1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/DataTypes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 if (B) 46 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 47 } 48 49 MachineBasicBlock::~MachineBasicBlock() { 50 } 51 52 /// Return the MCSymbol for this basic block. 53 MCSymbol *MachineBasicBlock::getSymbol() const { 54 if (!CachedMCSymbol) { 55 const MachineFunction *MF = getParent(); 56 MCContext &Ctx = MF->getContext(); 57 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 58 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 59 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 60 Twine(MF->getFunctionNumber()) + 61 "_" + Twine(getNumber())); 62 } 63 64 return CachedMCSymbol; 65 } 66 67 68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 69 MBB.print(OS); 70 return OS; 71 } 72 73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 74 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 75 } 76 77 /// When an MBB is added to an MF, we need to update the parent pointer of the 78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 79 /// operand list for registers. 80 /// 81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 82 /// gets the next available unique MBB number. If it is removed from a 83 /// MachineFunction, it goes back to being #-1. 84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 85 MachineBasicBlock *N) { 86 MachineFunction &MF = *N->getParent(); 87 N->Number = MF.addToMBBNumbering(N); 88 89 // Make sure the instructions have their operands in the reginfo lists. 90 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 91 for (MachineBasicBlock::instr_iterator 92 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 93 I->AddRegOperandsToUseLists(RegInfo); 94 } 95 96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 97 MachineBasicBlock *N) { 98 N->getParent()->removeFromMBBNumbering(N->Number); 99 N->Number = -1; 100 } 101 102 /// When we add an instruction to a basic block list, we update its parent 103 /// pointer and add its operands from reg use/def lists if appropriate. 104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 105 assert(!N->getParent() && "machine instruction already in a basic block"); 106 N->setParent(Parent); 107 108 // Add the instruction's register operands to their corresponding 109 // use/def lists. 110 MachineFunction *MF = Parent->getParent(); 111 N->AddRegOperandsToUseLists(MF->getRegInfo()); 112 } 113 114 /// When we remove an instruction from a basic block list, we update its parent 115 /// pointer and remove its operands from reg use/def lists if appropriate. 116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 117 assert(N->getParent() && "machine instruction not in a basic block"); 118 119 // Remove from the use/def lists. 120 if (MachineFunction *MF = N->getMF()) 121 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 122 123 N->setParent(nullptr); 124 } 125 126 /// When moving a range of instructions from one MBB list to another, we need to 127 /// update the parent pointers and the use/def lists. 128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 129 instr_iterator First, 130 instr_iterator Last) { 131 assert(Parent->getParent() == FromList.Parent->getParent() && 132 "MachineInstr parent mismatch!"); 133 assert(this != &FromList && "Called without a real transfer..."); 134 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 135 136 // If splicing between two blocks within the same function, just update the 137 // parent pointers. 138 for (; First != Last; ++First) 139 First->setParent(Parent); 140 } 141 142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 143 assert(!MI->getParent() && "MI is still in a block!"); 144 Parent->getParent()->DeleteMachineInstr(MI); 145 } 146 147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 148 instr_iterator I = instr_begin(), E = instr_end(); 149 while (I != E && I->isPHI()) 150 ++I; 151 assert((I == E || !I->isInsideBundle()) && 152 "First non-phi MI cannot be inside a bundle!"); 153 return I; 154 } 155 156 MachineBasicBlock::iterator 157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 158 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 159 160 iterator E = end(); 161 while (I != E && (I->isPHI() || I->isPosition() || 162 TII->isBasicBlockPrologue(*I))) 163 ++I; 164 // FIXME: This needs to change if we wish to bundle labels 165 // inside the bundle. 166 assert((I == E || !I->isInsideBundle()) && 167 "First non-phi / non-label instruction is inside a bundle!"); 168 return I; 169 } 170 171 MachineBasicBlock::iterator 172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 173 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 174 175 iterator E = end(); 176 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 177 TII->isBasicBlockPrologue(*I))) 178 ++I; 179 // FIXME: This needs to change if we wish to bundle labels / dbg_values 180 // inside the bundle. 181 assert((I == E || !I->isInsideBundle()) && 182 "First non-phi / non-label / non-debug " 183 "instruction is inside a bundle!"); 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 188 iterator B = begin(), E = end(), I = E; 189 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 190 ; /*noop */ 191 while (I != E && !I->isTerminator()) 192 ++I; 193 return I; 194 } 195 196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 197 instr_iterator B = instr_begin(), E = instr_end(), I = E; 198 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 199 ; /*noop */ 200 while (I != E && !I->isTerminator()) 201 ++I; 202 return I; 203 } 204 205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 206 // Skip over begin-of-block dbg_value instructions. 207 return skipDebugInstructionsForward(begin(), end()); 208 } 209 210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 211 // Skip over end-of-block dbg_value instructions. 