1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/Assembly/Writer.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/LiveVariables.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SlotIndexes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/LeakDetector.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb) 40 : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false), 41 AddressTaken(false), CachedMCSymbol(NULL) { 42 Insts.Parent = this; 43 } 44 45 MachineBasicBlock::~MachineBasicBlock() { 46 LeakDetector::removeGarbageObject(this); 47 } 48 49 /// getSymbol - Return the MCSymbol for this basic block. 50 /// 51 MCSymbol *MachineBasicBlock::getSymbol() const { 52 if (!CachedMCSymbol) { 53 const MachineFunction *MF = getParent(); 54 MCContext &Ctx = MF->getContext(); 55 const TargetMachine &TM = MF->getTarget(); 56 const char *Prefix = TM.getDataLayout()->getPrivateGlobalPrefix(); 57 CachedMCSymbol = Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" + 58 Twine(MF->getFunctionNumber()) + 59 "_" + Twine(getNumber())); 60 } 61 62 return CachedMCSymbol; 63 } 64 65 66 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 67 MBB.print(OS); 68 return OS; 69 } 70 71 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the 72 /// parent pointer of the MBB, the MBB numbering, and any instructions in the 73 /// MBB to be on the right operand list for registers. 74 /// 75 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 76 /// gets the next available unique MBB number. If it is removed from a 77 /// MachineFunction, it goes back to being #-1. 78 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 79 MachineFunction &MF = *N->getParent(); 80 N->Number = MF.addToMBBNumbering(N); 81 82 // Make sure the instructions have their operands in the reginfo lists. 83 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 84 for (MachineBasicBlock::instr_iterator 85 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 86 I->AddRegOperandsToUseLists(RegInfo); 87 88 LeakDetector::removeGarbageObject(N); 89 } 90 91 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 92 N->getParent()->removeFromMBBNumbering(N->Number); 93 N->Number = -1; 94 LeakDetector::addGarbageObject(N); 95 } 96 97 98 /// addNodeToList (MI) - When we add an instruction to a basic block 99 /// list, we update its parent pointer and add its operands from reg use/def 100 /// lists if appropriate. 101 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 102 assert(N->getParent() == 0 && "machine instruction already in a basic block"); 103 N->setParent(Parent); 104 105 // Add the instruction's register operands to their corresponding 106 // use/def lists. 107 MachineFunction *MF = Parent->getParent(); 108 N->AddRegOperandsToUseLists(MF->getRegInfo()); 109 110 LeakDetector::removeGarbageObject(N); 111 } 112 113 /// removeNodeFromList (MI) - When we remove an instruction from a basic block 114 /// list, we update its parent pointer and remove its operands from reg use/def 115 /// lists if appropriate. 116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 117 assert(N->getParent() != 0 && "machine instruction not in a basic block"); 118 119 // Remove from the use/def lists. 120 if (MachineFunction *MF = N->getParent()->getParent()) 121 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 122 123 N->setParent(0); 124 125 LeakDetector::addGarbageObject(N); 126 } 127 128 /// transferNodesFromList (MI) - When moving a range of instructions from one 129 /// MBB list to another, we need to update the parent pointers and the use/def 130 /// lists. 131 void ilist_traits<MachineInstr>:: 132 transferNodesFromList(ilist_traits<MachineInstr> &fromList, 133 ilist_iterator<MachineInstr> first, 134 ilist_iterator<MachineInstr> last) { 135 assert(Parent->getParent() == fromList.Parent->getParent() && 136 "MachineInstr parent mismatch!"); 137 138 // Splice within the same MBB -> no change. 139 if (Parent == fromList.Parent) return; 140 141 // If splicing between two blocks within the same function, just update the 142 // parent pointers. 143 for (; first != last; ++first) 144 first->setParent(Parent); 145 } 146 147 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 148 assert(!MI->getParent() && "MI is still in a block!"); 149 Parent->getParent()->DeleteMachineInstr(MI); 150 } 151 152 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 153 instr_iterator I = instr_begin(), E = instr_end(); 154 while (I != E && I->isPHI()) 155 ++I; 156 assert((I == E || !I->isInsideBundle()) && 157 "First non-phi MI cannot be inside a bundle!"); 158 return I; 159 } 160 161 MachineBasicBlock::iterator 162 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 163 iterator E = end(); 164 while (I != E && (I->isPHI() || I->isLabel() || I->isDebugValue())) 165 ++I; 166 // FIXME: This needs to change if we wish to bundle labels / dbg_values 167 // inside the bundle. 