> Suffix; 71 if (SectionID == MBBSectionID::ColdSectionID) { 72 Suffix += ".cold"; 73 } else if (SectionID == MBBSectionID::ExceptionSectionID) { 74 Suffix += ".eh"; 75 } else { 76 // For symbols that represent basic block sections, we add ".__part." to 77 // allow tools like symbolizers to know that this represents a part of 78 // the original function. 79 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str(); 80 } 81 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix); 82 } else { 83 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 84 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 85 Twine(MF->getFunctionNumber()) + 86 "_" + Twine(getNumber())); 87 } 88 } 89 return CachedMCSymbol; 90 } 91 92 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const { 93 if (!CachedEHCatchretMCSymbol) { 94 const MachineFunction *MF = getParent(); 95 SmallString<128> SymbolName; 96 raw_svector_ostream(SymbolName) 97 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber(); 98 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName); 99 } 100 return CachedEHCatchretMCSymbol; 101 } 102 103 MCSymbol *MachineBasicBlock::getEndSymbol() const { 104 if (!CachedEndMCSymbol) { 105 const MachineFunction *MF = getParent(); 106 MCContext &Ctx = MF->getContext(); 107 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 108 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" + 109 Twine(MF->getFunctionNumber()) + 110 "_" + Twine(getNumber())); 111 } 112 return CachedEndMCSymbol; 113 } 114 115 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 116 MBB.print(OS); 117 return OS; 118 } 119 120 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 121 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 122 } 123 124 /// When an MBB is added to an MF, we need to update the parent pointer of the 125 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 126 /// operand list for registers. 127 /// 128 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 129 /// gets the next available unique MBB number. If it is removed from a 130 /// MachineFunction, it goes back to being #-1. 131 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 132 MachineBasicBlock *N) { 133 MachineFunction &MF = *N->getParent(); 134 N->Number = MF.addToMBBNumbering(N); 135 136 // Make sure the instructions have their operands in the reginfo lists. 137 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 138 for (MachineInstr &MI : N->instrs()) 139 MI.addRegOperandsToUseLists(RegInfo); 140 } 141 142 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 143 MachineBasicBlock *N) { 144 N->getParent()->removeFromMBBNumbering(N->Number); 145 N->Number = -1; 146 } 147 148 /// When we add an instruction to a basic block list, we update its parent 149 /// pointer and add its operands from reg use/def lists if appropriate. 150 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 151 assert(!N->getParent() && "machine instruction already in a basic block"); 152 N->setParent(Parent); 153 154 // Add the instruction's register operands to their corresponding 155 // use/def lists. 156 MachineFunction *MF = Parent->getParent(); 157 N->addRegOperandsToUseLists(MF->getRegInfo()); 158 MF->handleInsertion(*N); 159 } 160 161 /// When we remove an instruction from a basic block list, we update its parent 162 /// pointer and remove its operands from reg use/def lists if appropriate. 163 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 164 assert(N->getParent() && "machine instruction not in a basic block"); 165 166 // Remove from the use/def lists. 167 if (MachineFunction *MF = N->getMF()) { 168 MF->handleRemoval(*N); 169 N->removeRegOperandsFromUseLists(MF->getRegInfo()); 170 } 171 172 N->setParent(nullptr); 173 } 174 175 /// When moving a range of instructions from one MBB list to another, we need to 176 /// update the parent pointers and the use/def lists. 177 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 178 instr_iterator First, 179 instr_iterator Last) { 180 assert(Parent->getParent() == FromList.Parent->getParent() && 181 "cannot transfer MachineInstrs between MachineFunctions"); 182 183 // If it's within the same BB, there's nothing to do. 184 if (this == &FromList) 185 return; 186 187 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 188 189 // If splicing between two blocks within the same function, just update the 190 // parent pointers. 191 for (; First != Last; ++First) 192 First->setParent(Parent); 193 } 194 195 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 196 assert(!MI->getParent() && "MI is still in a block!"); 197 Parent->getParent()->deleteMachineInstr(MI); 198 } 199 200 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 201 instr_iterator I = instr_begin(), E = instr_end(); 202 while (I != E && I->isPHI()) 203 ++I; 204 assert((I == E || !I->isInsideBundle()) && 205 "First non-phi MI cannot be inside a bundle!"); 206 return I; 207 } 208 209 MachineBasicBlock::iterator 210 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 211 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 212 213 iterator E = end(); 214 while (I != E && (I->isPHI() || I->isPosition() || 215 TII->isBasicBlockPrologue(*I))) 216 ++I; 217 // FIXME: This needs to change if we wish to bundle labels 218 // inside the bundle. 219 assert((I == E || !I->isInsideBundle()) && 220 "First non-phi / non-label instruction is inside a bundle!"); 221 return I; 222 } 223 224 MachineBasicBlock::iterator 225 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I, 226 bool SkipPseudoOp) { 227 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 228 229 iterator E = end(); 230 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 231 (SkipPseudoOp && I->isPseudoProbe()) || 232 TII->isBasicBlockPrologue(*I))) 233 ++I; 234 // FIXME: This needs to change if we wish to bundle labels / dbg_values 235 // inside the bundle. 236 assert((I == E || !I->isInsideBundle()) && 237 "First non-phi / non-label / non-debug " 238 "instruction is inside a bundle!"); 239 return I; 240 } 241 242 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 243 iterator B = begin(), E = end(), I = E; 244 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 245 ; /*noop */ 246 while (I != E && !I->isTerminator()) 247 ++I; 248 return I; 249 } 250 251 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 252 instr_iterator B = instr_begin(), E = instr_end(), I = E; 253 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 254 ; /*noop */ 255 while (I != E && !I->isTerminator()) 256 ++I; 257 return I; 258 } 259 260 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() { 261 return find_if(instrs(), [](auto &II) { return II.isTerminator(); }); 262 } 263 264 MachineBasicBlock::iterator 265 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) { 266 // Skip over begin-of-block dbg_value instructions. 267 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp); 268 } 269 270 MachineBasicBlock::iterator 271 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) { 272 // Skip over end-of-block dbg_value instructions. 