212 instr_iterator B = instr_begin(), I = instr_end(); 213 while (I != B) { 214 --I; 215 // Return instruction that starts a bundle. 216 if (I->isDebugValue() || I->isInsideBundle()) 217 continue; 218 return I; 219 } 220 // The block is all debug values. 221 return end(); 222 } 223 224 bool MachineBasicBlock::hasEHPadSuccessor() const { 225 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 226 if ((*I)->isEHPad()) 227 return true; 228 return false; 229 } 230 231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 233 print(dbgs()); 234 } 235 #endif 236 237 bool MachineBasicBlock::isLegalToHoistInto() const { 238 if (isReturnBlock() || hasEHPadSuccessor()) 239 return false; 240 return true; 241 } 242 243 StringRef MachineBasicBlock::getName() const { 244 if (const BasicBlock *LBB = getBasicBlock()) 245 return LBB->getName(); 246 else 247 return StringRef("", 0); 248 } 249 250 /// Return a hopefully unique identifier for this block. 251 std::string MachineBasicBlock::getFullName() const { 252 std::string Name; 253 if (getParent()) 254 Name = (getParent()->getName() + ":").str(); 255 if (getBasicBlock()) 256 Name += getBasicBlock()->getName(); 257 else 258 Name += ("BB" + Twine(getNumber())).str(); 259 return Name; 260 } 261 262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 263 bool IsStandalone) const { 264 const MachineFunction *MF = getParent(); 265 if (!MF) { 266 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 267 << " is null\n"; 268 return; 269 } 270 const Function &F = MF->getFunction(); 271 const Module *M = F.getParent(); 272 ModuleSlotTracker MST(M); 273 MST.incorporateFunction(F); 274 print(OS, MST, Indexes, IsStandalone); 275 } 276 277 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 278 const SlotIndexes *Indexes, 279 bool IsStandalone) const { 280 const MachineFunction *MF = getParent(); 281 if (!MF) { 282 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 283 << " is null\n"; 284 return; 285 } 286 287 if (Indexes) 288 OS << Indexes->getMBBStartIdx(this) << '\t'; 289 290 OS << "bb." << getNumber(); 291 bool HasAttributes = false; 292 if (const auto *BB = getBasicBlock()) { 293 if (BB->hasName()) { 294 OS << "." << BB->getName(); 295 } else { 296 HasAttributes = true; 297 OS << " ("; 298 int Slot = MST.getLocalSlot(BB); 299 if (Slot == -1) 300 OS << "<ir-block badref>"; 301 else 302 OS << (Twine("%ir-block.") + Twine(Slot)).str(); 303 } 304 } 305 306 if (hasAddressTaken()) { 307 OS << (HasAttributes ? ", " : " ("); 308 OS << "address-taken"; 309 HasAttributes = true; 310 } 311 if (isEHPad()) { 312 OS << (HasAttributes ? ", " : " ("); 313 OS << "landing-pad"; 314 HasAttributes = true; 315 } 316 if (getAlignment()) { 317 OS << (HasAttributes ? ", " : " ("); 318 OS << "align " << getAlignment(); 319 HasAttributes = true; 320 } 321 if (HasAttributes) 322 OS << ")"; 323 OS << ":\n"; 324 325 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 326 const MachineRegisterInfo &MRI = MF->getRegInfo(); 327 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 328 bool HasLineAttributes = false; 329 330 // Print the preds of this block according to the CFG. 331 if (!pred_empty()) { 332 if (Indexes) OS << '\t'; 333 // Don't indent(2), align with previous line attributes. 334 OS << "; predecessors: "; 335 for (auto I = pred_begin(), E = pred_end(); I != E; ++I) { 336 if (I != pred_begin()) 337 OS << ", "; 338 OS << printMBBReference(**I); 339 } 340 OS << '\n'; 341 HasLineAttributes = true; 342 } 343 344 if (!succ_empty()) { 345 if (Indexes) OS << '\t'; 346 // Print the successors 347 OS.indent(2) << "successors: "; 348 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 349 if (I != succ_begin()) 350 OS << ", "; 351 OS << printMBBReference(**I); 352 if (!Probs.empty()) 353 OS << '(' 354 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 355 << ')'; 356 } 357 if (!Probs.empty()) { 358 // Print human readable probabilities as comments. 359 OS << "; "; 360 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 361 const BranchProbability &BP = *getProbabilityIterator(I); 362 if (I != succ_begin()) 363 OS << ", "; 364 OS << printMBBReference(**I) << '(' 365 << format("%.2f%%", 366 rint(((double)BP.getNumerator() / BP.getDenominator()) * 367 100.0 * 100.0) / 368 100.0) 369 << ')'; 370 } 371 } 372 373 OS << '\n'; 374 HasLineAttributes = true; 375 } 376 377 if (!livein_empty() && MRI.tracksLiveness()) { 378 if (Indexes) OS << '\t'; 379 OS.indent(2) << "liveins: "; 380 381 bool First = true; 382 for (const auto &LI : liveins()) { 383 if (!First) 384 OS << ", "; 385 First = false; 386 OS << printReg(LI.PhysReg, TRI); 387 if (!LI.LaneMask.all()) 388 OS << ":0x" << PrintLaneMask(LI.LaneMask); 389 } 390 HasLineAttributes = true; 391 } 392 393 if (HasLineAttributes) 394 OS << '\n'; 395 396 bool IsInBundle = false; 397 for (const MachineInstr &MI : instrs()) { 398 if (Indexes) { 399 if (Indexes->hasIndex(MI)) 400 OS << Indexes->getInstructionIndex(MI); 401 OS << '\t'; 402 } 403 404 if (IsInBundle && !MI.isInsideBundle()) { 405 OS.indent(2) << "}\n"; 406 IsInBundle = false; 407 } 408 409 OS.indent(IsInBundle ? 4 : 2); 410 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 411 &TII); 412 413 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 414 OS << " {"; 415 IsInBundle = true; 416 } 417 418 OS << '\n'; 419 } 420 421 if (IsInBundle) 422 OS.indent(2) << "}\n"; 423 424 if (IrrLoopHeaderWeight) { 425 if (Indexes) OS << '\t'; 426 OS.indent(2) << "; Irreducible loop header weight: " 427 << IrrLoopHeaderWeight.getValue() << '\n'; 428 } 429 } 430 431 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 432 bool /*PrintType*/) const { 433 OS << "%bb." << getNumber(); 434 } 435 436 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 437 LiveInVector::iterator I = find_if( 438 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 439 if (I == LiveIns.end()) 440 return; 441 442 I->LaneMask &= ~LaneMask; 443 if (I->LaneMask.none()) 444 LiveIns.erase(I); 445 } 446 447 MachineBasicBlock::livein_iterator 448 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 449 // Get non-const version of iterator. 