168 assert((I == E || !I->isInsideBundle()) && 169 "First non-phi / non-label instruction is inside a bundle!"); 170 return I; 171 } 172 173 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 174 iterator B = begin(), E = end(), I = E; 175 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 176 ; /*noop */ 177 while (I != E && !I->isTerminator()) 178 ++I; 179 return I; 180 } 181 182 MachineBasicBlock::const_iterator 183 MachineBasicBlock::getFirstTerminator() const { 184 const_iterator B = begin(), E = end(), I = E; 185 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 186 ; /*noop */ 187 while (I != E && !I->isTerminator()) 188 ++I; 189 return I; 190 } 191 192 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 193 instr_iterator B = instr_begin(), E = instr_end(), I = E; 194 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 195 ; /*noop */ 196 while (I != E && !I->isTerminator()) 197 ++I; 198 return I; 199 } 200 201 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 202 // Skip over end-of-block dbg_value instructions. 203 instr_iterator B = instr_begin(), I = instr_end(); 204 while (I != B) { 205 --I; 206 // Return instruction that starts a bundle. 207 if (I->isDebugValue() || I->isInsideBundle()) 208 continue; 209 return I; 210 } 211 // The block is all debug values. 212 return end(); 213 } 214 215 MachineBasicBlock::const_iterator 216 MachineBasicBlock::getLastNonDebugInstr() const { 217 // Skip over end-of-block dbg_value instructions. 218 const_instr_iterator B = instr_begin(), I = instr_end(); 219 while (I != B) { 220 --I; 221 // Return instruction that starts a bundle. 222 if (I->isDebugValue() || I->isInsideBundle()) 223 continue; 224 return I; 225 } 226 // The block is all debug values. 227 return end(); 228 } 229 230 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 231 // A block with a landing pad successor only has one other successor. 232 if (succ_size() > 2) 233 return 0; 234 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 235 if ((*I)->isLandingPad()) 236 return *I; 237 return 0; 238 } 239 240 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 241 void MachineBasicBlock::dump() const { 242 print(dbgs()); 243 } 244 #endif 245 246 StringRef MachineBasicBlock::getName() const { 247 if (const BasicBlock *LBB = getBasicBlock()) 248 return LBB->getName(); 249 else 250 return "(null)"; 251 } 252 253 /// Return a hopefully unique identifier for this block. 254 std::string MachineBasicBlock::getFullName() const { 255 std::string Name; 256 if (getParent()) 257 Name = (getParent()->getName() + ":").str(); 258 if (getBasicBlock()) 259 Name += getBasicBlock()->getName(); 260 else 261 Name += (Twine("BB") + Twine(getNumber())).str(); 262 return Name; 263 } 264 265 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 266 const MachineFunction *MF = getParent(); 267 if (!MF) { 268 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 269 << " is null\n"; 270 return; 271 } 272 273 if (Indexes) 274 OS << Indexes->getMBBStartIdx(this) << '\t'; 275 276 OS << "BB#" << getNumber() << ": "; 277 278 const char *Comma = ""; 279 if (const BasicBlock *LBB = getBasicBlock()) { 280 OS << Comma << "derived from LLVM BB "; 281 WriteAsOperand(OS, LBB, /*PrintType=*/false); 282 Comma = ", "; 283 } 284 if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 285 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 286 if (Alignment) 287 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 288 << " bytes)"; 289 290 OS << '\n'; 291 292 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); 293 if (!livein_empty()) { 294 if (Indexes) OS << '\t'; 295 OS << " Live Ins:"; 296 for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I) 297 OS << ' ' << PrintReg(*I, TRI); 298 OS << '\n'; 299 } 300 // Print the preds of this block according to the CFG. 301 if (!pred_empty()) { 302 if (Indexes) OS << '\t'; 303 OS << " Predecessors according to CFG:"; 304 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 305 OS << " BB#" << (*PI)->getNumber(); 306 OS << '\n'; 307 } 308 309 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 310 if (Indexes) { 311 if (Indexes->hasIndex(I)) 312 OS << Indexes->getInstructionIndex(I); 313 OS << '\t'; 314 } 315 OS << '\t'; 316 if (I->isInsideBundle()) 317 OS << " * "; 318 I->print(OS, &getParent()->getTarget()); 319 } 320 321 // Print the successors of this block according to the CFG. 322 if (!succ_empty()) { 323 if (Indexes) OS << '\t'; 324 OS << " Successors according to CFG:"; 325 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 326 OS << " BB#" << (*SI)->getNumber(); 327 if (!Weights.empty()) 328 OS << '(' << *getWeightIterator(SI) << ')'; 329 } 330 OS << '\n'; 331 } 332 } 333 334 void MachineBasicBlock::removeLiveIn(unsigned Reg) { 335 std::vector<unsigned>::iterator I = 336 std::find(LiveIns.begin(), LiveIns.end(), Reg); 337 if (I != LiveIns.end()) 338 LiveIns.erase(I); 339 } 340 341 bool MachineBasicBlock::isLiveIn(unsigned Reg) const { 342 livein_iterator I = std::find(livein_begin(), livein_end(), Reg); 343 return I != livein_end(); 344 } 345 346 unsigned 347 MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) { 348 assert(getParent() && "MBB must be inserted in function"); 349 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 350 assert(RC && "Register class is required"); 351 assert((isLandingPad() || this == &getParent()->front()) && 352 "Only the entry block and landing pads can have physreg live ins"); 353 354 bool LiveIn = isLiveIn(PhysReg); 355 iterator I = SkipPHIsAndLabels(begin()), E = end(); 356 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 357 const TargetInstrInfo &TII = *getParent()->getTarget().getInstrInfo(); 358 359 // Look for an existing copy. 360 if (LiveIn) 361 for (;I != E && I->isCopy(); ++I) 362 if (I->getOperand(1).getReg() == PhysReg) { 363 unsigned VirtReg = I->getOperand(0).getReg(); 364 if (!MRI.constrainRegClass(VirtReg, RC)) 365 llvm_unreachable("Incompatible live-in register class."); 366 return VirtReg; 367 } 368 369 // No luck, create a virtual register. 