1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/LiveIntervals.h" 16 #include "llvm/CodeGen/LivePhysRegs.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineJumpTableInfo.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/TargetRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/DebugInfoMetadata.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCContext.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include <algorithm> 39 #include <cmath> 40 using namespace llvm; 41 42 #define DEBUG_TYPE "codegen" 43 44 static cl::opt<bool> PrintSlotIndexes( 45 "print-slotindexes", 46 cl::desc("When printing machine IR, annotate instructions and blocks with " 47 "SlotIndexes when available"), 48 cl::init(true), cl::Hidden); 49 50 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 51 : BB(B), Number(-1), xParent(&MF) { 52 Insts.Parent = this; 53 if (B) 54 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 55 } 56 57 MachineBasicBlock::~MachineBasicBlock() = default; 58 59 /// Return the MCSymbol for this basic block. 60 MCSymbol *MachineBasicBlock::getSymbol() const { 61 if (!CachedMCSymbol) { 62 const MachineFunction *MF = getParent(); 63 MCContext &Ctx = MF->getContext(); 64 65 // We emit a non-temporary symbol -- with a descriptive name -- if it begins 66 // a section (with basic block sections). Otherwise we fall back to use temp 67 // label. 68 if (MF->hasBBSections() && isBeginSection()) { 69 SmallString<5> Suffix; 70 if (SectionID == MBBSectionID::ColdSectionID) { 71 Suffix += ".cold"; 72 } else if (SectionID == MBBSectionID::ExceptionSectionID) { 73 Suffix += ".eh"; 74 } else { 75 // For symbols that represent basic block sections, we add ".__part." to 76 // allow tools like symbolizers to know that this represents a part of 77 // the original function. 78 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str(); 79 } 80 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix); 81 } else { 82 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 83 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 84 Twine(MF->getFunctionNumber()) + 85 "_" + Twine(getNumber())); 86 } 87 } 88 return CachedMCSymbol; 89 } 90 91 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const { 92 if (!CachedEHCatchretMCSymbol) { 93 const MachineFunction *MF = getParent(); 94 SmallString<128> SymbolName; 95 raw_svector_ostream(SymbolName) 96 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber(); 97 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName); 98 } 99 return CachedEHCatchretMCSymbol; 100 } 101 102 MCSymbol *MachineBasicBlock::getEndSymbol() const { 103 if (!CachedEndMCSymbol) { 104 const MachineFunction *MF = getParent(); 105 MCContext &Ctx = MF->getContext(); 106 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 107 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" + 108 Twine(MF->getFunctionNumber()) + 109 "_" + Twine(getNumber())); 110 } 111 return CachedEndMCSymbol; 112 } 113 114 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 115 MBB.print(OS); 116 return OS; 117 } 118 119 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 120 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 121 } 122 123 /// When an MBB is added to an MF, we need to update the parent pointer of the 124 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 125 /// operand list for registers. 126 /// 127 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 128 /// gets the next available unique MBB number. If it is removed from a 129 /// MachineFunction, it goes back to being #-1. 130 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 131 MachineBasicBlock *N) { 132 MachineFunction &MF = *N->getParent(); 133 N->Number = MF.addToMBBNumbering(N); 134 135 // Make sure the instructions have their operands in the reginfo lists. 136 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 137 for (MachineInstr &MI : N->instrs()) 138 MI.addRegOperandsToUseLists(RegInfo); 139 } 140 141 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 142 MachineBasicBlock *N) { 143 N->getParent()->removeFromMBBNumbering(N->Number); 144 N->Number = -1; 145 } 146 147 /// When we add an instruction to a basic block list, we update its parent 148 /// pointer and add its operands from reg use/def lists if appropriate. 149 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 150 assert(!N->getParent() && "machine instruction already in a basic block"); 151 N->setParent(Parent); 152 153 // Add the instruction's register operands to their corresponding 154 // use/def lists. 155 MachineFunction *MF = Parent->getParent(); 156 N->addRegOperandsToUseLists(MF->getRegInfo()); 157 MF->handleInsertion(*N); 158 } 159 160 /// When we remove an instruction from a basic block list, we update its parent 161 /// pointer and remove its operands from reg use/def lists if appropriate. 162 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 163 assert(N->getParent() && "machine instruction not in a basic block"); 164 165 // Remove from the use/def lists. 