273 instr_iterator B = instr_begin(), I = instr_end(); 274 while (I != B) { 275 --I; 276 // Return instruction that starts a bundle. 277 if (I->isDebugInstr() || I->isInsideBundle()) 278 continue; 279 if (SkipPseudoOp && I->isPseudoProbe()) 280 continue; 281 return I; 282 } 283 // The block is all debug values. 284 return end(); 285 } 286 287 bool MachineBasicBlock::hasEHPadSuccessor() const { 288 for (const MachineBasicBlock *Succ : successors()) 289 if (Succ->isEHPad()) 290 return true; 291 return false; 292 } 293 294 bool MachineBasicBlock::isEntryBlock() const { 295 return getParent()->begin() == getIterator(); 296 } 297 298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 299 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 300 print(dbgs()); 301 } 302 #endif 303 304 bool MachineBasicBlock::mayHaveInlineAsmBr() const { 305 for (const MachineBasicBlock *Succ : successors()) { 306 if (Succ->isInlineAsmBrIndirectTarget()) 307 return true; 308 } 309 return false; 310 } 311 312 bool MachineBasicBlock::isLegalToHoistInto() const { 313 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr()) 314 return false; 315 return true; 316 } 317 318 StringRef MachineBasicBlock::getName() const { 319 if (const BasicBlock *LBB = getBasicBlock()) 320 return LBB->getName(); 321 else 322 return StringRef("", 0); 323 } 324 325 /// Return a hopefully unique identifier for this block. 326 std::string MachineBasicBlock::getFullName() const { 327 std::string Name; 328 if (getParent()) 329 Name = (getParent()->getName() + ":").str(); 330 if (getBasicBlock()) 331 Name += getBasicBlock()->getName(); 332 else 333 Name += ("BB" + Twine(getNumber())).str(); 334 return Name; 335 } 336 337 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 338 bool IsStandalone) const { 339 const MachineFunction *MF = getParent(); 340 if (!MF) { 341 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 342 << " is null\n"; 343 return; 344 } 345 const Function &F = MF->getFunction(); 346 const Module *M = F.getParent(); 347 ModuleSlotTracker MST(M); 348 MST.incorporateFunction(F); 349 print(OS, MST, Indexes, IsStandalone); 350 } 351 352 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 353 const SlotIndexes *Indexes, 354 bool IsStandalone) const { 355 const MachineFunction *MF = getParent(); 356 if (!MF) { 357 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 358 << " is null\n"; 359 return; 360 } 361 362 if (Indexes && PrintSlotIndexes) 363 OS << Indexes->getMBBStartIdx(this) << '\t'; 364 365 printName(OS, PrintNameIr | PrintNameAttributes, &MST); 366 OS << ":\n"; 367 368 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 369 const MachineRegisterInfo &MRI = MF->getRegInfo(); 370 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 371 bool HasLineAttributes = false; 372 373 // Print the preds of this block according to the CFG. 374 if (!pred_empty() && IsStandalone) { 375 if (Indexes) OS << '\t'; 376 // Don't indent(2), align with previous line attributes. 377 OS << "; predecessors: "; 378 ListSeparator LS; 379 for (auto *Pred : predecessors()) 380 OS << LS << printMBBReference(*Pred); 381 OS << '\n'; 382 HasLineAttributes = true; 383 } 384 385 if (!succ_empty()) { 386 if (Indexes) OS << '\t'; 387 // Print the successors 388 OS.indent(2) << "successors: "; 389 ListSeparator LS; 390 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 391 OS << LS << printMBBReference(**I); 392 if (!Probs.empty()) 393 OS << '(' 394 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 395 << ')'; 396 } 397 if (!Probs.empty() && IsStandalone) { 398 // Print human readable probabilities as comments. 399 OS << "; "; 400 ListSeparator LS; 401 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 402 const BranchProbability &BP = getSuccProbability(I); 403 OS << LS << printMBBReference(**I) << '(' 404 << format("%.2f%%", 405 rint(((double)BP.getNumerator() / BP.getDenominator()) * 406 100.0 * 100.0) / 407 100.0) 408 << ')'; 409 } 410 } 411 412 OS << '\n'; 413 HasLineAttributes = true; 414 } 415 416 if (!livein_empty() && MRI.tracksLiveness()) { 417 if (Indexes) OS << '\t'; 418 OS.indent(2) << "liveins: "; 419 420 ListSeparator LS; 421 for (const auto &LI : liveins()) { 422 OS << LS << printReg(LI.PhysReg, TRI); 423 if (!LI.LaneMask.all()) 424 OS << ":0x" << PrintLaneMask(LI.LaneMask); 425 } 426 HasLineAttributes = true; 427 } 428 429 if (HasLineAttributes) 430 OS << '\n'; 431 432 bool IsInBundle = false; 433 for (const MachineInstr &MI : instrs()) { 434 if (Indexes && PrintSlotIndexes) { 435 if (Indexes->hasIndex(MI)) 436 OS << Indexes->getInstructionIndex(MI); 437 OS << '\t'; 438 } 439 440 if (IsInBundle && !MI.isInsideBundle()) { 441 OS.indent(2) << "}\n"; 442 IsInBundle = false; 443 } 444 445 OS.indent(IsInBundle ? 4 : 2); 446 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 447 /*AddNewLine=*/false, &TII); 448 449 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 450 OS << " {"; 451 IsInBundle = true; 452 } 453 OS << '\n'; 454 } 455 456 if (IsInBundle) 457 OS.indent(2) << "}\n"; 458 459 if (IrrLoopHeaderWeight && IsStandalone) { 460 if (Indexes) OS << '\t'; 461 OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight 462 << '\n'; 463 } 464 } 465 466 /// Print the basic block's name as: 467 /// 468 /// bb.{number}[.{ir-name}] [(attributes...)] 469 /// 470 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed 471 /// (which is the default). If the IR block has no name, it is identified 472 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})". 473 /// 474 /// When the \ref PrintNameAttributes flag is passed, additional attributes 475 /// of the block are printed when set. 476 /// 477 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating 478 /// the parts to print. 479 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will 480 /// incorporate its own tracker when necessary to 481 /// determine the block's IR name. 482 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags, 483 ModuleSlotTracker *moduleSlotTracker) const { 484 os << "bb." << getNumber(); 485 bool hasAttributes = false; 486 487 auto PrintBBRef = [&](const BasicBlock *bb) { 488 os << "%ir-block."; 489 if (bb->hasName()) { 490 os << bb->getName(); 491 } else { 492 int slot = -1; 493 494 if (moduleSlotTracker) { 495 slot = moduleSlotTracker->getLocalSlot(bb); 496 } else if (bb->getParent()) { 497 ModuleSlotTracker tmpTracker(bb->getModule(), false); 498 tmpTracker.incorporateFunction(*bb->getParent()); 499 slot = tmpTracker.getLocalSlot(bb); 500 } 501 502 if (slot == -1) 503 os << "<ir-block badref>"; 504 else 505 os << slot; 506 } 507 }; 508 509 if (printNameFlags & PrintNameIr) { 510 if (const auto *bb = getBasicBlock()) { 511 if (bb->hasName()) { 512 os << '.' << bb->getName(); 513 } else { 514 hasAttributes = true; 515 os << " ("; 516 PrintBBRef(bb); 517 } 518 } 519 } 520 521 if (printNameFlags & PrintNameAttributes) { 522 if (isMachineBlockAddressTaken()) { 523 os << (hasAttributes ? ", " : " ("); 524 os << "machine-block-address-taken"; 525 hasAttributes = true; 526 } 527 if (isIRBlockAddressTaken()) { 528 os << (hasAttributes ? ", " : " ("); 529 os << "ir-block-address-taken "; 530 PrintBBRef(getAddressTakenIRBlock()); 531 hasAttributes = true; 532 } 533 if (isEHPad()) { 534 os << (hasAttributes ? ", " : " ("); 535 os << "landing-pad"; 536 hasAttributes = true; 537 } 538 if (isInlineAsmBrIndirectTarget()) { 539 os << (hasAttributes ? ", " : " ("); 540 os << "inlineasm-br-indirect-target"; 541 hasAttributes = true; 542 } 543 if (isEHFuncletEntry()) { 544 os << (hasAttributes ? ", " : " ("); 545 os << "ehfunclet-entry"; 546 hasAttributes = true; 547 } 548 if (getAlignment() != Align(1)) { 549 os << (hasAttributes ? ", " : " ("); 550 os << "align " << getAlignment().value(); 551 hasAttributes = true; 552 } 553 if (getSectionID() != MBBSectionID(0)) { 554 os << (hasAttributes ? ", " : " ("); 555 os << "bbsections "; 556 switch (getSectionID().Type) { 557 case MBBSectionID::SectionType::Exception: 558 os << "Exception"; 559 break; 560 case MBBSectionID::SectionType::Cold: 561 os << "Cold"; 562 break; 563 default: 564 os << getSectionID().Number; 565 } 566 hasAttributes = true; 567 } 568 if (getBBID().has_value()) { 569 os << (hasAttributes ? ", " : " ("); 570 os << "bb_id " << *getBBID(); 571 hasAttributes = true; 572 } 573 if (CallFrameSize != 0) { 574 os << (hasAttributes ? ", " : " ("); 575 os << "call-frame-size " << CallFrameSize; 576 hasAttributes = true; 577 } 578 } 579 580 if (hasAttributes) 581 os << ')'; 582 } 583 584 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 585 bool /*PrintType*/) const { 586 OS << '%'; 587 printName(OS, 0); 588 } 589 590 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 591 LiveInVector::iterator I = find_if( 592 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 593 if (I == LiveIns.end()) 594 return; 595 596 I->LaneMask &= ~LaneMask; 597 if (I->LaneMask.none()) 598 LiveIns.erase(I); 599 } 600 601 MachineBasicBlock::livein_iterator 602 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 603 // Get non-const version of iterator. 604 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 605 return LiveIns.erase(LI); 606 } 607 608 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 609 livein_iterator I = find_if( 610 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 611 return I != livein_end() && (I->LaneMask & LaneMask).any(); 612 } 613 614 void MachineBasicBlock::sortUniqueLiveIns() { 615 llvm::sort(LiveIns, 616 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 617 return LI0.PhysReg < LI1.PhysReg; 618 }); 619 // Liveins are sorted by physreg now we can merge their lanemasks. 620 LiveInVector::const_iterator I = LiveIns.begin(); 621 LiveInVector::const_iterator J; 622 LiveInVector::iterator Out = LiveIns.begin(); 623 for (; I != LiveIns.end(); ++Out, I = J) { 624 MCRegister PhysReg = I->PhysReg; 625 LaneBitmask LaneMask = I->LaneMask; 626 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 627 LaneMask |= J->LaneMask; 628 Out->PhysReg = PhysReg; 629 Out->LaneMask = LaneMask; 630 } 631 LiveIns.erase(Out, LiveIns.end()); 632 } 633 634 Register 635 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 636 assert(getParent() && "MBB must be inserted in function"); 637 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg"); 638 assert(RC && "Register class is required"); 639 assert((isEHPad() || this == &getParent()->front()) && 640 "Only the entry block and landing pads can have physreg live ins"); 641 642 bool LiveIn = isLiveIn(PhysReg); 643 iterator I = SkipPHIsAndLabels(begin()), E = end(); 644 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 645 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 646 647 // Look for an existing copy. 648 if (LiveIn) 649 for (;I != E && I->isCopy(); ++I) 650 if (I->getOperand(1).getReg() == PhysReg) { 651 Register VirtReg = I->getOperand(0).getReg(); 652 if (!MRI.constrainRegClass(VirtReg, RC)) 653 llvm_unreachable("Incompatible live-in register class."); 654 return VirtReg; 655 } 656 657 // No luck, create a virtual register. 658 Register VirtReg = MRI.createVirtualRegister(RC); 659 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 660 .addReg(PhysReg, RegState::Kill); 661 if (!LiveIn) 662 addLiveIn(PhysReg); 663 return VirtReg; 664 } 665 666 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 667 getParent()->splice(NewAfter->getIterator(), getIterator()); 668 } 669 670 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 671 getParent()->splice(++NewBefore->getIterator(), getIterator()); 672 } 673 674 static int findJumpTableIndex(const MachineBasicBlock &MBB) { 675 MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator(); 676 if (TerminatorI == MBB.end()) 677 return -1; 678 const MachineInstr &Terminator = *TerminatorI; 679 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 680 return TII->getJumpTableIndex(Terminator); 681 } 682 683 void MachineBasicBlock::updateTerminator( 684 MachineBasicBlock *PreviousLayoutSuccessor) { 685 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this) 686 << "\n"); 687 688 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 689 // A block with no successors has no concerns with fall-through edges. 690 if (this->succ_empty()) 691 return; 692 693 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 694 SmallVector<MachineOperand, 4> Cond; 695 DebugLoc DL = findBranchDebugLoc(); 696 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 697 (void) B; 698 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 699 if (Cond.empty()) { 700 if (TBB) { 701 // The block has an unconditional branch. If its successor is now its 702 // layout successor, delete the branch. 703 if (isLayoutSuccessor(TBB)) 704 TII->removeBranch(*this); 705 } else { 706 // The block has an unconditional fallthrough, or the end of the block is 707 // unreachable. 708 709 // Unfortunately, whether the end of the block is unreachable is not 710 // immediately obvious; we must fall back to checking the successor list, 711 // and assuming that if the passed in block is in the succesor list and 712 // not an EHPad, it must be the intended target. 713 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) || 714 PreviousLayoutSuccessor->isEHPad()) 715 return; 716 717 // If the unconditional successor block is not the current layout 718 // successor, insert a branch to jump to it. 719 if (!isLayoutSuccessor(PreviousLayoutSuccessor)) 720 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 721 } 722 return; 723 } 724 725 if (FBB) { 726 // The block has a non-fallthrough conditional branch. If one of its 727 // successors is its layout successor, rewrite it to a fallthrough 728 // conditional branch. 729 if (isLayoutSuccessor(TBB)) { 730 if (TII->reverseBranchCondition(Cond)) 731 return; 732 TII->removeBranch(*this); 733 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 734 } else if (isLayoutSuccessor(FBB)) { 735 TII->removeBranch(*this); 736 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 737 } 738 return; 739 } 740 741 // We now know we're going to fallthrough to PreviousLayoutSuccessor. 