450 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 451 return LiveIns.erase(LI); 452 } 453 454 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 455 livein_iterator I = find_if( 456 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 457 return I != livein_end() && (I->LaneMask & LaneMask).any(); 458 } 459 460 void MachineBasicBlock::sortUniqueLiveIns() { 461 std::sort(LiveIns.begin(), LiveIns.end(), 462 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 463 return LI0.PhysReg < LI1.PhysReg; 464 }); 465 // Liveins are sorted by physreg now we can merge their lanemasks. 466 LiveInVector::const_iterator I = LiveIns.begin(); 467 LiveInVector::const_iterator J; 468 LiveInVector::iterator Out = LiveIns.begin(); 469 for (; I != LiveIns.end(); ++Out, I = J) { 470 unsigned PhysReg = I->PhysReg; 471 LaneBitmask LaneMask = I->LaneMask; 472 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 473 LaneMask |= J->LaneMask; 474 Out->PhysReg = PhysReg; 475 Out->LaneMask = LaneMask; 476 } 477 LiveIns.erase(Out, LiveIns.end()); 478 } 479 480 unsigned 481 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 482 assert(getParent() && "MBB must be inserted in function"); 483 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 484 assert(RC && "Register class is required"); 485 assert((isEHPad() || this == &getParent()->front()) && 486 "Only the entry block and landing pads can have physreg live ins"); 487 488 bool LiveIn = isLiveIn(PhysReg); 489 iterator I = SkipPHIsAndLabels(begin()), E = end(); 490 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 491 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 492 493 // Look for an existing copy. 494 if (LiveIn) 495 for (;I != E && I->isCopy(); ++I) 496 if (I->getOperand(1).getReg() == PhysReg) { 497 unsigned VirtReg = I->getOperand(0).getReg(); 498 if (!MRI.constrainRegClass(VirtReg, RC)) 499 llvm_unreachable("Incompatible live-in register class."); 500 return VirtReg; 501 } 502 503 // No luck, create a virtual register. 504 unsigned VirtReg = MRI.createVirtualRegister(RC); 505 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 506 .addReg(PhysReg, RegState::Kill); 507 if (!LiveIn) 508 addLiveIn(PhysReg); 509 return VirtReg; 510 } 511 512 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 513 getParent()->splice(NewAfter->getIterator(), getIterator()); 514 } 515 516 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 517 getParent()->splice(++NewBefore->getIterator(), getIterator()); 518 } 519 520 void MachineBasicBlock::updateTerminator() { 521 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 522 // A block with no successors has no concerns with fall-through edges. 523 if (this->succ_empty()) 524 return; 525 526 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 527 SmallVector<MachineOperand, 4> Cond; 528 DebugLoc DL = findBranchDebugLoc(); 529 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 530 (void) B; 531 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 532 if (Cond.empty()) { 533 if (TBB) { 534 // The block has an unconditional branch. If its successor is now its 535 // layout successor, delete the branch. 536 if (isLayoutSuccessor(TBB)) 537 TII->removeBranch(*this); 538 } else { 539 // The block has an unconditional fallthrough. If its successor is not its 540 // layout successor, insert a branch. First we have to locate the only 541 // non-landing-pad successor, as that is the fallthrough block. 542 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 543 if ((*SI)->isEHPad()) 544 continue; 545 assert(!TBB && "Found more than one non-landing-pad successor!"); 546 TBB = *SI; 547 } 548 549 // If there is no non-landing-pad successor, the block has no fall-through 550 // edges to be concerned with. 551 if (!TBB) 552 return; 553 554 // Finally update the unconditional successor to be reached via a branch 555 // if it would not be reached by fallthrough. 556 if (!isLayoutSuccessor(TBB)) 557 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 558 } 559 return; 560 } 561 562 if (FBB) { 563 // The block has a non-fallthrough conditional branch. If one of its 564 // successors is its layout successor, rewrite it to a fallthrough 565 // conditional branch. 566 if (isLayoutSuccessor(TBB)) { 567 if (TII->reverseBranchCondition(Cond)) 568 return; 569 TII->removeBranch(*this); 570 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 571 } else if (isLayoutSuccessor(FBB)) { 572 TII->removeBranch(*this); 573 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 574 } 575 return; 576 } 577 578 // Walk through the successors and find the successor which is not a landing 579 // pad and is not the conditional branch destination (in TBB) as the 580 // fallthrough successor. 581 MachineBasicBlock *FallthroughBB = nullptr; 582 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 583 if ((*SI)->isEHPad() || *SI == TBB) 584 continue; 585 assert(!FallthroughBB && "Found more than one fallthrough successor."); 586 FallthroughBB = *SI; 587 } 588 589 if (!FallthroughBB) { 590 if (canFallThrough()) { 591 // We fallthrough to the same basic block as the conditional jump targets. 592 // Remove the conditional jump, leaving unconditional fallthrough. 593 // FIXME: This does not seem like a reasonable pattern to support, but it 594 // has been seen in the wild coming out of degenerate ARM test cases. 595 TII->removeBranch(*this); 596 597 // Finally update the unconditional successor to be reached via a branch if 598 // it would not be reached by fallthrough. 