166 if (MachineFunction *MF = N->getMF()) { 167 MF->handleRemoval(*N); 168 N->removeRegOperandsFromUseLists(MF->getRegInfo()); 169 } 170 171 N->setParent(nullptr); 172 } 173 174 /// When moving a range of instructions from one MBB list to another, we need to 175 /// update the parent pointers and the use/def lists. 176 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 177 instr_iterator First, 178 instr_iterator Last) { 179 assert(Parent->getParent() == FromList.Parent->getParent() && 180 "cannot transfer MachineInstrs between MachineFunctions"); 181 182 // If it's within the same BB, there's nothing to do. 183 if (this == &FromList) 184 return; 185 186 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 187 188 // If splicing between two blocks within the same function, just update the 189 // parent pointers. 190 for (; First != Last; ++First) 191 First->setParent(Parent); 192 } 193 194 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 195 assert(!MI->getParent() && "MI is still in a block!"); 196 Parent->getParent()->deleteMachineInstr(MI); 197 } 198 199 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 200 instr_iterator I = instr_begin(), E = instr_end(); 201 while (I != E && I->isPHI()) 202 ++I; 203 assert((I == E || !I->isInsideBundle()) && 204 "First non-phi MI cannot be inside a bundle!"); 205 return I; 206 } 207 208 MachineBasicBlock::iterator 209 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 210 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 211 212 iterator E = end(); 213 while (I != E && (I->isPHI() || I->isPosition() || 214 TII->isBasicBlockPrologue(*I))) 215 ++I; 216 // FIXME: This needs to change if we wish to bundle labels 217 // inside the bundle. 218 assert((I == E || !I->isInsideBundle()) && 219 "First non-phi / non-label instruction is inside a bundle!"); 220 return I; 221 } 222 223 MachineBasicBlock::iterator 224 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I, 225 bool SkipPseudoOp) { 226 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 227 228 iterator E = end(); 229 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 230 (SkipPseudoOp && I->isPseudoProbe()) || 231 TII->isBasicBlockPrologue(*I))) 232 ++I; 233 // FIXME: This needs to change if we wish to bundle labels / dbg_values 234 // inside the bundle. 235 assert((I == E || !I->isInsideBundle()) && 236 "First non-phi / non-label / non-debug " 237 "instruction is inside a bundle!"); 238 return I; 239 } 240 241 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 242 iterator B = begin(), E = end(), I = E; 243 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 244 ; /*noop */ 245 while (I != E && !I->isTerminator()) 246 ++I; 247 return I; 248 } 249 250 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 251 instr_iterator B = instr_begin(), E = instr_end(), I = E; 252 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 253 ; /*noop */ 254 while (I != E && !I->isTerminator()) 255 ++I; 256 return I; 257 } 258 259 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() { 260 return find_if(instrs(), [](auto &II) { return II.isTerminator(); }); 261 } 262 263 MachineBasicBlock::iterator 264 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) { 265 // Skip over begin-of-block dbg_value instructions. 266 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp); 267 } 268 269 MachineBasicBlock::iterator 270 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) { 271 // Skip over end-of-block dbg_value instructions. 272 instr_iterator B = instr_begin(), I = instr_end(); 273 while (I != B) { 274 --I; 275 // Return instruction that starts a bundle. 276 if (I->isDebugInstr() || I->isInsideBundle()) 277 continue; 278 if (SkipPseudoOp && I->isPseudoProbe()) 279 continue; 280 return I; 281 } 282 // The block is all debug values. 283 return end(); 284 } 285 286 bool MachineBasicBlock::hasEHPadSuccessor() const { 287 for (const MachineBasicBlock *Succ : successors()) 288 if (Succ->isEHPad()) 289 return true; 290 return false; 291 } 292 293 bool MachineBasicBlock::isEntryBlock() const { 294 return getParent()->begin() == getIterator(); 295 } 296 297 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 298 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 299 print(dbgs()); 300 } 301 #endif 302 303 bool MachineBasicBlock::mayHaveInlineAsmBr() const { 304 for (const MachineBasicBlock *Succ : successors()) { 305 if (Succ->isInlineAsmBrIndirectTarget()) 306 return true; 307 } 308 return false; 309 } 310 311 bool MachineBasicBlock::isLegalToHoistInto() const { 312 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr()) 313 return false; 314 return true; 315 } 316 317 StringRef MachineBasicBlock::getName() const { 318 if (const BasicBlock *LBB = getBasicBlock()) 319 return LBB->getName(); 320 else 321 return StringRef("", 0); 322 } 323 324 /// Return a hopefully unique identifier for this block. 