370 unsigned VirtReg = MRI.createVirtualRegister(RC); 371 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 372 .addReg(PhysReg, RegState::Kill); 373 if (!LiveIn) 374 addLiveIn(PhysReg); 375 return VirtReg; 376 } 377 378 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 379 getParent()->splice(NewAfter, this); 380 } 381 382 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 383 MachineFunction::iterator BBI = NewBefore; 384 getParent()->splice(++BBI, this); 385 } 386 387 void MachineBasicBlock::updateTerminator() { 388 const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo(); 389 // A block with no successors has no concerns with fall-through edges. 390 if (this->succ_empty()) return; 391 392 MachineBasicBlock *TBB = 0, *FBB = 0; 393 SmallVector<MachineOperand, 4> Cond; 394 DebugLoc dl; // FIXME: this is nowhere 395 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 396 (void) B; 397 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 398 if (Cond.empty()) { 399 if (TBB) { 400 // The block has an unconditional branch. If its successor is now 401 // its layout successor, delete the branch. 402 if (isLayoutSuccessor(TBB)) 403 TII->RemoveBranch(*this); 404 } else { 405 // The block has an unconditional fallthrough. If its successor is not 406 // its layout successor, insert a branch. First we have to locate the 407 // only non-landing-pad successor, as that is the fallthrough block. 408 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 409 if ((*SI)->isLandingPad()) 410 continue; 411 assert(!TBB && "Found more than one non-landing-pad successor!"); 412 TBB = *SI; 413 } 414 415 // If there is no non-landing-pad successor, the block has no 416 // fall-through edges to be concerned with. 417 if (!TBB) 418 return; 419 420 // Finally update the unconditional successor to be reached via a branch 421 // if it would not be reached by fallthrough. 422 if (!isLayoutSuccessor(TBB)) 423 TII->InsertBranch(*this, TBB, 0, Cond, dl); 424 } 425 } else { 426 if (FBB) { 427 // The block has a non-fallthrough conditional branch. If one of its 428 // successors is its layout successor, rewrite it to a fallthrough 429 // conditional branch. 430 if (isLayoutSuccessor(TBB)) { 431 if (TII->ReverseBranchCondition(Cond)) 432 return; 433 TII->RemoveBranch(*this); 434 TII->InsertBranch(*this, FBB, 0, Cond, dl); 435 } else if (isLayoutSuccessor(FBB)) { 436 TII->RemoveBranch(*this); 437 TII->InsertBranch(*this, TBB, 0, Cond, dl); 438 } 439 } else { 440 // Walk through the successors and find the successor which is not 441 // a landing pad and is not the conditional branch destination (in TBB) 442 // as the fallthrough successor. 443 MachineBasicBlock *FallthroughBB = 0; 444 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 445 if ((*SI)->isLandingPad() || *SI == TBB) 446 continue; 447 assert(!FallthroughBB && "Found more than one fallthrough successor."); 448 FallthroughBB = *SI; 449 } 450 if (!FallthroughBB && canFallThrough()) { 451 // We fallthrough to the same basic block as the conditional jump 452 // targets. Remove the conditional jump, leaving unconditional 453 // fallthrough. 454 // FIXME: This does not seem like a reasonable pattern to support, but it 455 // has been seen in the wild coming out of degenerate ARM test cases. 456 TII->RemoveBranch(*this); 457 458 // Finally update the unconditional successor to be reached via a branch 459 // if it would not be reached by fallthrough. 460 if (!isLayoutSuccessor(TBB)) 461 TII->InsertBranch(*this, TBB, 0, Cond, dl); 462 return; 463 } 464 465 // The block has a fallthrough conditional branch. 466 if (isLayoutSuccessor(TBB)) { 467 if (TII->ReverseBranchCondition(Cond)) { 468 // We can't reverse the condition, add an unconditional branch. 469 Cond.clear(); 470 TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl); 471 return; 472 } 473 TII->RemoveBranch(*this); 474 TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl); 475 } else if (!isLayoutSuccessor(FallthroughBB)) { 476 TII->RemoveBranch(*this); 477 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl); 478 } 479 } 480 } 481 } 482 483 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) { 484 485 // If we see non-zero value for the first time it means we actually use Weight 486 // list, so we fill all Weights with 0's. 487 if (weight != 0 && Weights.empty()) 488 Weights.resize(Successors.size()); 489 490 if (weight != 0 || !Weights.empty()) 491 Weights.push_back(weight); 492 493 Successors.push_back(succ); 494 succ->addPredecessor(this); 495 } 496 497 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) { 498 succ->removePredecessor(this); 499 succ_iterator I = std::find(Successors.begin(), Successors.end(), succ); 500 assert(I != Successors.end() && "Not a current successor!"); 501 502 // If Weight list is empty it means we don't use it (disabled optimization). 