599 if (!isLayoutSuccessor(TBB)) 600 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 601 return; 602 } 603 604 // We enter here iff exactly one successor is TBB which cannot fallthrough 605 // and the rest successors if any are EHPads. In this case, we need to 606 // change the conditional branch into unconditional branch. 607 TII->removeBranch(*this); 608 Cond.clear(); 609 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 610 return; 611 } 612 613 // The block has a fallthrough conditional branch. 614 if (isLayoutSuccessor(TBB)) { 615 if (TII->reverseBranchCondition(Cond)) { 616 // We can't reverse the condition, add an unconditional branch. 617 Cond.clear(); 618 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 619 return; 620 } 621 TII->removeBranch(*this); 622 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 623 } else if (!isLayoutSuccessor(FallthroughBB)) { 624 TII->removeBranch(*this); 625 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 626 } 627 } 628 629 void MachineBasicBlock::validateSuccProbs() const { 630 #ifndef NDEBUG 631 int64_t Sum = 0; 632 for (auto Prob : Probs) 633 Sum += Prob.getNumerator(); 634 // Due to precision issue, we assume that the sum of probabilities is one if 635 // the difference between the sum of their numerators and the denominator is 636 // no greater than the number of successors. 637 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 638 Probs.size() && 639 "The sum of successors's probabilities exceeds one."); 640 #endif // NDEBUG 641 } 642 643 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 644 BranchProbability Prob) { 645 // Probability list is either empty (if successor list isn't empty, this means 646 // disabled optimization) or has the same size as successor list. 647 if (!(Probs.empty() && !Successors.empty())) 648 Probs.push_back(Prob); 649 Successors.push_back(Succ); 650 Succ->addPredecessor(this); 651 } 652 653 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 654 // We need to make sure probability list is either empty or has the same size 655 // of successor list. When this function is called, we can safely delete all 656 // probability in the list. 657 Probs.clear(); 658 Successors.push_back(Succ); 659 Succ->addPredecessor(this); 660 } 661 662 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 663 bool NormalizeSuccProbs) { 664 succ_iterator I = find(Successors, Succ); 665 removeSuccessor(I, NormalizeSuccProbs); 666 } 667 668 MachineBasicBlock::succ_iterator 669 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 670 assert(I != Successors.end() && "Not a current successor!"); 671 672 // If probability list is empty it means we don't use it (disabled 673 // optimization). 674 if (!Probs.empty()) { 675 probability_iterator WI = getProbabilityIterator(I); 676 Probs.erase(WI); 677 if (NormalizeSuccProbs) 678 normalizeSuccProbs(); 679 } 680 681 (*I)->removePredecessor(this); 682 return Successors.erase(I); 683 } 684 685 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 686 MachineBasicBlock *New) { 687 if (Old == New) 688 return; 689 690 succ_iterator E = succ_end(); 691 succ_iterator NewI = E; 692 succ_iterator OldI = E; 693 for (succ_iterator I = succ_begin(); I != E; ++I) { 694 if (*I == Old) { 695 OldI = I; 696 if (NewI != E) 697 break; 698 } 699 if (*I == New) { 700 NewI = I; 701 if (OldI != E) 702 break; 703 } 704 } 705 assert(OldI != E && "Old is not a successor of this block"); 706 707 // If New isn't already a successor, let it take Old's place. 708 if (NewI == E) { 709 Old->removePredecessor(this); 710 New->addPredecessor(this); 711 *OldI = New; 712 return; 713 } 714 715 // New is already a successor. 716 // Update its probability instead of adding a duplicate edge. 717 if (!Probs.empty()) { 718 auto ProbIter = getProbabilityIterator(NewI); 719 if (!ProbIter->isUnknown()) 720 *ProbIter += *getProbabilityIterator(OldI); 721 } 722 removeSuccessor(OldI); 723 } 724 725 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 726 Predecessors.push_back(Pred); 727 } 728 729 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 730 pred_iterator I = find(Predecessors, Pred); 731 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 732 Predecessors.erase(I); 733 } 734 735 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 736 if (this == FromMBB) 737 return; 738 739 while (!FromMBB->succ_empty()) { 740 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 741 742 // If probability list is empty it means we don't use it (disabled optimization). 743 if (!FromMBB->Probs.empty()) { 744 auto Prob = *FromMBB->Probs.begin(); 745 addSuccessor(Succ, Prob); 746 } else 747 addSuccessorWithoutProb(Succ); 748 749 FromMBB->removeSuccessor(Succ); 750 } 751 } 752 753 void 754 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 755 if (this == FromMBB) 756 return; 757 758 while (!FromMBB->succ_empty()) { 759 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 760 if (!FromMBB->Probs.empty()) { 761 auto Prob = *FromMBB->Probs.begin(); 762 addSuccessor(Succ, Prob); 763 } else 764 addSuccessorWithoutProb(Succ); 765 FromMBB->removeSuccessor(Succ); 766 767 // Fix up any PHI nodes in the successor. 768 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 769 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 770 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 771 MachineOperand &MO = MI->getOperand(i); 772 if (MO.getMBB() == FromMBB) 773 MO.setMBB(this); 774 } 775 } 776 normalizeSuccProbs(); 777 } 778 779 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 780 return is_contained(predecessors(), MBB); 781 } 782 783 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 784 return is_contained(successors(), MBB); 785 } 786 787 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 788 MachineFunction::const_iterator I(this); 789 return std::next(I) == MachineFunction::const_iterator(MBB); 790 } 791 792 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 793 MachineFunction::iterator Fallthrough = getIterator(); 794 ++Fallthrough; 795 // If FallthroughBlock is off the end of the function, it can't fall through. 