325 std::string MachineBasicBlock::getFullName() const { 326 std::string Name; 327 if (getParent()) 328 Name = (getParent()->getName() + ":").str(); 329 if (getBasicBlock()) 330 Name += getBasicBlock()->getName(); 331 else 332 Name += ("BB" + Twine(getNumber())).str(); 333 return Name; 334 } 335 336 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 337 bool IsStandalone) const { 338 const MachineFunction *MF = getParent(); 339 if (!MF) { 340 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 341 << " is null\n"; 342 return; 343 } 344 const Function &F = MF->getFunction(); 345 const Module *M = F.getParent(); 346 ModuleSlotTracker MST(M); 347 MST.incorporateFunction(F); 348 print(OS, MST, Indexes, IsStandalone); 349 } 350 351 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 352 const SlotIndexes *Indexes, 353 bool IsStandalone) const { 354 const MachineFunction *MF = getParent(); 355 if (!MF) { 356 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 357 << " is null\n"; 358 return; 359 } 360 361 if (Indexes && PrintSlotIndexes) 362 OS << Indexes->getMBBStartIdx(this) << '\t'; 363 364 printName(OS, PrintNameIr | PrintNameAttributes, &MST); 365 OS << ":\n"; 366 367 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 368 const MachineRegisterInfo &MRI = MF->getRegInfo(); 369 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 370 bool HasLineAttributes = false; 371 372 // Print the preds of this block according to the CFG. 373 if (!pred_empty() && IsStandalone) { 374 if (Indexes) OS << '\t'; 375 // Don't indent(2), align with previous line attributes. 376 OS << "; predecessors: "; 377 ListSeparator LS; 378 for (auto *Pred : predecessors()) 379 OS << LS << printMBBReference(*Pred); 380 OS << '\n'; 381 HasLineAttributes = true; 382 } 383 384 if (!succ_empty()) { 385 if (Indexes) OS << '\t'; 386 // Print the successors 387 OS.indent(2) << "successors: "; 388 ListSeparator LS; 389 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 390 OS << LS << printMBBReference(**I); 391 if (!Probs.empty()) 392 OS << '(' 393 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 394 << ')'; 395 } 396 if (!Probs.empty() && IsStandalone) { 397 // Print human readable probabilities as comments. 398 OS << "; "; 399 ListSeparator LS; 400 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 401 const BranchProbability &BP = getSuccProbability(I); 402 OS << LS << printMBBReference(**I) << '(' 403 << format("%.2f%%", 404 rint(((double)BP.getNumerator() / BP.getDenominator()) * 405 100.0 * 100.0) / 406 100.0) 407 << ')'; 408 } 409 } 410 411 OS << '\n'; 412 HasLineAttributes = true; 413 } 414 415 if (!livein_empty() && MRI.tracksLiveness()) { 416 if (Indexes) OS << '\t'; 417 OS.indent(2) << "liveins: "; 418 419 ListSeparator LS; 420 for (const auto &LI : liveins()) { 421 OS << LS << printReg(LI.PhysReg, TRI); 422 if (!LI.LaneMask.all()) 423 OS << ":0x" << PrintLaneMask(LI.LaneMask); 424 } 425 HasLineAttributes = true; 426 } 427 428 if (HasLineAttributes) 429 OS << '\n'; 430 431 bool IsInBundle = false; 432 for (const MachineInstr &MI : instrs()) { 433 if (Indexes && PrintSlotIndexes) { 434 if (Indexes->hasIndex(MI)) 435 OS << Indexes->getInstructionIndex(MI); 436 OS << '\t'; 437 } 438 439 if (IsInBundle && !MI.isInsideBundle()) { 440 OS.indent(2) << "}\n"; 441 IsInBundle = false; 442 } 443 444 OS.indent(IsInBundle ? 4 : 2); 445 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 446 /*AddNewLine=*/false, &TII); 447 448 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 449 OS << " {"; 450 IsInBundle = true; 451 } 452 OS << '\n'; 453 } 454 455 if (IsInBundle) 456 OS.indent(2) << "}\n"; 457 458 if (IrrLoopHeaderWeight && IsStandalone) { 459 if (Indexes) OS << '\t'; 460 OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight 461 << '\n'; 462 } 463 } 464 465 /// Print the basic block's name as: 466 /// 467 /// bb.{number}[.{ir-name}] [(attributes...)] 468 /// 469 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed 470 /// (which is the default). If the IR block has no name, it is identified 471 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})". 472 /// 473 /// When the \ref PrintNameAttributes flag is passed, additional attributes 474 /// of the block are printed when set. 475 /// 476 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating 477 /// the parts to print. 478 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will 479 /// incorporate its own tracker when necessary to 480 /// determine the block's IR name. 481 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags, 482 ModuleSlotTracker *moduleSlotTracker) const { 483 os << "bb." << getNumber(); 484 bool hasAttributes = false; 485 486 auto PrintBBRef = [&](const BasicBlock *bb) { 487 os << "%ir-block."; 488 if (bb->hasName()) { 489 os << bb->getName(); 490 } else { 491 int slot = -1; 492 493 if (moduleSlotTracker) { 494 slot = moduleSlotTracker->getLocalSlot(bb); 495 } else if (bb->getParent()) { 496 ModuleSlotTracker tmpTracker(bb->getModule(), false); 497 tmpTracker.incorporateFunction(*bb->getParent()); 498 slot = tmpTracker.getLocalSlot(bb); 499 } 500 501 if (slot == -1) 502 os << "<ir-block