503 if (!Weights.empty()) { 504 weight_iterator WI = getWeightIterator(I); 505 Weights.erase(WI); 506 } 507 508 Successors.erase(I); 509 } 510 511 MachineBasicBlock::succ_iterator 512 MachineBasicBlock::removeSuccessor(succ_iterator I) { 513 assert(I != Successors.end() && "Not a current successor!"); 514 515 // If Weight list is empty it means we don't use it (disabled optimization). 516 if (!Weights.empty()) { 517 weight_iterator WI = getWeightIterator(I); 518 Weights.erase(WI); 519 } 520 521 (*I)->removePredecessor(this); 522 return Successors.erase(I); 523 } 524 525 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 526 MachineBasicBlock *New) { 527 if (Old == New) 528 return; 529 530 succ_iterator E = succ_end(); 531 succ_iterator NewI = E; 532 succ_iterator OldI = E; 533 for (succ_iterator I = succ_begin(); I != E; ++I) { 534 if (*I == Old) { 535 OldI = I; 536 if (NewI != E) 537 break; 538 } 539 if (*I == New) { 540 NewI = I; 541 if (OldI != E) 542 break; 543 } 544 } 545 assert(OldI != E && "Old is not a successor of this block"); 546 Old->removePredecessor(this); 547 548 // If New isn't already a successor, let it take Old's place. 549 if (NewI == E) { 550 New->addPredecessor(this); 551 *OldI = New; 552 return; 553 } 554 555 // New is already a successor. 556 // Update its weight instead of adding a duplicate edge. 557 if (!Weights.empty()) { 558 weight_iterator OldWI = getWeightIterator(OldI); 559 *getWeightIterator(NewI) += *OldWI; 560 Weights.erase(OldWI); 561 } 562 Successors.erase(OldI); 563 } 564 565 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) { 566 Predecessors.push_back(pred); 567 } 568 569 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) { 570 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred); 571 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 572 Predecessors.erase(I); 573 } 574 575 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) { 576 if (this == fromMBB) 577 return; 578 579 while (!fromMBB->succ_empty()) { 580 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 581 uint32_t Weight = 0; 582 583 // If Weight list is empty it means we don't use it (disabled optimization). 584 if (!fromMBB->Weights.empty()) 585 Weight = *fromMBB->Weights.begin(); 586 587 addSuccessor(Succ, Weight); 588 fromMBB->removeSuccessor(Succ); 589 } 590 } 591 592 void 593 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) { 594 if (this == fromMBB) 595 return; 596 597 while (!fromMBB->succ_empty()) { 598 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 599 uint32_t Weight = 0; 600 if (!fromMBB->Weights.empty()) 601 Weight = *fromMBB->Weights.begin(); 602 addSuccessor(Succ, Weight); 603 fromMBB->removeSuccessor(Succ); 604 605 // Fix up any PHI nodes in the successor. 606 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 607 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 608 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 609 MachineOperand &MO = MI->getOperand(i); 610 if (MO.getMBB() == fromMBB) 611 MO.setMBB(this); 612 } 613 } 614 } 615 616 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 617 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 618 } 619 620 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 621 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 622 } 623 624 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 625 MachineFunction::const_iterator I(this); 626 return llvm::next(I) == MachineFunction::const_iterator(MBB); 627 } 628 629 bool MachineBasicBlock::canFallThrough() { 630 MachineFunction::iterator Fallthrough = this; 631 ++Fallthrough; 632 // If FallthroughBlock is off the end of the function, it can't fall through. 633 if (Fallthrough == getParent()->end()) 634 return false; 635 636 // If FallthroughBlock isn't a successor, no fallthrough is possible. 637 if (!isSuccessor(Fallthrough)) 638 return false; 639 640 // Analyze the branches, if any, at the end of the block. 641 MachineBasicBlock *TBB = 0, *FBB = 0; 642 SmallVector<MachineOperand, 4> Cond; 643 const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo(); 644 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 645 // If we couldn't analyze the branch, examine the last instruction. 646 // If the block doesn't end in a known control barrier, assume fallthrough 647 // is possible. The isPredicated check is needed because this code can be 648 // called during IfConversion, where an instruction which is normally a 649 // Barrier is predicated and thus no longer an actual control barrier. 650 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 651 } 652 653 // If there is no branch, control always falls through. 654 if (TBB == 0) return true; 655 656 // If there is some explicit branch to the fallthrough block, it can obviously 657 // reach, even though the branch should get folded to fall through implicitly. 