742 assert(PreviousLayoutSuccessor); 743 assert(!PreviousLayoutSuccessor->isEHPad()); 744 assert(isSuccessor(PreviousLayoutSuccessor)); 745 746 if (PreviousLayoutSuccessor == TBB) { 747 // We had a fallthrough to the same basic block as the conditional jump 748 // targets. Remove the conditional jump, leaving an unconditional 749 // fallthrough or an unconditional jump. 750 TII->removeBranch(*this); 751 if (!isLayoutSuccessor(TBB)) { 752 Cond.clear(); 753 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 754 } 755 return; 756 } 757 758 // The block has a fallthrough conditional branch. 759 if (isLayoutSuccessor(TBB)) { 760 if (TII->reverseBranchCondition(Cond)) { 761 // We can't reverse the condition, add an unconditional branch. 762 Cond.clear(); 763 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 764 return; 765 } 766 TII->removeBranch(*this); 767 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 768 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) { 769 TII->removeBranch(*this); 770 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL); 771 } 772 } 773 774 void MachineBasicBlock::validateSuccProbs() const { 775 #ifndef NDEBUG 776 int64_t Sum = 0; 777 for (auto Prob : Probs) 778 Sum += Prob.getNumerator(); 779 // Due to precision issue, we assume that the sum of probabilities is one if 780 // the difference between the sum of their numerators and the denominator is 781 // no greater than the number of successors. 782 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 783 Probs.size() && 784 "The sum of successors's probabilities exceeds one."); 785 #endif // NDEBUG 786 } 787 788 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 789 BranchProbability Prob) { 790 // Probability list is either empty (if successor list isn't empty, this means 791 // disabled optimization) or has the same size as successor list. 792 if (!(Probs.empty() && !Successors.empty())) 793 Probs.push_back(Prob); 794 Successors.push_back(Succ); 795 Succ->addPredecessor(this); 796 } 797 798 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 799 // We need to make sure probability list is either empty or has the same size 800 // of successor list. When this function is called, we can safely delete all 801 // probability in the list. 802 Probs.clear(); 803 Successors.push_back(Succ); 804 Succ->addPredecessor(this); 805 } 806 807 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 808 MachineBasicBlock *New, 809 bool NormalizeSuccProbs) { 810 succ_iterator OldI = llvm::find(successors(), Old); 811 assert(OldI != succ_end() && "Old is not a successor of this block!"); 812 assert(!llvm::is_contained(successors(), New) && 813 "New is already a successor of this block!"); 814 815 // Add a new successor with equal probability as the original one. Note 816 // that we directly copy the probability using the iterator rather than 817 // getting a potentially synthetic probability computed when unknown. This 818 // preserves the probabilities as-is and then we can renormalize them and 819 // query them effectively afterward. 820 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 821 : *getProbabilityIterator(OldI)); 822 if (NormalizeSuccProbs) 823 normalizeSuccProbs(); 824 } 825 826 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 827 bool NormalizeSuccProbs) { 828 succ_iterator I = find(Successors, Succ); 829 removeSuccessor(I, NormalizeSuccProbs); 830 } 831 832 MachineBasicBlock::succ_iterator 833 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 834 assert(I != Successors.end() && "Not a current successor!"); 835 836 // If probability list is empty it means we don't use it (disabled 837 // optimization). 838 if (!Probs.empty()) { 839 probability_iterator WI = getProbabilityIterator(I); 840 Probs.erase(WI); 841 if (NormalizeSuccProbs) 842 normalizeSuccProbs(); 843 } 844 845 (*I)->removePredecessor(this); 846 return Successors.erase(I); 847 } 848 849 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 850 MachineBasicBlock *New) { 851 if (Old == New) 852 return; 853 854 succ_iterator E = succ_end(); 855 succ_iterator NewI = E; 856 succ_iterator OldI = E; 857 for (succ_iterator I = succ_begin(); I != E; ++I) { 858 if (*I == Old) { 859 OldI = I; 860 if (NewI != E) 861 break; 862 } 863 if (*I == New) { 864 NewI = I; 865 if (OldI != E) 866 break; 867 } 868 } 869 assert(OldI != E && "Old is not a successor of this block"); 870 871 // If New isn't already a successor, let it take Old's place. 872 if (NewI == E) { 873 Old->removePredecessor(this); 874 New->addPredecessor(this); 875 *OldI = New; 876 return; 877 } 878 879 // New is already a successor. 880 // Update its probability instead of adding a duplicate edge. 881 if (!Probs.empty()) { 882 auto ProbIter = getProbabilityIterator(NewI); 883 if (!ProbIter->isUnknown()) 884 *ProbIter += *getProbabilityIterator(OldI); 885 } 886 removeSuccessor(OldI); 887 } 888 889 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 890 succ_iterator I) { 891 if (!Orig->Probs.empty()) 892 addSuccessor(*I, Orig->getSuccProbability(I)); 893 else 894 addSuccessorWithoutProb(*I); 895 } 896 897 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 898 Predecessors.push_back(Pred); 899 } 900 901 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 902 pred_iterator I = find(Predecessors, Pred); 903 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 904 Predecessors.erase(I); 905 } 906 907 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 908 if (this == FromMBB) 909 return; 910 911 while (!FromMBB->succ_empty()) { 912 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 913 914 // If probability list is empty it means we don't use it (disabled 915 // optimization). 916 if (!FromMBB->Probs.empty()) { 917 auto Prob = *FromMBB->Probs.begin(); 918 addSuccessor(Succ, Prob); 919 } else 920 addSuccessorWithoutProb(Succ); 921 922 FromMBB->removeSuccessor(Succ); 923 } 924 } 925 926 void 927 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 928 if (this == FromMBB) 929 return; 930 931 while (!FromMBB->succ_empty()) { 932 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 933 if (!FromMBB->Probs.empty()) { 934 auto Prob = *FromMBB->Probs.begin(); 935 addSuccessor(Succ, Prob); 936 } else 937 addSuccessorWithoutProb(Succ); 938 FromMBB->removeSuccessor(Succ); 939 940 // Fix up any PHI nodes in the successor. 941 Succ->replacePhiUsesWith(FromMBB, this); 942 } 943 normalizeSuccProbs(); 944 } 945 946 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 947 return is_contained(predecessors(), MBB); 948 } 949 950 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 951 return is_contained(successors(), MBB); 952 } 953 954 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 955 MachineFunction::const_iterator I(this); 956 return std::next(I) == MachineFunction::const_iterator(MBB); 957 } 958 959 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const { 960 return Successors.size() == 1 ? Successors[0] : nullptr; 961 } 962 963 MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) { 964 MachineFunction::iterator Fallthrough = getIterator(); 965 ++Fallthrough; 966 // If FallthroughBlock is off the end of the function, it can't fall through. 