796 if (Fallthrough == getParent()->end()) 797 return nullptr; 798 799 // If FallthroughBlock isn't a successor, no fallthrough is possible. 800 if (!isSuccessor(&*Fallthrough)) 801 return nullptr; 802 803 // Analyze the branches, if any, at the end of the block. 804 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 805 SmallVector<MachineOperand, 4> Cond; 806 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 807 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 808 // If we couldn't analyze the branch, examine the last instruction. 809 // If the block doesn't end in a known control barrier, assume fallthrough 810 // is possible. The isPredicated check is needed because this code can be 811 // called during IfConversion, where an instruction which is normally a 812 // Barrier is predicated and thus no longer an actual control barrier. 813 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 814 ? &*Fallthrough 815 : nullptr; 816 } 817 818 // If there is no branch, control always falls through. 819 if (!TBB) return &*Fallthrough; 820 821 // If there is some explicit branch to the fallthrough block, it can obviously 822 // reach, even though the branch should get folded to fall through implicitly. 823 if (MachineFunction::iterator(TBB) == Fallthrough || 824 MachineFunction::iterator(FBB) == Fallthrough) 825 return &*Fallthrough; 826 827 // If it's an unconditional branch to some block not the fall through, it 828 // doesn't fall through. 829 if (Cond.empty()) return nullptr; 830 831 // Otherwise, if it is conditional and has no explicit false block, it falls 832 // through. 833 return (FBB == nullptr) ? &*Fallthrough : nullptr; 834 } 835 836 bool MachineBasicBlock::canFallThrough() { 837 return getFallThrough() != nullptr; 838 } 839 840 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 841 Pass &P) { 842 if (!canSplitCriticalEdge(Succ)) 843 return nullptr; 844 845 MachineFunction *MF = getParent(); 846 DebugLoc DL; // FIXME: this is nowhere 847 848 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 849 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 850 DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 851 << " -- " << printMBBReference(*NMBB) << " -- " 852 << printMBBReference(*Succ) << '\n'); 853 854 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 855 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 856 if (LIS) 857 LIS->insertMBBInMaps(NMBB); 858 else if (Indexes) 859 Indexes->insertMBBInMaps(NMBB); 860 861 // On some targets like Mips, branches may kill virtual registers. Make sure 862 // that LiveVariables is properly updated after updateTerminator replaces the 863 // terminators. 864 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 865 866 // Collect a list of virtual registers killed by the terminators. 867 SmallVector<unsigned, 4> KilledRegs; 868 if (LV) 869 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 870 I != E; ++I) { 871 MachineInstr *MI = &*I; 872 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 873 OE = MI->operands_end(); OI != OE; ++OI) { 874 if (!OI->isReg() || OI->getReg() == 0 || 875 !OI->isUse() || !OI->isKill() || OI->isUndef()) 876 continue; 877 unsigned Reg = OI->getReg(); 878 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 879 LV->getVarInfo(Reg).removeKill(*MI)) { 880 KilledRegs.push_back(Reg); 881 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 882 OI->setIsKill(false); 883 } 884 } 885 } 886 887 SmallVector<unsigned, 4> UsedRegs; 888 if (LIS) { 889 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 890 I != E; ++I) { 891 MachineInstr *MI = &*I; 892 893 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 894 OE = MI->operands_end(); OI != OE; ++OI) { 895 if (!OI->isReg() || OI->getReg() == 0) 896 continue; 897 898 unsigned Reg = OI->getReg(); 899 if (!is_contained(UsedRegs, Reg)) 900 UsedRegs.push_back(Reg); 901 } 902 } 903 } 904 905 ReplaceUsesOfBlockWith(Succ, NMBB); 906 907 // If updateTerminator() removes instructions, we need to remove them from 908 // SlotIndexes. 909 SmallVector<MachineInstr*, 4> Terminators; 910 if (Indexes) { 911 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 912 I != E; ++I) 913 Terminators.push_back(&*I); 914 } 915 916 updateTerminator(); 917 918 if (Indexes) { 919 SmallVector<MachineInstr*, 4> NewTerminators; 920 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 921 I != E; ++I) 922 NewTerminators.push_back(&*I); 923 924 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 925 E = Terminators.end(); I != E; ++I) { 926 if (!is_contained(NewTerminators, *I)) 927 Indexes->removeMachineInstrFromMaps(**I); 928 } 929 } 930 931 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 932 NMBB->addSuccessor(Succ); 933 if (!NMBB->isLayoutSuccessor(Succ)) { 934 SmallVector<MachineOperand, 4> Cond; 935 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 936 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 937 938 if (Indexes) { 939 for (MachineInstr &MI : NMBB->instrs()) { 940 // Some instructions may have been moved to NMBB by updateTerminator(), 941 // so we first remove any instruction that already has an index. 942 if (Indexes->hasIndex(MI)) 943 Indexes->removeMachineInstrFromMaps(MI); 944 Indexes->insertMachineInstrInMaps(MI); 945 } 946 } 947 } 948 949 // Fix PHI nodes in Succ so they refer to NMBB instead of this 950 for (MachineBasicBlock::instr_iterator 951 i = Succ->instr_begin(),e = Succ->instr_end(); 952 i != e && i->isPHI(); ++i) 953 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 954 if (i->getOperand(ni+1).getMBB() == this) 955 i->getOperand(ni+1).setMBB(NMBB); 956 957 // Inherit live-ins from the successor 958 for (const auto &LI : Succ->liveins()) 959 NMBB->addLiveIn(LI); 960 961 // Update LiveVariables. 