658 if (MachineFunction::iterator(TBB) == Fallthrough || 659 MachineFunction::iterator(FBB) == Fallthrough) 660 return true; 661 662 // If it's an unconditional branch to some block not the fall through, it 663 // doesn't fall through. 664 if (Cond.empty()) return false; 665 666 // Otherwise, if it is conditional and has no explicit false block, it falls 667 // through. 668 return FBB == 0; 669 } 670 671 MachineBasicBlock * 672 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 673 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 674 // it in this generic function. 675 if (Succ->isLandingPad()) 676 return NULL; 677 678 MachineFunction *MF = getParent(); 679 DebugLoc dl; // FIXME: this is nowhere 680 681 // Performance might be harmed on HW that implements branching using exec mask 682 // where both sides of the branches are always executed. 683 if (MF->getTarget().requiresStructuredCFG()) 684 return NULL; 685 686 // We may need to update this's terminator, but we can't do that if 687 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 688 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 689 MachineBasicBlock *TBB = 0, *FBB = 0; 690 SmallVector<MachineOperand, 4> Cond; 691 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 692 return NULL; 693 694 // Avoid bugpoint weirdness: A block may end with a conditional branch but 695 // jumps to the same MBB is either case. We have duplicate CFG edges in that 696 // case that we can't handle. Since this never happens in properly optimized 697 // code, just skip those edges. 698 if (TBB && TBB == FBB) { 699 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 700 << getNumber() << '\n'); 701 return NULL; 702 } 703 704 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 705 MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB); 706 DEBUG(dbgs() << "Splitting critical edge:" 707 " BB#" << getNumber() 708 << " -- BB#" << NMBB->getNumber() 709 << " -- BB#" << Succ->getNumber() << '\n'); 710 711 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 712 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 713 if (LIS) 714 LIS->insertMBBInMaps(NMBB); 715 else if (Indexes) 716 Indexes->insertMBBInMaps(NMBB); 717 718 // On some targets like Mips, branches may kill virtual registers. Make sure 719 // that LiveVariables is properly updated after updateTerminator replaces the 720 // terminators. 721 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 722 723 // Collect a list of virtual registers killed by the terminators. 724 SmallVector<unsigned, 4> KilledRegs; 725 if (LV) 726 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 727 I != E; ++I) { 728 MachineInstr *MI = I; 729 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 730 OE = MI->operands_end(); OI != OE; ++OI) { 731 if (!OI->isReg() || OI->getReg() == 0 || 732 !OI->isUse() || !OI->isKill() || OI->isUndef()) 733 continue; 734 unsigned Reg = OI->getReg(); 735 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 736 LV->getVarInfo(Reg).removeKill(MI)) { 737 KilledRegs.push_back(Reg); 738 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 739 OI->setIsKill(false); 740 } 741 } 742 } 743 744 SmallVector<unsigned, 4> UsedRegs; 745 if (LIS) { 746 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 747 I != E; ++I) { 748 MachineInstr *MI = I; 749 750 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 751 OE = MI->operands_end(); OI != OE; ++OI) { 752 if (!OI->isReg() || OI->getReg() == 0) 753 continue; 754 755 unsigned Reg = OI->getReg(); 756 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 757 UsedRegs.push_back(Reg); 758 } 759 } 760 } 761 762 ReplaceUsesOfBlockWith(Succ, NMBB); 763 764 // If updateTerminator() removes instructions, we need to remove them from 765 // SlotIndexes. 766 SmallVector<MachineInstr*, 4> Terminators; 767 if (Indexes) { 768 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 769 I != E; ++I) 770 Terminators.push_back(I); 771 } 772 773 updateTerminator(); 774 775 if (Indexes) { 776 SmallVector<MachineInstr*, 4> NewTerminators; 777 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 778 I != E; ++I) 779 NewTerminators.push_back(I); 780 781 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 782 E = Terminators.end(); I != E; ++I) { 783 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 784 NewTerminators.end()) 785 Indexes->removeMachineInstrFromMaps(*I); 786 } 787 } 788 789 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 790 NMBB->addSuccessor(Succ); 791 if (!NMBB->isLayoutSuccessor(Succ)) { 792 Cond.clear(); 793 MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl); 794 795 if (Indexes) { 796 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 797 I != E; ++I) { 798 // Some instructions may have been moved to NMBB by updateTerminator(), 799 // so we first remove any instruction that already has an index. 