967 if (Fallthrough == getParent()->end()) 968 return nullptr; 969 970 // If FallthroughBlock isn't a successor, no fallthrough is possible. 971 if (!isSuccessor(&*Fallthrough)) 972 return nullptr; 973 974 // Analyze the branches, if any, at the end of the block. 975 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 976 SmallVector<MachineOperand, 4> Cond; 977 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 978 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 979 // If we couldn't analyze the branch, examine the last instruction. 980 // If the block doesn't end in a known control barrier, assume fallthrough 981 // is possible. The isPredicated check is needed because this code can be 982 // called during IfConversion, where an instruction which is normally a 983 // Barrier is predicated and thus no longer an actual control barrier. 984 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 985 ? &*Fallthrough 986 : nullptr; 987 } 988 989 // If there is no branch, control always falls through. 990 if (!TBB) return &*Fallthrough; 991 992 // If there is some explicit branch to the fallthrough block, it can obviously 993 // reach, even though the branch should get folded to fall through implicitly. 994 if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough || 995 MachineFunction::iterator(FBB) == Fallthrough)) 996 return &*Fallthrough; 997 998 // If it's an unconditional branch to some block not the fall through, it 999 // doesn't fall through. 1000 if (Cond.empty()) return nullptr; 1001 1002 // Otherwise, if it is conditional and has no explicit false block, it falls 1003 // through. 1004 return (FBB == nullptr) ? &*Fallthrough : nullptr; 1005 } 1006 1007 bool MachineBasicBlock::canFallThrough() { 1008 return getFallThrough() != nullptr; 1009 } 1010 1011 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI, 1012 bool UpdateLiveIns, 1013 LiveIntervals *LIS) { 1014 MachineBasicBlock::iterator SplitPoint(&MI); 1015 ++SplitPoint; 1016 1017 if (SplitPoint == end()) { 1018 // Don't bother with a new block. 1019 return this; 1020 } 1021 1022 MachineFunction *MF = getParent(); 1023 1024 LivePhysRegs LiveRegs; 1025 if (UpdateLiveIns) { 1026 // Make sure we add any physregs we define in the block as liveins to the 1027 // new block. 1028 MachineBasicBlock::iterator Prev(&MI); 1029 LiveRegs.init(*MF->getSubtarget().getRegisterInfo()); 1030 LiveRegs.addLiveOuts(*this); 1031 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I) 1032 LiveRegs.stepBackward(*I); 1033 } 1034 1035 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock()); 1036 1037 MF->insert(++MachineFunction::iterator(this), SplitBB); 1038 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end()); 1039 1040 SplitBB->transferSuccessorsAndUpdatePHIs(this); 1041 addSuccessor(SplitBB); 1042 1043 if (UpdateLiveIns) 1044 addLiveIns(*SplitBB, LiveRegs); 1045 1046 if (LIS) 1047 LIS->insertMBBInMaps(SplitBB); 1048 1049 return SplitBB; 1050 } 1051 1052 // Returns `true` if there are possibly other users of the jump table at 1053 // `JumpTableIndex` except for the ones in `IgnoreMBB`. 1054 static bool jumpTableHasOtherUses(const MachineFunction &MF, 1055 const MachineBasicBlock &IgnoreMBB, 1056 int JumpTableIndex) { 1057 assert(JumpTableIndex >= 0 && "need valid index"); 1058 const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo(); 1059 const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex]; 1060 // Take any basic block from the table; every user of the jump table must 1061 // show up in the predecessor list. 1062 const MachineBasicBlock *MBB = nullptr; 1063 for (MachineBasicBlock *B : MJTE.MBBs) { 1064 if (B != nullptr) { 1065 MBB = B; 1066 break; 1067 } 1068 } 1069 if (MBB == nullptr) 1070 return true; // can't rule out other users if there isn't any block. 1071 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1072 SmallVector<MachineOperand, 4> Cond; 1073 for (MachineBasicBlock *Pred : MBB->predecessors()) { 1074 if (Pred == &IgnoreMBB) 1075 continue; 1076 MachineBasicBlock *DummyT = nullptr; 1077 MachineBasicBlock *DummyF = nullptr; 1078 Cond.clear(); 1079 if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond, 1080 /*AllowModify=*/false)) { 1081 // analyzable direct jump 1082 continue; 1083 } 1084 int PredJTI = findJumpTableIndex(*Pred); 1085 if (PredJTI >= 0) { 1086 if (PredJTI == JumpTableIndex) 1087 return true; 1088 continue; 1089 } 1090 // Be conservative for unanalyzable jumps. 1091 return true; 1092 } 1093 return false; 1094 } 1095 1096 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( 1097 MachineBasicBlock *Succ, Pass &P, 1098 std::vector<SparseBitVector<>> *LiveInSets) { 1099 if (!canSplitCriticalEdge(Succ)) 1100 return nullptr; 1101 1102 MachineFunction *MF = getParent(); 1103 MachineBasicBlock *PrevFallthrough = getNextNode(); 1104 DebugLoc DL; // FIXME: this is nowhere 1105 1106 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 1107 NMBB->setCallFrameSize(Succ->getCallFrameSize()); 1108 1109 // Is there an indirect jump with jump table? 1110 bool ChangedIndirectJump = false; 1111 int JTI = findJumpTableIndex(*this); 1112 if (JTI >= 0) { 1113 MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo(); 1114 MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB); 1115 ChangedIndirectJump = true; 1116 } 1117 1118 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 1119 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 1120 << " -- " << printMBBReference(*NMBB) << " -- " 1121 << printMBBReference(*Succ) << '\n'); 1122 1123 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 1124 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 1125 if (LIS) 1126 LIS->insertMBBInMaps(NMBB); 1127 else if (Indexes) 1128 Indexes->insertMBBInMaps(NMBB); 1129 1130 // On some targets like Mips, branches may kill virtual registers. Make sure 1131 // that LiveVariables is properly updated after updateTerminator replaces the 1132 // terminators. 1133 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 1134 1135 // Collect a list of virtual registers killed by the terminators. 1136 SmallVector<Register, 4> KilledRegs; 1137 if (LV) 1138 for (MachineInstr &MI : 1139 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1140 for (MachineOperand &MO : MI.all_uses()) { 1141 if (MO.getReg() == 0 || !MO.isKill() || MO.isUndef()) 1142 continue; 1143 Register Reg = MO.getReg(); 1144 if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) { 1145 KilledRegs.push_back(Reg); 1146 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI); 1147 MO.setIsKill(false); 1148 } 1149 } 1150 } 1151 1152 SmallVector<Register, 4> UsedRegs; 1153 if (LIS) { 1154 for (MachineInstr &MI : 1155 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1156 for (const MachineOperand &MO : MI.operands()) { 1157 if (!MO.isReg() || MO.getReg() == 0) 1158 continue; 1159 1160 Register Reg = MO.getReg(); 1161 if (!is_contained(UsedRegs, Reg)) 1162 UsedRegs.push_back(Reg); 1163 } 1164 } 1165 } 1166 1167 ReplaceUsesOfBlockWith(Succ, NMBB); 1168 1169 // If updateTerminator() removes instructions, we need to remove them from 1170 // SlotIndexes. 