962 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 963 if (LV) { 964 // Restore kills of virtual registers that were killed by the terminators. 965 while (!KilledRegs.empty()) { 966 unsigned Reg = KilledRegs.pop_back_val(); 967 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 968 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 969 continue; 970 if (TargetRegisterInfo::isVirtualRegister(Reg)) 971 LV->getVarInfo(Reg).Kills.push_back(&*I); 972 DEBUG(dbgs() << "Restored terminator kill: " << *I); 973 break; 974 } 975 } 976 // Update relevant live-through information. 977 LV->addNewBlock(NMBB, this, Succ); 978 } 979 980 if (LIS) { 981 // After splitting the edge and updating SlotIndexes, live intervals may be 982 // in one of two situations, depending on whether this block was the last in 983 // the function. If the original block was the last in the function, all 984 // live intervals will end prior to the beginning of the new split block. If 985 // the original block was not at the end of the function, all live intervals 986 // will extend to the end of the new split block. 987 988 bool isLastMBB = 989 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 990 991 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 992 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 993 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 994 995 // Find the registers used from NMBB in PHIs in Succ. 996 SmallSet<unsigned, 8> PHISrcRegs; 997 for (MachineBasicBlock::instr_iterator 998 I = Succ->instr_begin(), E = Succ->instr_end(); 999 I != E && I->isPHI(); ++I) { 1000 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1001 if (I->getOperand(ni+1).getMBB() == NMBB) { 1002 MachineOperand &MO = I->getOperand(ni); 1003 unsigned Reg = MO.getReg(); 1004 PHISrcRegs.insert(Reg); 1005 if (MO.isUndef()) 1006 continue; 1007 1008 LiveInterval &LI = LIS->getInterval(Reg); 1009 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1010 assert(VNI && 1011 "PHI sources should be live out of their predecessors."); 1012 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1013 } 1014 } 1015 } 1016 1017 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1018 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1019 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1020 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1021 continue; 1022 1023 LiveInterval &LI = LIS->getInterval(Reg); 1024 if (!LI.liveAt(PrevIndex)) 1025 continue; 1026 1027 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1028 if (isLiveOut && isLastMBB) { 1029 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1030 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1031 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1032 } else if (!isLiveOut && !isLastMBB) { 1033 LI.removeSegment(StartIndex, EndIndex); 1034 } 1035 } 1036 1037 // Update all intervals for registers whose uses may have been modified by 1038 // updateTerminator(). 1039 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1040 } 1041 1042 if (MachineDominatorTree *MDT = 1043 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1044 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1045 1046 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1047 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1048 // If one or the other blocks were not in a loop, the new block is not 1049 // either, and thus LI doesn't need to be updated. 1050 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1051 if (TIL == DestLoop) { 1052 // Both in the same loop, the NMBB joins loop. 1053 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1054 } else if (TIL->contains(DestLoop)) { 1055 // Edge from an outer loop to an inner loop. Add to the outer loop. 1056 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1057 } else if (DestLoop->contains(TIL)) { 1058 // Edge from an inner loop to an outer loop. Add to the outer loop. 1059 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1060 } else { 1061 // Edge from two loops with no containment relation. Because these 1062 // are natural loops, we know that the destination block must be the 1063 // header of its loop (adding a branch into a loop elsewhere would 1064 // create an irreducible loop). 1065 assert(DestLoop->getHeader() == Succ && 1066 "Should not create irreducible loops!"); 1067 if (MachineLoop *P = DestLoop->getParentLoop()) 1068 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1069 } 1070 } 1071 } 1072 1073 return NMBB; 1074 } 1075 1076 bool MachineBasicBlock::canSplitCriticalEdge( 1077 const MachineBasicBlock *Succ) const { 1078 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1079 // it in this generic function. 1080 if (Succ->isEHPad()) 1081 return false; 1082 1083 const MachineFunction *MF = getParent(); 1084 1085 // Performance might be harmed on HW that implements branching using exec mask 1086 // where both sides of the branches are always executed. 1087 if (MF->getTarget().requiresStructuredCFG()) 1088 return false; 1089 1090 // We may need to update this's terminator, but we can't do that if 1091 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1092 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1093 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1094 SmallVector<MachineOperand, 4> Cond; 1095 // AnalyzeBanch should modify this, since we did not allow modification. 1096 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1097 /*AllowModify*/ false)) 1098 return false; 1099 1100 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1101 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1102 // case that we can't handle. Since this never happens in properly optimized 1103 // code, just skip those edges. 