800 if (Indexes->hasIndex(I)) 801 Indexes->removeMachineInstrFromMaps(I); 802 Indexes->insertMachineInstrInMaps(I); 803 } 804 } 805 } 806 807 // Fix PHI nodes in Succ so they refer to NMBB instead of this 808 for (MachineBasicBlock::instr_iterator 809 i = Succ->instr_begin(),e = Succ->instr_end(); 810 i != e && i->isPHI(); ++i) 811 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 812 if (i->getOperand(ni+1).getMBB() == this) 813 i->getOperand(ni+1).setMBB(NMBB); 814 815 // Inherit live-ins from the successor 816 for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(), 817 E = Succ->livein_end(); I != E; ++I) 818 NMBB->addLiveIn(*I); 819 820 // Update LiveVariables. 821 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); 822 if (LV) { 823 // Restore kills of virtual registers that were killed by the terminators. 824 while (!KilledRegs.empty()) { 825 unsigned Reg = KilledRegs.pop_back_val(); 826 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 827 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 828 continue; 829 if (TargetRegisterInfo::isVirtualRegister(Reg)) 830 LV->getVarInfo(Reg).Kills.push_back(I); 831 DEBUG(dbgs() << "Restored terminator kill: " << *I); 832 break; 833 } 834 } 835 // Update relevant live-through information. 836 LV->addNewBlock(NMBB, this, Succ); 837 } 838 839 if (LIS) { 840 // After splitting the edge and updating SlotIndexes, live intervals may be 841 // in one of two situations, depending on whether this block was the last in 842 // the function. If the original block was the last in the function, all live 843 // intervals will end prior to the beginning of the new split block. If the 844 // original block was not at the end of the function, all live intervals will 845 // extend to the end of the new split block. 846 847 bool isLastMBB = 848 llvm::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 849 850 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 851 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 852 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 853 854 // Find the registers used from NMBB in PHIs in Succ. 855 SmallSet<unsigned, 8> PHISrcRegs; 856 for (MachineBasicBlock::instr_iterator 857 I = Succ->instr_begin(), E = Succ->instr_end(); 858 I != E && I->isPHI(); ++I) { 859 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 860 if (I->getOperand(ni+1).getMBB() == NMBB) { 861 MachineOperand &MO = I->getOperand(ni); 862 unsigned Reg = MO.getReg(); 863 PHISrcRegs.insert(Reg); 864 if (MO.isUndef()) 865 continue; 866 867 LiveInterval &LI = LIS->getInterval(Reg); 868 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 869 assert(VNI && "PHI sources should be live out of their predecessors."); 870 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 871 } 872 } 873 } 874 875 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 876 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 877 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 878 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 879 continue; 880 881 LiveInterval &LI = LIS->getInterval(Reg); 882 if (!LI.liveAt(PrevIndex)) 883 continue; 884 885 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 886 if (isLiveOut && isLastMBB) { 887 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 888 assert(VNI && "LiveInterval should have VNInfo where it is live."); 889 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 890 } else if (!isLiveOut && !isLastMBB) { 891 LI.removeSegment(StartIndex, EndIndex); 892 } 893 } 894 895 // Update all intervals for registers whose uses may have been modified by 896 // updateTerminator(). 897 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 898 } 899 900 if (MachineDominatorTree *MDT = 901 P->getAnalysisIfAvailable<MachineDominatorTree>()) { 902 // Update dominator information. 903 MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ); 904 905 bool IsNewIDom = true; 906 for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end(); 907 PI != E; ++PI) { 908 MachineBasicBlock *PredBB = *PI; 909 if (PredBB == NMBB) 910 continue; 911 if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) { 912 IsNewIDom = false; 913 break; 914 } 915 } 916 917 // We know "this" dominates the newly created basic block. 918 MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this); 919 920 // If all the other predecessors of "Succ" are dominated by "Succ" itself 921 // then the new block is the new immediate dominator of "Succ". Otherwise, 922 // the new block doesn't dominate anything. 923 if (IsNewIDom) 924 MDT->changeImmediateDominator(SucccDTNode, NewDTNode); 925 } 926 927 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 928 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 929 // If one or the other blocks were not in a loop, the new block is not 930 // either, and thus LI doesn't need to be updated. 931 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 932 if (TIL == DestLoop) { 933 // Both in the same loop, the NMBB joins loop. 934 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 935 } else if (TIL->contains(DestLoop)) { 936 // Edge from an outer loop to an inner loop. Add to the outer loop. 937 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 938 } else if (DestLoop->contains(TIL)) { 939 // Edge from an inner loop to an outer loop. Add to the outer loop. 940 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 941 } else { 942 // Edge from two loops with no containment relation. Because these 943 // are natural loops, we know that the destination block must be the 944 // header of its loop (adding a branch into a loop elsewhere would 945 // create an irreducible loop). 