badref>"; 503 else 504 os << slot; 505 } 506 }; 507 508 if (printNameFlags & PrintNameIr) { 509 if (const auto *bb = getBasicBlock()) { 510 if (bb->hasName()) { 511 os << '.' << bb->getName(); 512 } else { 513 hasAttributes = true; 514 os << " ("; 515 PrintBBRef(bb); 516 } 517 } 518 } 519 520 if (printNameFlags & PrintNameAttributes) { 521 if (isMachineBlockAddressTaken()) { 522 os << (hasAttributes ? ", " : " ("); 523 os << "machine-block-address-taken"; 524 hasAttributes = true; 525 } 526 if (isIRBlockAddressTaken()) { 527 os << (hasAttributes ? ", " : " ("); 528 os << "ir-block-address-taken "; 529 PrintBBRef(getAddressTakenIRBlock()); 530 hasAttributes = true; 531 } 532 if (isEHPad()) { 533 os << (hasAttributes ? ", " : " ("); 534 os << "landing-pad"; 535 hasAttributes = true; 536 } 537 if (isInlineAsmBrIndirectTarget()) { 538 os << (hasAttributes ? ", " : " ("); 539 os << "inlineasm-br-indirect-target"; 540 hasAttributes = true; 541 } 542 if (isEHFuncletEntry()) { 543 os << (hasAttributes ? ", " : " ("); 544 os << "ehfunclet-entry"; 545 hasAttributes = true; 546 } 547 if (getAlignment() != Align(1)) { 548 os << (hasAttributes ? ", " : " ("); 549 os << "align " << getAlignment().value(); 550 hasAttributes = true; 551 } 552 if (getSectionID() != MBBSectionID(0)) { 553 os << (hasAttributes ? ", " : " ("); 554 os << "bbsections "; 555 switch (getSectionID().Type) { 556 case MBBSectionID::SectionType::Exception: 557 os << "Exception"; 558 break; 559 case MBBSectionID::SectionType::Cold: 560 os << "Cold"; 561 break; 562 default: 563 os << getSectionID().Number; 564 } 565 hasAttributes = true; 566 } 567 if (getBBID().has_value()) { 568 os << (hasAttributes ? ", " : " ("); 569 os << "bb_id " << *getBBID(); 570 hasAttributes = true; 571 } 572 } 573 574 if (hasAttributes) 575 os << ')'; 576 } 577 578 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 579 bool /*PrintType*/) const { 580 OS << '%'; 581 printName(OS, 0); 582 } 583 584 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 585 LiveInVector::iterator I = find_if( 586 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 587 if (I == LiveIns.end()) 588 return; 589 590 I->LaneMask &= ~LaneMask; 591 if (I->LaneMask.none()) 592 LiveIns.erase(I); 593 } 594 595 MachineBasicBlock::livein_iterator 596 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 597 // Get non-const version of iterator. 598 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 599 return LiveIns.erase(LI); 600 } 601 602 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 603 livein_iterator I = find_if( 604 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 605 return I != livein_end() && (I->LaneMask & LaneMask).any(); 606 } 607 608 void MachineBasicBlock::sortUniqueLiveIns() { 609 llvm::sort(LiveIns, 610 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 611 return LI0.PhysReg < LI1.PhysReg; 612 }); 613 // Liveins are sorted by physreg now we can merge their lanemasks. 614 LiveInVector::const_iterator I = LiveIns.begin(); 615 LiveInVector::const_iterator J; 616 LiveInVector::iterator Out = LiveIns.begin(); 617 for (; I != LiveIns.end(); ++Out, I = J) { 618 MCRegister PhysReg = I->PhysReg; 619 LaneBitmask LaneMask = I->LaneMask; 620 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 621 LaneMask |= J->LaneMask; 622 Out->PhysReg = PhysReg; 623 Out->LaneMask = LaneMask; 624 } 625 LiveIns.erase(Out, LiveIns.end()); 626 } 627 628 Register 629 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 630 assert(getParent() && "MBB must be inserted in function"); 631 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg"); 632 assert(RC && "Register class is required"); 633 assert((isEHPad() || this == &getParent()->front()) && 634 "Only the entry block and landing pads can have physreg live ins"); 635 636 bool LiveIn = isLiveIn(PhysReg); 637 iterator I = SkipPHIsAndLabels(begin()), E = end(); 638 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 639 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 640 641 // Look for an existing copy. 642 if (LiveIn) 643 for (;I != E && I->isCopy(); ++I) 644 if (I->getOperand(1).getReg() == PhysReg) { 645 Register VirtReg = I->getOperand(0).getReg(); 646 if (!MRI.constrainRegClass(VirtReg, RC)) 647 llvm_unreachable("Incompatible live-in register class."); 648 return VirtReg; 649 } 650 651 // No luck, create a virtual register. 652 Register VirtReg = MRI.createVirtualRegister(RC); 653 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 654 .addReg(PhysReg, RegState::Kill); 655 if (!LiveIn) 656 addLiveIn(PhysReg); 657 return VirtReg; 658 } 659 660 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 661 getParent()->splice(NewAfter->getIterator(), getIterator()); 662 } 663 664 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 665 getParent()->splice(++NewBefore->getIterator(), getIterator()); 666 } 667 668 static int findJumpTableIndex(const MachineBasicBlock &MBB) { 669 MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator(); 670 if (TerminatorI == MBB.end()) 671 return -1; 672 const MachineInstr &Terminator = *TerminatorI; 673 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 674 return TII->getJumpTableIndex(Terminator); 675 } 676 677 void MachineBasicBlock::updateTerminator( 678 MachineBasicBlock *PreviousLayoutSuccessor) { 679 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this) 680 << "\n"); 681 682 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 683 // A block with no successors has no concerns with fall-through edges. 