1104 if (TBB && TBB == FBB) { 1105 DEBUG(dbgs() << "Won't split critical edge after degenerate " 1106 << printMBBReference(*this) << '\n'); 1107 return false; 1108 } 1109 return true; 1110 } 1111 1112 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1113 /// neighboring instructions so the bundle won't be broken by removing MI. 1114 static void unbundleSingleMI(MachineInstr *MI) { 1115 // Removing the first instruction in a bundle. 1116 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1117 MI->unbundleFromSucc(); 1118 // Removing the last instruction in a bundle. 1119 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1120 MI->unbundleFromPred(); 1121 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1122 // are already fine. 1123 } 1124 1125 MachineBasicBlock::instr_iterator 1126 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1127 unbundleSingleMI(&*I); 1128 return Insts.erase(I); 1129 } 1130 1131 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1132 unbundleSingleMI(MI); 1133 MI->clearFlag(MachineInstr::BundledPred); 1134 MI->clearFlag(MachineInstr::BundledSucc); 1135 return Insts.remove(MI); 1136 } 1137 1138 MachineBasicBlock::instr_iterator 1139 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1140 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1141 "Cannot insert instruction with bundle flags"); 1142 // Set the bundle flags when inserting inside a bundle. 1143 if (I != instr_end() && I->isBundledWithPred()) { 1144 MI->setFlag(MachineInstr::BundledPred); 1145 MI->setFlag(MachineInstr::BundledSucc); 1146 } 1147 return Insts.insert(I, MI); 1148 } 1149 1150 /// This method unlinks 'this' from the containing function, and returns it, but 1151 /// does not delete it. 1152 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1153 assert(getParent() && "Not embedded in a function!"); 1154 getParent()->remove(this); 1155 return this; 1156 } 1157 1158 /// This method unlinks 'this' from the containing function, and deletes it. 1159 void MachineBasicBlock::eraseFromParent() { 1160 assert(getParent() && "Not embedded in a function!"); 1161 getParent()->erase(this); 1162 } 1163 1164 /// Given a machine basic block that branched to 'Old', change the code and CFG 1165 /// so that it branches to 'New' instead. 1166 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1167 MachineBasicBlock *New) { 1168 assert(Old != New && "Cannot replace self with self!"); 1169 1170 MachineBasicBlock::instr_iterator I = instr_end(); 1171 while (I != instr_begin()) { 1172 --I; 1173 if (!I->isTerminator()) break; 1174 1175 // Scan the operands of this machine instruction, replacing any uses of Old 1176 // with New. 1177 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1178 if (I->getOperand(i).isMBB() && 1179 I->getOperand(i).getMBB() == Old) 1180 I->getOperand(i).setMBB(New); 1181 } 1182 1183 // Update the successor information. 1184 replaceSuccessor(Old, New); 1185 } 1186 1187 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1188 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1189 /// MBB successors from the CFG. DestA and DestB can be null. 1190 /// 1191 /// Besides DestA and DestB, retain other edges leading to LandingPads 1192 /// (currently there can be only one; we don't check or require that here). 1193 /// Note it is possible that DestA and/or DestB are LandingPads. 1194 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1195 MachineBasicBlock *DestB, 1196 bool IsCond) { 1197 // The values of DestA and DestB frequently come from a call to the 1198 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1199 // values from there. 1200 // 1201 // 1. If both DestA and DestB are null, then the block ends with no branches 1202 // (it falls through to its successor). 1203 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1204 // with only an unconditional branch. 1205 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1206 // with a conditional branch that falls through to a successor (DestB). 1207 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1208 // conditional branch followed by an unconditional branch. DestA is the 1209 // 'true' destination and DestB is the 'false' destination. 1210 1211 bool Changed = false; 1212 1213 MachineBasicBlock *FallThru = getNextNode(); 1214 1215 if (!DestA && !DestB) { 1216 // Block falls through to successor. 1217 DestA = FallThru; 1218 DestB = FallThru; 1219 } else if (DestA && !DestB) { 1220 if (IsCond) 1221 // Block ends in conditional jump that falls through to successor. 1222 DestB = FallThru; 1223 } else { 1224 assert(DestA && DestB && IsCond && 1225 "CFG in a bad state. Cannot correct CFG edges"); 1226 } 1227 1228 // Remove superfluous edges. I.e., those which aren't destinations of this 1229 // basic block, duplicate edges, or landing pads. 1230 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1231 MachineBasicBlock::succ_iterator SI = succ_begin(); 1232 while (SI != succ_end()) { 1233 const MachineBasicBlock *MBB = *SI; 1234 if (!SeenMBBs.insert(MBB).second || 1235 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1236 // This is a superfluous edge, remove it. 1237 SI = removeSuccessor(SI); 1238 Changed = true; 1239 } else { 1240 ++SI; 1241 } 1242 } 1243 1244 if (Changed) 1245 normalizeSuccProbs(); 1246 return Changed; 1247 } 1248 1249 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1250 /// instructions. Return UnknownLoc if there is none. 1251 DebugLoc 1252 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1253 // Skip debug declarations, we don't want a DebugLoc from them. 1254 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1255 if (MBBI != instr_end()) 1256 return MBBI->getDebugLoc(); 1257 return {}; 1258 } 1259 1260 /// Find and return the merged DebugLoc of the branch instructions of the block. 