946 assert(DestLoop->getHeader() == Succ && 947 "Should not create irreducible loops!"); 948 if (MachineLoop *P = DestLoop->getParentLoop()) 949 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 950 } 951 } 952 } 953 954 return NMBB; 955 } 956 957 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 958 /// neighboring instructions so the bundle won't be broken by removing MI. 959 static void unbundleSingleMI(MachineInstr *MI) { 960 // Removing the first instruction in a bundle. 961 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 962 MI->unbundleFromSucc(); 963 // Removing the last instruction in a bundle. 964 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 965 MI->unbundleFromPred(); 966 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 967 // are already fine. 968 } 969 970 MachineBasicBlock::instr_iterator 971 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 972 unbundleSingleMI(I); 973 return Insts.erase(I); 974 } 975 976 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 977 unbundleSingleMI(MI); 978 MI->clearFlag(MachineInstr::BundledPred); 979 MI->clearFlag(MachineInstr::BundledSucc); 980 return Insts.remove(MI); 981 } 982 983 MachineBasicBlock::instr_iterator 984 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 985 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 986 "Cannot insert instruction with bundle flags"); 987 // Set the bundle flags when inserting inside a bundle. 988 if (I != instr_end() && I->isBundledWithPred()) { 989 MI->setFlag(MachineInstr::BundledPred); 990 MI->setFlag(MachineInstr::BundledSucc); 991 } 992 return Insts.insert(I, MI); 993 } 994 995 /// removeFromParent - This method unlinks 'this' from the containing function, 996 /// and returns it, but does not delete it. 997 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 998 assert(getParent() && "Not embedded in a function!"); 999 getParent()->remove(this); 1000 return this; 1001 } 1002 1003 1004 /// eraseFromParent - This method unlinks 'this' from the containing function, 1005 /// and deletes it. 1006 void MachineBasicBlock::eraseFromParent() { 1007 assert(getParent() && "Not embedded in a function!"); 1008 getParent()->erase(this); 1009 } 1010 1011 1012 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to 1013 /// 'Old', change the code and CFG so that it branches to 'New' instead. 1014 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1015 MachineBasicBlock *New) { 1016 assert(Old != New && "Cannot replace self with self!"); 1017 1018 MachineBasicBlock::instr_iterator I = instr_end(); 1019 while (I != instr_begin()) { 1020 --I; 1021 if (!I->isTerminator()) break; 1022 1023 // Scan the operands of this machine instruction, replacing any uses of Old 1024 // with New. 1025 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1026 if (I->getOperand(i).isMBB() && 1027 I->getOperand(i).getMBB() == Old) 1028 I->getOperand(i).setMBB(New); 1029 } 1030 1031 // Update the successor information. 1032 replaceSuccessor(Old, New); 1033 } 1034 1035 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the 1036 /// CFG to be inserted. If we have proven that MBB can only branch to DestA and 1037 /// DestB, remove any other MBB successors from the CFG. DestA and DestB can be 1038 /// null. 1039 /// 1040 /// Besides DestA and DestB, retain other edges leading to LandingPads 1041 /// (currently there can be only one; we don't check or require that here). 1042 /// Note it is possible that DestA and/or DestB are LandingPads. 1043 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1044 MachineBasicBlock *DestB, 1045 bool isCond) { 1046 // The values of DestA and DestB frequently come from a call to the 1047 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1048 // values from there. 1049 // 1050 // 1. If both DestA and DestB are null, then the block ends with no branches 1051 // (it falls through to its successor). 1052 // 2. If DestA is set, DestB is null, and isCond is false, then the block ends 1053 // with only an unconditional branch. 1054 // 3. If DestA is set, DestB is null, and isCond is true, then the block ends 1055 // with a conditional branch that falls through to a successor (DestB). 1056 // 4. If DestA and DestB is set and isCond is true, then the block ends with a 1057 // conditional branch followed by an unconditional branch. DestA is the 1058 // 'true' destination and DestB is the 'false' destination. 1059 1060 bool Changed = false; 1061 1062 MachineFunction::iterator FallThru = 1063 llvm::next(MachineFunction::iterator(this)); 1064 1065 if (DestA == 0 && DestB == 0) { 1066 // Block falls through to successor. 1067 DestA = FallThru; 1068 DestB = FallThru; 1069 } else if (DestA != 0 && DestB == 0) { 1070 if (isCond) 1071 // Block ends in conditional jump that falls through to successor. 