684 if (this->succ_empty()) 685 return; 686 687 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 688 SmallVector<MachineOperand, 4> Cond; 689 DebugLoc DL = findBranchDebugLoc(); 690 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 691 (void) B; 692 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 693 if (Cond.empty()) { 694 if (TBB) { 695 // The block has an unconditional branch. If its successor is now its 696 // layout successor, delete the branch. 697 if (isLayoutSuccessor(TBB)) 698 TII->removeBranch(*this); 699 } else { 700 // The block has an unconditional fallthrough, or the end of the block is 701 // unreachable. 702 703 // Unfortunately, whether the end of the block is unreachable is not 704 // immediately obvious; we must fall back to checking the successor list, 705 // and assuming that if the passed in block is in the succesor list and 706 // not an EHPad, it must be the intended target. 707 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) || 708 PreviousLayoutSuccessor->isEHPad()) 709 return; 710 711 // If the unconditional successor block is not the current layout 712 // successor, insert a branch to jump to it. 713 if (!isLayoutSuccessor(PreviousLayoutSuccessor)) 714 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 715 } 716 return; 717 } 718 719 if (FBB) { 720 // The block has a non-fallthrough conditional branch. If one of its 721 // successors is its layout successor, rewrite it to a fallthrough 722 // conditional branch. 723 if (isLayoutSuccessor(TBB)) { 724 if (TII->reverseBranchCondition(Cond)) 725 return; 726 TII->removeBranch(*this); 727 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 728 } else if (isLayoutSuccessor(FBB)) { 729 TII->removeBranch(*this); 730 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 731 } 732 return; 733 } 734 735 // We now know we're going to fallthrough to PreviousLayoutSuccessor. 736 assert(PreviousLayoutSuccessor); 737 assert(!PreviousLayoutSuccessor->isEHPad()); 738 assert(isSuccessor(PreviousLayoutSuccessor)); 739 740 if (PreviousLayoutSuccessor == TBB) { 741 // We had a fallthrough to the same basic block as the conditional jump 742 // targets. Remove the conditional jump, leaving an unconditional 743 // fallthrough or an unconditional jump. 744 TII->removeBranch(*this); 745 if (!isLayoutSuccessor(TBB)) { 746 Cond.clear(); 747 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 748 } 749 return; 750 } 751 752 // The block has a fallthrough conditional branch. 753 if (isLayoutSuccessor(TBB)) { 754 if (TII->reverseBranchCondition(Cond)) { 755 // We can't reverse the condition, add an unconditional branch. 756 Cond.clear(); 757 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 758 return; 759 } 760 TII->removeBranch(*this); 761 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 762 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) { 763 TII->removeBranch(*this); 764 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL); 765 } 766 } 767 768 void MachineBasicBlock::validateSuccProbs() const { 769 #ifndef NDEBUG 770 int64_t Sum = 0; 771 for (auto Prob : Probs) 772 Sum += Prob.getNumerator(); 773 // Due to precision issue, we assume that the sum of probabilities is one if 774 // the difference between the sum of their numerators and the denominator is 775 // no greater than the number of successors. 776 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 777 Probs.size() && 778 "The sum of successors's probabilities exceeds one."); 779 #endif // NDEBUG 780 } 781 782 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 783 BranchProbability Prob) { 784 // Probability list is either empty (if successor list isn't empty, this means 785 // disabled optimization) or has the same size as successor list. 786 if (!(Probs.empty() && !Successors.empty())) 787 Probs.push_back(Prob); 788 Successors.push_back(Succ); 789 Succ->addPredecessor(this); 790 } 791 792 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 793 // We need to make sure probability list is either empty or has the same size 794 // of successor list. When this function is called, we can safely delete all 795 // probability in the list. 796 Probs.clear(); 797 Successors.push_back(Succ); 798 Succ->addPredecessor(this); 799 } 800 801 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 802 MachineBasicBlock *New, 803 bool NormalizeSuccProbs) { 804 succ_iterator OldI = llvm::find(successors(), Old); 805 assert(OldI != succ_end() && "Old is not a successor of this block!"); 806 assert(!llvm::is_contained(successors(), New) && 807 "New is already a successor of this block!"); 808 809 // Add a new successor with equal probability as the original one. Note 810 // that we directly copy the probability using the iterator rather than 811 // getting a potentially synthetic probability computed when unknown. This 812 // preserves the probabilities as-is and then we can renormalize them and 813 // query them effectively afterward. 