1261 /// Return UnknownLoc if there is none. 1262 DebugLoc 1263 MachineBasicBlock::findBranchDebugLoc() { 1264 DebugLoc DL; 1265 auto TI = getFirstTerminator(); 1266 while (TI != end() && !TI->isBranch()) 1267 ++TI; 1268 1269 if (TI != end()) { 1270 DL = TI->getDebugLoc(); 1271 for (++TI ; TI != end() ; ++TI) 1272 if (TI->isBranch()) 1273 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1274 } 1275 return DL; 1276 } 1277 1278 /// Return probability of the edge from this block to MBB. 1279 BranchProbability 1280 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1281 if (Probs.empty()) 1282 return BranchProbability(1, succ_size()); 1283 1284 const auto &Prob = *getProbabilityIterator(Succ); 1285 if (Prob.isUnknown()) { 1286 // For unknown probabilities, collect the sum of all known ones, and evenly 1287 // ditribute the complemental of the sum to each unknown probability. 1288 unsigned KnownProbNum = 0; 1289 auto Sum = BranchProbability::getZero(); 1290 for (auto &P : Probs) { 1291 if (!P.isUnknown()) { 1292 Sum += P; 1293 KnownProbNum++; 1294 } 1295 } 1296 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1297 } else 1298 return Prob; 1299 } 1300 1301 /// Set successor probability of a given iterator. 1302 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1303 BranchProbability Prob) { 1304 assert(!Prob.isUnknown()); 1305 if (Probs.empty()) 1306 return; 1307 *getProbabilityIterator(I) = Prob; 1308 } 1309 1310 /// Return probability iterator corresonding to the I successor iterator 1311 MachineBasicBlock::const_probability_iterator 1312 MachineBasicBlock::getProbabilityIterator( 1313 MachineBasicBlock::const_succ_iterator I) const { 1314 assert(Probs.size() == Successors.size() && "Async probability list!"); 1315 const size_t index = std::distance(Successors.begin(), I); 1316 assert(index < Probs.size() && "Not a current successor!"); 1317 return Probs.begin() + index; 1318 } 1319 1320 /// Return probability iterator corresonding to the I successor iterator. 1321 MachineBasicBlock::probability_iterator 1322 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1323 assert(Probs.size() == Successors.size() && "Async probability list!"); 1324 const size_t index = std::distance(Successors.begin(), I); 1325 assert(index < Probs.size() && "Not a current successor!"); 1326 return Probs.begin() + index; 1327 } 1328 1329 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1330 /// as of just before "MI". 1331 /// 1332 /// Search is localised to a neighborhood of 1333 /// Neighborhood instructions before (searching for defs or kills) and N 1334 /// instructions after (searching just for defs) MI. 1335 MachineBasicBlock::LivenessQueryResult 1336 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1337 unsigned Reg, const_iterator Before, 1338 unsigned Neighborhood) const { 1339 unsigned N = Neighborhood; 1340 1341 // Start by searching backwards from Before, looking for kills, reads or defs. 1342 const_iterator I(Before); 1343 // If this is the first insn in the block, don't search backwards. 1344 if (I != begin()) { 1345 do { 1346 --I; 1347 1348 MachineOperandIteratorBase::PhysRegInfo Info = 1349 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1350 1351 // Defs happen after uses so they take precedence if both are present. 1352 1353 // Register is dead after a dead def of the full register. 1354 if (Info.DeadDef) 1355 return LQR_Dead; 1356 // Register is (at least partially) live after a def. 1357 if (Info.Defined) { 1358 if (!Info.PartialDeadDef) 1359 return LQR_Live; 1360 // As soon as we saw a partial definition (dead or not), 1361 // we cannot tell if the value is partial live without 1362 // tracking the lanemasks. We are not going to do this, 1363 // so fall back on the remaining of the analysis. 1364 break; 1365 } 1366 // Register is dead after a full kill or clobber and no def. 1367 if (Info.Killed || Info.Clobbered) 1368 return LQR_Dead; 1369 // Register must be live if we read it. 1370 if (Info.Read) 1371 return LQR_Live; 1372 } while (I != begin() && --N > 0); 1373 } 1374 1375 // Did we get to the start of the block? 1376 if (I == begin()) { 1377 // If so, the register's state is definitely defined by the live-in state. 1378 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1379 ++RAI) 1380 if (isLiveIn(*RAI)) 1381 return LQR_Live; 1382 1383 return LQR_Dead; 1384 } 1385 1386 N = Neighborhood; 1387 1388 // Try searching forwards from Before, looking for reads or defs. 1389 I = const_iterator(Before); 1390 // If this is the last insn in the block, don't search forwards. 1391 if (I != end()) { 1392 for (++I; I != end() && N > 0; ++I, --N) { 1393 MachineOperandIteratorBase::PhysRegInfo Info = 1394 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1395 1396 // Register is live when we read it here. 1397 if (Info.Read) 1398 return LQR_Live; 1399 // Register is dead if we can fully overwrite or clobber it here. 1400 if (Info.FullyDefined || Info.Clobbered) 1401 return LQR_Dead; 1402 } 1403 } 1404 1405 // At this point we have no idea of the liveness of the register. 1406 return LQR_Unknown; 1407 } 1408 1409 const uint32_t * 1410 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1411 // EH funclet entry does not preserve any registers. 1412 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1413 } 1414 1415 const uint32_t * 1416 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1417 // If we see a return block with successors, this must be a funclet return, 1418 // which does not preserve any registers. If there are no successors, we don't 1419 // care what kind of return it is, putting a mask after it is a no-op. 1420 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1421 } 1422 1423 void MachineBasicBlock::clearLiveIns() { 1424 LiveIns.clear(); 1425 } 1426 1427 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1428 assert(getParent()->getProperties().hasProperty( 1429 MachineFunctionProperties::Property::TracksLiveness) && 1430 "Liveness information is accurate"); 1431 return LiveIns.begin(); 1432 } 1433