1171 SmallVector<MachineInstr*, 4> Terminators; 1172 if (Indexes) { 1173 for (MachineInstr &MI : 1174 llvm::make_range(getFirstInstrTerminator(), instr_end())) 1175 Terminators.push_back(&MI); 1176 } 1177 1178 // Since we replaced all uses of Succ with NMBB, that should also be treated 1179 // as the fallthrough successor 1180 if (Succ == PrevFallthrough) 1181 PrevFallthrough = NMBB; 1182 1183 if (!ChangedIndirectJump) 1184 updateTerminator(PrevFallthrough); 1185 1186 if (Indexes) { 1187 SmallVector<MachineInstr*, 4> NewTerminators; 1188 for (MachineInstr &MI : 1189 llvm::make_range(getFirstInstrTerminator(), instr_end())) 1190 NewTerminators.push_back(&MI); 1191 1192 for (MachineInstr *Terminator : Terminators) { 1193 if (!is_contained(NewTerminators, Terminator)) 1194 Indexes->removeMachineInstrFromMaps(*Terminator); 1195 } 1196 } 1197 1198 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 1199 NMBB->addSuccessor(Succ); 1200 if (!NMBB->isLayoutSuccessor(Succ)) { 1201 SmallVector<MachineOperand, 4> Cond; 1202 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 1203 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 1204 1205 if (Indexes) { 1206 for (MachineInstr &MI : NMBB->instrs()) { 1207 // Some instructions may have been moved to NMBB by updateTerminator(), 1208 // so we first remove any instruction that already has an index. 1209 if (Indexes->hasIndex(MI)) 1210 Indexes->removeMachineInstrFromMaps(MI); 1211 Indexes->insertMachineInstrInMaps(MI); 1212 } 1213 } 1214 } 1215 1216 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 1217 Succ->replacePhiUsesWith(this, NMBB); 1218 1219 // Inherit live-ins from the successor 1220 for (const auto &LI : Succ->liveins()) 1221 NMBB->addLiveIn(LI); 1222 1223 // Update LiveVariables. 1224 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1225 if (LV) { 1226 // Restore kills of virtual registers that were killed by the terminators. 1227 while (!KilledRegs.empty()) { 1228 Register Reg = KilledRegs.pop_back_val(); 1229 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 1230 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 1231 continue; 1232 if (Reg.isVirtual()) 1233 LV->getVarInfo(Reg).Kills.push_back(&*I); 1234 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1235 break; 1236 } 1237 } 1238 // Update relevant live-through information. 1239 if (LiveInSets != nullptr) 1240 LV->addNewBlock(NMBB, this, Succ, *LiveInSets); 1241 else 1242 LV->addNewBlock(NMBB, this, Succ); 1243 } 1244 1245 if (LIS) { 1246 // After splitting the edge and updating SlotIndexes, live intervals may be 1247 // in one of two situations, depending on whether this block was the last in 1248 // the function. If the original block was the last in the function, all 1249 // live intervals will end prior to the beginning of the new split block. If 1250 // the original block was not at the end of the function, all live intervals 1251 // will extend to the end of the new split block. 1252 1253 bool isLastMBB = 1254 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1255 1256 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1257 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1258 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1259 1260 // Find the registers used from NMBB in PHIs in Succ. 1261 SmallSet<Register, 8> PHISrcRegs; 1262 for (MachineBasicBlock::instr_iterator 1263 I = Succ->instr_begin(), E = Succ->instr_end(); 1264 I != E && I->isPHI(); ++I) { 1265 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1266 if (I->getOperand(ni+1).getMBB() == NMBB) { 1267 MachineOperand &MO = I->getOperand(ni); 1268 Register Reg = MO.getReg(); 1269 PHISrcRegs.insert(Reg); 1270 if (MO.isUndef()) 1271 continue; 1272 1273 LiveInterval &LI = LIS->getInterval(Reg); 1274 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1275 assert(VNI && 1276 "PHI sources should be live out of their predecessors."); 1277 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1278 } 1279 } 1280 } 1281 1282 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1283 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1284 Register Reg = Register::index2VirtReg(i); 1285 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1286 continue; 1287 1288 LiveInterval &LI = LIS->getInterval(Reg); 1289 if (!LI.liveAt(PrevIndex)) 1290 continue; 1291 1292 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1293 if (isLiveOut && isLastMBB) { 1294 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1295 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1296 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1297 } else if (!isLiveOut && !isLastMBB) { 1298 LI.removeSegment(StartIndex, EndIndex); 1299 } 1300 } 1301 1302 // Update all intervals for registers whose uses may have been modified by 1303 // updateTerminator(). 1304 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1305 } 1306 1307 if (MachineDominatorTree *MDT = 1308 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1309 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1310 1311 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1312 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1313 // If one or the other blocks were not in a loop, the new block is not 1314 // either, and thus LI doesn't need to be updated. 1315 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1316 if (TIL == DestLoop) { 1317 // Both in the same loop, the NMBB joins loop. 1318 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1319 } else if (TIL->contains(DestLoop)) { 1320 // Edge from an outer loop to an inner loop. Add to the outer loop. 1321 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1322 } else if (DestLoop->contains(TIL)) { 1323 // Edge from an inner loop to an outer loop. Add to the outer loop. 1324 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1325 } else { 1326 // Edge from two loops with no containment relation. Because these 1327 // are natural loops, we know that the destination block must be the 1328 // header of its loop (adding a branch into a loop elsewhere would 1329 // create an irreducible loop). 1330 assert(DestLoop->getHeader() == Succ && 1331 "Should not create irreducible loops!"); 1332 if (MachineLoop *P = DestLoop->getParentLoop()) 1333 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1334 } 1335 } 1336 } 1337 1338 return NMBB; 1339 } 1340 1341 bool MachineBasicBlock::canSplitCriticalEdge( 1342 const MachineBasicBlock *Succ) const { 1343 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1344 // it in this generic function. 