814 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 815 : *getProbabilityIterator(OldI)); 816 if (NormalizeSuccProbs) 817 normalizeSuccProbs(); 818 } 819 820 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 821 bool NormalizeSuccProbs) { 822 succ_iterator I = find(Successors, Succ); 823 removeSuccessor(I, NormalizeSuccProbs); 824 } 825 826 MachineBasicBlock::succ_iterator 827 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 828 assert(I != Successors.end() && "Not a current successor!"); 829 830 // If probability list is empty it means we don't use it (disabled 831 // optimization). 832 if (!Probs.empty()) { 833 probability_iterator WI = getProbabilityIterator(I); 834 Probs.erase(WI); 835 if (NormalizeSuccProbs) 836 normalizeSuccProbs(); 837 } 838 839 (*I)->removePredecessor(this); 840 return Successors.erase(I); 841 } 842 843 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 844 MachineBasicBlock *New) { 845 if (Old == New) 846 return; 847 848 succ_iterator E = succ_end(); 849 succ_iterator NewI = E; 850 succ_iterator OldI = E; 851 for (succ_iterator I = succ_begin(); I != E; ++I) { 852 if (*I == Old) { 853 OldI = I; 854 if (NewI != E) 855 break; 856 } 857 if (*I == New) { 858 NewI = I; 859 if (OldI != E) 860 break; 861 } 862 } 863 assert(OldI != E && "Old is not a successor of this block"); 864 865 // If New isn't already a successor, let it take Old's place. 866 if (NewI == E) { 867 Old->removePredecessor(this); 868 New->addPredecessor(this); 869 *OldI = New; 870 return; 871 } 872 873 // New is already a successor. 874 // Update its probability instead of adding a duplicate edge. 875 if (!Probs.empty()) { 876 auto ProbIter = getProbabilityIterator(NewI); 877 if (!ProbIter->isUnknown()) 878 *ProbIter += *getProbabilityIterator(OldI); 879 } 880 removeSuccessor(OldI); 881 } 882 883 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 884 succ_iterator I) { 885 if (!Orig->Probs.empty()) 886 addSuccessor(*I, Orig->getSuccProbability(I)); 887 else 888 addSuccessorWithoutProb(*I); 889 } 890 891 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 892 Predecessors.push_back(Pred); 893 } 894 895 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 896 pred_iterator I = find(Predecessors, Pred); 897 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 898 Predecessors.erase(I); 899 } 900 901 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 902 if (this == FromMBB) 903 return; 904 905 while (!FromMBB->succ_empty()) { 906 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 907 908 // If probability list is empty it means we don't use it (disabled 909 // optimization). 910 if (!FromMBB->Probs.empty()) { 911 auto Prob = *FromMBB->Probs.begin(); 912 addSuccessor(Succ, Prob); 913 } else 914 addSuccessorWithoutProb(Succ); 915 916 FromMBB->removeSuccessor(Succ); 917 } 918 } 919 920 void 921 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 922 if (this == FromMBB) 923 return; 924 925 while (!FromMBB->succ_empty()) { 926 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 927 if (!FromMBB->Probs.empty()) { 928 auto Prob = *FromMBB->Probs.begin(); 929 addSuccessor(Succ, Prob); 930 } else 931 addSuccessorWithoutProb(Succ); 932 FromMBB->removeSuccessor(Succ); 933 934 // Fix up any PHI nodes in the successor. 935 Succ->replacePhiUsesWith(FromMBB, this); 936 } 937 normalizeSuccProbs(); 938 } 939 940 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 941 return is_contained(predecessors(), MBB); 942 } 943 944 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 945 return is_contained(successors(), MBB); 946 } 947 948 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 949 MachineFunction::const_iterator I(this); 950 return std::next(I) == MachineFunction::const_iterator(MBB); 951 } 952 953 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const { 954 return Successors.size() == 1 ? Successors[0] : nullptr; 955 } 956 957 MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) { 958 MachineFunction::iterator Fallthrough = getIterator(); 959 ++Fallthrough; 960 // If FallthroughBlock is off the end of the function, it can't fall through. 961 if (Fallthrough == getParent()->end()) 962 return nullptr; 963 964 // If FallthroughBlock isn't a successor, no fallthrough is possible. 965 if (!isSuccessor(&*Fallthrough)) 966 return nullptr; 967 968 // Analyze the branches, if any, at the end of the block. 969 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 970 SmallVector<MachineOperand, 4> Cond; 971 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 972 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 973 // If we couldn't analyze the branch, examine the last instruction. 