1072 DestB = FallThru; 1073 } else { 1074 assert(DestA && DestB && isCond && 1075 "CFG in a bad state. Cannot correct CFG edges"); 1076 } 1077 1078 // Remove superfluous edges. I.e., those which aren't destinations of this 1079 // basic block, duplicate edges, or landing pads. 1080 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1081 MachineBasicBlock::succ_iterator SI = succ_begin(); 1082 while (SI != succ_end()) { 1083 const MachineBasicBlock *MBB = *SI; 1084 if (!SeenMBBs.insert(MBB) || 1085 (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) { 1086 // This is a superfluous edge, remove it. 1087 SI = removeSuccessor(SI); 1088 Changed = true; 1089 } else { 1090 ++SI; 1091 } 1092 } 1093 1094 return Changed; 1095 } 1096 1097 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping 1098 /// any DBG_VALUE instructions. Return UnknownLoc if there is none. 1099 DebugLoc 1100 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1101 DebugLoc DL; 1102 instr_iterator E = instr_end(); 1103 if (MBBI == E) 1104 return DL; 1105 1106 // Skip debug declarations, we don't want a DebugLoc from them. 1107 while (MBBI != E && MBBI->isDebugValue()) 1108 MBBI++; 1109 if (MBBI != E) 1110 DL = MBBI->getDebugLoc(); 1111 return DL; 1112 } 1113 1114 /// getSuccWeight - Return weight of the edge from this block to MBB. 1115 /// 1116 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { 1117 if (Weights.empty()) 1118 return 0; 1119 1120 return *getWeightIterator(Succ); 1121 } 1122 1123 /// getWeightIterator - Return wight iterator corresonding to the I successor 1124 /// iterator 1125 MachineBasicBlock::weight_iterator MachineBasicBlock:: 1126 getWeightIterator(MachineBasicBlock::succ_iterator I) { 1127 assert(Weights.size() == Successors.size() && "Async weight list!"); 1128 size_t index = std::distance(Successors.begin(), I); 1129 assert(index < Weights.size() && "Not a current successor!"); 1130 return Weights.begin() + index; 1131 } 1132 1133 /// getWeightIterator - Return wight iterator corresonding to the I successor 1134 /// iterator 1135 MachineBasicBlock::const_weight_iterator MachineBasicBlock:: 1136 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { 1137 assert(Weights.size() == Successors.size() && "Async weight list!"); 1138 const size_t index = std::distance(Successors.begin(), I); 1139 assert(index < Weights.size() && "Not a current successor!"); 1140 return Weights.begin() + index; 1141 } 1142 1143 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1144 /// as of just before "MI". 1145 /// 1146 /// Search is localised to a neighborhood of 1147 /// Neighborhood instructions before (searching for defs or kills) and N 1148 /// instructions after (searching just for defs) MI. 1149 MachineBasicBlock::LivenessQueryResult 1150 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1151 unsigned Reg, MachineInstr *MI, 1152 unsigned Neighborhood) { 1153 unsigned N = Neighborhood; 1154 MachineBasicBlock *MBB = MI->getParent(); 1155 1156 // Start by searching backwards from MI, looking for kills, reads or defs. 1157 1158 MachineBasicBlock::iterator I(MI); 1159 // If this is the first insn in the block, don't search backwards. 1160 if (I != MBB->begin()) { 1161 do { 1162 --I; 1163 1164 MachineOperandIteratorBase::PhysRegInfo Analysis = 1165 MIOperands(I).analyzePhysReg(Reg, TRI); 1166 1167 if (Analysis.Defines) 1168 // Outputs happen after inputs so they take precedence if both are 1169 // present. 1170 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 1171 1172 if (Analysis.Kills || Analysis.Clobbers) 1173 // Register killed, so isn't live. 1174 return LQR_Dead; 1175 1176 else if (Analysis.ReadsOverlap) 1177 // Defined or read without a previous kill - live. 1178 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 1179 1180 } while (I != MBB->begin() && --N > 0); 1181 } 1182 1183 // Did we get to the start of the block? 1184 if (I == MBB->begin()) { 1185 // If so, the register's state is definitely defined by the live-in state. 1186 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 1187 RAI.isValid(); ++RAI) { 1188 if (MBB->isLiveIn(*RAI)) 1189 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 1190 } 1191 1192 return LQR_Dead; 1193 } 1194 1195 N = Neighborhood; 1196 1197 // Try searching forwards from MI, looking for reads or defs. 1198 I = MachineBasicBlock::iterator(MI); 1199 // If this is the last insn in the block, don't search forwards. 1200 if (I != MBB->end()) { 1201 for (++I; I != MBB->end() && N > 0; ++I, --N) { 1202 MachineOperandIteratorBase::PhysRegInfo Analysis = 1203 MIOperands(I).analyzePhysReg(Reg, TRI); 1204 1205 if (Analysis.ReadsOverlap) 1206 // Used, therefore must have been live. 1207 return (Analysis.Reads) ? 1208 LQR_Live : LQR_OverlappingLive; 1209 1210 else if (Analysis.Clobbers || Analysis.Defines) 1211 // Defined (but not read) therefore cannot have been live. 1212 return LQR_Dead; 1213 } 1214 } 1215 1216 // At this point we have no idea of the liveness of the register. 1217 return LQR_Unknown; 1218 } 1219 1220 void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB, 1221 bool t) { 1222 OS << "BB#" << MBB->getNumber(); 1223 } 1224 1225