1345 if (Succ->isEHPad()) 1346 return false; 1347 1348 // Splitting the critical edge to a callbr's indirect block isn't advised. 1349 // Don't do it in this generic function. 1350 if (Succ->isInlineAsmBrIndirectTarget()) 1351 return false; 1352 1353 const MachineFunction *MF = getParent(); 1354 // Performance might be harmed on HW that implements branching using exec mask 1355 // where both sides of the branches are always executed. 1356 if (MF->getTarget().requiresStructuredCFG()) 1357 return false; 1358 1359 // Do we have an Indirect jump with a jumptable that we can rewrite? 1360 int JTI = findJumpTableIndex(*this); 1361 if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI)) 1362 return true; 1363 1364 // We may need to update this's terminator, but we can't do that if 1365 // analyzeBranch fails. 1366 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1367 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1368 SmallVector<MachineOperand, 4> Cond; 1369 // AnalyzeBanch should modify this, since we did not allow modification. 1370 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1371 /*AllowModify*/ false)) 1372 return false; 1373 1374 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1375 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1376 // case that we can't handle. Since this never happens in properly optimized 1377 // code, just skip those edges. 1378 if (TBB && TBB == FBB) { 1379 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1380 << printMBBReference(*this) << '\n'); 1381 return false; 1382 } 1383 return true; 1384 } 1385 1386 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1387 /// neighboring instructions so the bundle won't be broken by removing MI. 1388 static void unbundleSingleMI(MachineInstr *MI) { 1389 // Removing the first instruction in a bundle. 1390 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1391 MI->unbundleFromSucc(); 1392 // Removing the last instruction in a bundle. 1393 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1394 MI->unbundleFromPred(); 1395 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1396 // are already fine. 1397 } 1398 1399 MachineBasicBlock::instr_iterator 1400 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1401 unbundleSingleMI(&*I); 1402 return Insts.erase(I); 1403 } 1404 1405 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1406 unbundleSingleMI(MI); 1407 MI->clearFlag(MachineInstr::BundledPred); 1408 MI->clearFlag(MachineInstr::BundledSucc); 1409 return Insts.remove(MI); 1410 } 1411 1412 MachineBasicBlock::instr_iterator 1413 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1414 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1415 "Cannot insert instruction with bundle flags"); 1416 // Set the bundle flags when inserting inside a bundle. 1417 if (I != instr_end() && I->isBundledWithPred()) { 1418 MI->setFlag(MachineInstr::BundledPred); 1419 MI->setFlag(MachineInstr::BundledSucc); 1420 } 1421 return Insts.insert(I, MI); 1422 } 1423 1424 /// This method unlinks 'this' from the containing function, and returns it, but 1425 /// does not delete it. 1426 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1427 assert(getParent() && "Not embedded in a function!"); 1428 getParent()->remove(this); 1429 return this; 1430 } 1431 1432 /// This method unlinks 'this' from the containing function, and deletes it. 1433 void MachineBasicBlock::eraseFromParent() { 1434 assert(getParent() && "Not embedded in a function!"); 1435 getParent()->erase(this); 1436 } 1437 1438 /// Given a machine basic block that branched to 'Old', change the code and CFG 1439 /// so that it branches to 'New' instead. 1440 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1441 MachineBasicBlock *New) { 1442 assert(Old != New && "Cannot replace self with self!"); 1443 1444 MachineBasicBlock::instr_iterator I = instr_end(); 1445 while (I != instr_begin()) { 1446 --I; 1447 if (!I->isTerminator()) break; 1448 1449 // Scan the operands of this machine instruction, replacing any uses of Old 1450 // with New. 1451 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1452 if (I->getOperand(i).isMBB() && 1453 I->getOperand(i).getMBB() == Old) 1454 I->getOperand(i).setMBB(New); 1455 } 1456 1457 // Update the successor information. 1458 replaceSuccessor(Old, New); 1459 } 1460 1461 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1462 MachineBasicBlock *New) { 1463 for (MachineInstr &MI : phis()) 1464 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1465 MachineOperand &MO = MI.getOperand(i); 1466 if (MO.getMBB() == Old) 1467 MO.setMBB(New); 1468 } 1469 } 1470 1471 /// Find the next valid DebugLoc starting at MBBI, skipping any debug 1472 /// instructions. Return UnknownLoc if there is none. 1473 DebugLoc 1474 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1475 // Skip debug declarations, we don't want a DebugLoc from them. 1476 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1477 if (MBBI != instr_end()) 1478 return MBBI->getDebugLoc(); 1479 return {}; 1480 } 1481 1482 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) { 1483 if (MBBI == instr_rend()) 1484 return findDebugLoc(instr_begin()); 1485 // Skip debug declarations, we don't want a DebugLoc from them. 1486 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin()); 1487 if (!MBBI->isDebugInstr()) 1488 return MBBI->getDebugLoc(); 1489 return {}; 1490 } 1491 1492 /// Find the previous valid DebugLoc preceding MBBI, skipping any debug 1493 /// instructions. Return UnknownLoc if there is none. 1494 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1495 if (MBBI == instr_begin()) 1496 return {}; 1497 // Skip debug instructions, we don't want a DebugLoc from them. 1498 MBBI = prev_nodbg(MBBI, instr_begin()); 1499 if (!MBBI->isDebugInstr()) 1500 return MBBI->getDebugLoc(); 1501 return {}; 1502 } 1503 1504 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) { 1505 if (MBBI == instr_rend()) 1506 return {}; 1507 // Skip debug declarations, we don't want a DebugLoc from them. 1508 MBBI = next_nodbg(MBBI, instr_rend()); 1509 if (MBBI != instr_rend()) 1510 return MBBI->getDebugLoc(); 1511 return {}; 1512 } 1513 1514 /// Find and return the merged DebugLoc of the branch instructions of the block. 1515 /// Return UnknownLoc if there is none. 1516 DebugLoc 1517 MachineBasicBlock::findBranchDebugLoc() { 1518 DebugLoc DL; 1519 auto TI = getFirstTerminator(); 1520 while (TI != end() && !TI->isBranch()) 1521 ++TI; 1522 1523 if (TI != end()) { 1524 DL = TI->getDebugLoc(); 1525 for (++TI ; TI != end() ; ++TI) 1526 if (TI->isBranch()) 1527 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1528 } 1529 return DL; 1530 } 1531 1532 /// Return probability of the edge from this block to MBB. 1533 BranchProbability 1534 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1535 if (Probs.empty()) 1536 return BranchProbability(1, succ_size()); 1537 1538 const auto &Prob = *getProbabilityIterator(Succ); 1539 if (Prob.isUnknown()) { 1540 // For unknown probabilities, collect the sum of all known ones, and evenly 1541 // ditribute the complemental of the sum to each unknown probability. 