974 // If the block doesn't end in a known control barrier, assume fallthrough 975 // is possible. The isPredicated check is needed because this code can be 976 // called during IfConversion, where an instruction which is normally a 977 // Barrier is predicated and thus no longer an actual control barrier. 978 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 979 ? &*Fallthrough 980 : nullptr; 981 } 982 983 // If there is no branch, control always falls through. 984 if (!TBB) return &*Fallthrough; 985 986 // If there is some explicit branch to the fallthrough block, it can obviously 987 // reach, even though the branch should get folded to fall through implicitly. 988 if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough || 989 MachineFunction::iterator(FBB) == Fallthrough)) 990 return &*Fallthrough; 991 992 // If it's an unconditional branch to some block not the fall through, it 993 // doesn't fall through. 994 if (Cond.empty()) return nullptr; 995 996 // Otherwise, if it is conditional and has no explicit false block, it falls 997 // through. 998 return (FBB == nullptr) ? &*Fallthrough : nullptr; 999 } 1000 1001 bool MachineBasicBlock::canFallThrough() { 1002 return getFallThrough() != nullptr; 1003 } 1004 1005 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI, 1006 bool UpdateLiveIns, 1007 LiveIntervals *LIS) { 1008 MachineBasicBlock::iterator SplitPoint(&MI); 1009 ++SplitPoint; 1010 1011 if (SplitPoint == end()) { 1012 // Don't bother with a new block. 1013 return this; 1014 } 1015 1016 MachineFunction *MF = getParent(); 1017 1018 LivePhysRegs LiveRegs; 1019 if (UpdateLiveIns) { 1020 // Make sure we add any physregs we define in the block as liveins to the 1021 // new block. 1022 MachineBasicBlock::iterator Prev(&MI); 1023 LiveRegs.init(*MF->getSubtarget().getRegisterInfo()); 1024 LiveRegs.addLiveOuts(*this); 1025 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I) 1026 LiveRegs.stepBackward(*I); 1027 } 1028 1029 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock()); 1030 1031 MF->insert(++MachineFunction::iterator(this), SplitBB); 1032 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end()); 1033 1034 SplitBB->transferSuccessorsAndUpdatePHIs(this); 1035 addSuccessor(SplitBB); 1036 1037 if (UpdateLiveIns) 1038 addLiveIns(*SplitBB, LiveRegs); 1039 1040 if (LIS) 1041 LIS->insertMBBInMaps(SplitBB); 1042 1043 return SplitBB; 1044 } 1045 1046 // Returns `true` if there are possibly other users of the jump table at 1047 // `JumpTableIndex` except for the ones in `IgnoreMBB`. 1048 static bool jumpTableHasOtherUses(const MachineFunction &MF, 1049 const MachineBasicBlock &IgnoreMBB, 1050 int JumpTableIndex) { 1051 assert(JumpTableIndex >= 0 && "need valid index"); 1052 const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo(); 1053 const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex]; 1054 // Take any basic block from the table; every user of the jump table must 1055 // show up in the predecessor list. 1056 const MachineBasicBlock *MBB = nullptr; 1057 for (MachineBasicBlock *B : MJTE.MBBs) { 1058 if (B != nullptr) { 1059 MBB = B; 1060 break; 1061 } 1062 } 1063 if (MBB == nullptr) 1064 return true; // can't rule out other users if there isn't any block. 1065 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1066 SmallVector<MachineOperand, 4> Cond; 1067 for (MachineBasicBlock *Pred : MBB->predecessors()) { 1068 if (Pred == &IgnoreMBB) 1069 continue; 1070 MachineBasicBlock *DummyT = nullptr; 1071 MachineBasicBlock *DummyF = nullptr; 1072 Cond.clear(); 1073 if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond, 1074 /*AllowModify=*/false)) { 1075 // analyzable direct jump 1076 continue; 1077 } 1078 int PredJTI = findJumpTableIndex(*Pred); 1079 if (PredJTI >= 0) { 1080 if (PredJTI == JumpTableIndex) 1081 return true; 1082 continue; 1083 } 1084 // Be conservative for unanalyzable jumps. 1085 return true; 1086 } 1087 return false; 1088 } 1089 1090 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( 1091 MachineBasicBlock *Succ, Pass &P, 1092 std::vector<SparseBitVector<>> *LiveInSets) { 1093 if (!canSplitCriticalEdge(Succ)) 1094 return nullptr; 1095 1096 MachineFunction *MF = getParent(); 1097 MachineBasicBlock *PrevFallthrough = getNextNode(); 1098 DebugLoc DL; // FIXME: this is nowhere 1099 1100 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 1101 1102 // Is there an indirect jump with jump table? 1103 bool ChangedIndirectJump = false; 1104 int JTI = findJumpTableIndex(*this); 1105 if (JTI >= 0) { 1106 MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo(); 1107 MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB); 1108 ChangedIndirectJump = true; 1109 } 1110 1111 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 1112 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 1113 << " -- " << printMBBReference(*NMBB) << " -- " 1114 << printMBBReference(*Succ) << '\n'); 1115 1116 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 1117 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 1118 if (LIS) 1119 LIS->insertMBBInMaps(NMBB); 1120 else if (Indexes) 1121 Indexes->insertMBBInMaps(NMBB); 1122 1123 // On some targets like Mips, branches may kill virtual registers. Make sure 1124 // that LiveVariables is properly updated after updateTerminator replaces the 1125 // terminators. 