1542 unsigned KnownProbNum = 0; 1543 auto Sum = BranchProbability::getZero(); 1544 for (const auto &P : Probs) { 1545 if (!P.isUnknown()) { 1546 Sum += P; 1547 KnownProbNum++; 1548 } 1549 } 1550 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1551 } else 1552 return Prob; 1553 } 1554 1555 /// Set successor probability of a given iterator. 1556 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1557 BranchProbability Prob) { 1558 assert(!Prob.isUnknown()); 1559 if (Probs.empty()) 1560 return; 1561 *getProbabilityIterator(I) = Prob; 1562 } 1563 1564 /// Return probability iterator corresonding to the I successor iterator 1565 MachineBasicBlock::const_probability_iterator 1566 MachineBasicBlock::getProbabilityIterator( 1567 MachineBasicBlock::const_succ_iterator I) const { 1568 assert(Probs.size() == Successors.size() && "Async probability list!"); 1569 const size_t index = std::distance(Successors.begin(), I); 1570 assert(index < Probs.size() && "Not a current successor!"); 1571 return Probs.begin() + index; 1572 } 1573 1574 /// Return probability iterator corresonding to the I successor iterator. 1575 MachineBasicBlock::probability_iterator 1576 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1577 assert(Probs.size() == Successors.size() && "Async probability list!"); 1578 const size_t index = std::distance(Successors.begin(), I); 1579 assert(index < Probs.size() && "Not a current successor!"); 1580 return Probs.begin() + index; 1581 } 1582 1583 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1584 /// as of just before "MI". 1585 /// 1586 /// Search is localised to a neighborhood of 1587 /// Neighborhood instructions before (searching for defs or kills) and N 1588 /// instructions after (searching just for defs) MI. 1589 MachineBasicBlock::LivenessQueryResult 1590 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1591 MCRegister Reg, const_iterator Before, 1592 unsigned Neighborhood) const { 1593 unsigned N = Neighborhood; 1594 1595 // Try searching forwards from Before, looking for reads or defs. 1596 const_iterator I(Before); 1597 for (; I != end() && N > 0; ++I) { 1598 if (I->isDebugOrPseudoInstr()) 1599 continue; 1600 1601 --N; 1602 1603 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1604 1605 // Register is live when we read it here. 1606 if (Info.Read) 1607 return LQR_Live; 1608 // Register is dead if we can fully overwrite or clobber it here. 1609 if (Info.FullyDefined || Info.Clobbered) 1610 return LQR_Dead; 1611 } 1612 1613 // If we reached the end, it is safe to clobber Reg at the end of a block of 1614 // no successor has it live in. 1615 if (I == end()) { 1616 for (MachineBasicBlock *S : successors()) { 1617 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1618 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1619 return LQR_Live; 1620 } 1621 } 1622 1623 return LQR_Dead; 1624 } 1625 1626 1627 N = Neighborhood; 1628 1629 // Start by searching backwards from Before, looking for kills, reads or defs. 1630 I = const_iterator(Before); 1631 // If this is the first insn in the block, don't search backwards. 1632 if (I != begin()) { 1633 do { 1634 --I; 1635 1636 if (I->isDebugOrPseudoInstr()) 1637 continue; 1638 1639 --N; 1640 1641 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1642 1643 // Defs happen after uses so they take precedence if both are present. 1644 1645 // Register is dead after a dead def of the full register. 1646 if (Info.DeadDef) 1647 return LQR_Dead; 1648 // Register is (at least partially) live after a def. 1649 if (Info.Defined) { 1650 if (!Info.PartialDeadDef) 1651 return LQR_Live; 1652 // As soon as we saw a partial definition (dead or not), 1653 // we cannot tell if the value is partial live without 1654 // tracking the lanemasks. We are not going to do this, 1655 // so fall back on the remaining of the analysis. 1656 break; 1657 } 1658 // Register is dead after a full kill or clobber and no def. 1659 if (Info.Killed || Info.Clobbered) 1660 return LQR_Dead; 1661 // Register must be live if we read it. 1662 if (Info.Read) 1663 return LQR_Live; 1664 1665 } while (I != begin() && N > 0); 1666 } 1667 1668 // If all the instructions before this in the block are debug instructions, 1669 // skip over them. 1670 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr()) 1671 --I; 1672 1673 // Did we get to the start of the block? 1674 if (I == begin()) { 1675 // If so, the register's state is definitely defined by the live-in state. 1676 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1677 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1678 return LQR_Live; 1679 1680 return LQR_Dead; 1681 } 1682 1683 // At this point we have no idea of the liveness of the register. 1684 return LQR_Unknown; 1685 } 1686 1687 const uint32_t * 1688 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1689 // EH funclet entry does not preserve any registers. 1690 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1691 } 1692 1693 const uint32_t * 1694 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1695 // If we see a return block with successors, this must be a funclet return, 1696 // which does not preserve any registers. If there are no successors, we don't 1697 // care what kind of return it is, putting a mask after it is a no-op. 1698 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1699 } 1700 1701 void MachineBasicBlock::clearLiveIns() { 1702 LiveIns.clear(); 1703 } 1704 1705 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1706 assert(getParent()->getProperties().hasProperty( 1707 MachineFunctionProperties::Property::TracksLiveness) && 1708 "Liveness information is accurate"); 1709 return LiveIns.begin(); 1710 } 1711 1712 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const { 1713 const MachineFunction &MF = *getParent(); 1714 assert(MF.getProperties().hasProperty( 1715 MachineFunctionProperties::Property::TracksLiveness) && 1716 "Liveness information is accurate"); 1717 1718 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1719 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0; 1720 if (MF.getFunction().hasPersonalityFn()) { 1721 auto PersonalityFn = MF.getFunction().getPersonalityFn(); 1722 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn); 1723 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn); 1724 } 1725 1726 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false); 1727 } 1728 1729 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const { 1730 unsigned Cntr = 0; 1731 auto R = instructionsWithoutDebug(begin(), end()); 1732 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1733 if (++Cntr > Limit) 1734 return true; 1735 } 1736 return false; 1737 } 1738 1739 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); 1740 const MBBSectionID 1741 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception); 1742