1126 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 1127 1128 // Collect a list of virtual registers killed by the terminators. 1129 SmallVector<Register, 4> KilledRegs; 1130 if (LV) 1131 for (MachineInstr &MI : 1132 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1133 for (MachineOperand &MO : MI.all_uses()) { 1134 if (MO.getReg() == 0 || !MO.isKill() || MO.isUndef()) 1135 continue; 1136 Register Reg = MO.getReg(); 1137 if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) { 1138 KilledRegs.push_back(Reg); 1139 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI); 1140 MO.setIsKill(false); 1141 } 1142 } 1143 } 1144 1145 SmallVector<Register, 4> UsedRegs; 1146 if (LIS) { 1147 for (MachineInstr &MI : 1148 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1149 for (const MachineOperand &MO : MI.operands()) { 1150 if (!MO.isReg() || MO.getReg() == 0) 1151 continue; 1152 1153 Register Reg = MO.getReg(); 1154 if (!is_contained(UsedRegs, Reg)) 1155 UsedRegs.push_back(Reg); 1156 } 1157 } 1158 } 1159 1160 ReplaceUsesOfBlockWith(Succ, NMBB); 1161 1162 // If updateTerminator() removes instructions, we need to remove them from 1163 // SlotIndexes. 1164 SmallVector<MachineInstr*, 4> Terminators; 1165 if (Indexes) { 1166 for (MachineInstr &MI : 1167 llvm::make_range(getFirstInstrTerminator(), instr_end())) 1168 Terminators.push_back(&MI); 1169 } 1170 1171 // Since we replaced all uses of Succ with NMBB, that should also be treated 1172 // as the fallthrough successor 1173 if (Succ == PrevFallthrough) 1174 PrevFallthrough = NMBB; 1175 1176 if (!ChangedIndirectJump) 1177 updateTerminator(PrevFallthrough); 1178 1179 if (Indexes) { 1180 SmallVector<MachineInstr*, 4> NewTerminators; 1181 for (MachineInstr &MI : 1182 llvm::make_range(getFirstInstrTerminator(), instr_end())) 1183 NewTerminators.push_back(&MI); 1184 1185 for (MachineInstr *Terminator : Terminators) { 1186 if (!is_contained(NewTerminators, Terminator)) 1187 Indexes->removeMachineInstrFromMaps(*Terminator); 1188 } 1189 } 1190 1191 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 1192 NMBB->addSuccessor(Succ); 1193 if (!NMBB->isLayoutSuccessor(Succ)) { 1194 SmallVector<MachineOperand, 4> Cond; 1195 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 1196 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 1197 1198 if (Indexes) { 1199 for (MachineInstr &MI : NMBB->instrs()) { 1200 // Some instructions may have been moved to NMBB by updateTerminator(), 1201 // so we first remove any instruction that already has an index. 1202 if (Indexes->hasIndex(MI)) 1203 Indexes->removeMachineInstrFromMaps(MI); 1204 Indexes->insertMachineInstrInMaps(MI); 1205 } 1206 } 1207 } 1208 1209 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 1210 Succ->replacePhiUsesWith(this, NMBB); 1211 1212 // Inherit live-ins from the successor 1213 for (const auto &LI : Succ->liveins()) 1214 NMBB->addLiveIn(LI); 1215 1216 // Update LiveVariables. 1217 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1218 if (LV) { 1219 // Restore kills of virtual registers that were killed by the terminators. 1220 while (!KilledRegs.empty()) { 1221 Register Reg = KilledRegs.pop_back_val(); 1222 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 1223 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 1224 continue; 1225 if (Reg.isVirtual()) 1226 LV->getVarInfo(Reg).Kills.push_back(&*I); 1227 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1228 break; 1229 } 1230 } 1231 // Update relevant live-through information. 1232 if (LiveInSets != nullptr) 1233 LV->addNewBlock(NMBB, this, Succ, *LiveInSets); 1234 else 1235 LV->addNewBlock(NMBB, this, Succ); 1236 } 1237 1238 if (LIS) { 1239 // After splitting the edge and updating SlotIndexes, live intervals may be 1240 // in one of two situations, depending on whether this block was the last in 1241 // the function. If the original block was the last in the function, all 1242 // live intervals will end prior to the beginning of the new split block. If 1243 // the original block was not at the end of the function, all live intervals 1244 // will extend to the end of the new split block. 1245 1246 bool isLastMBB = 1247 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1248 1249 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1250 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1251 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1252 1253 // Find the registers used from NMBB in PHIs in Succ. 1254 SmallSet<Register, 8> PHISrcRegs; 1255 for (MachineBasicBlock::instr_iterator 1256 I = Succ->instr_begin(), E = Succ->instr_end(); 1257 I != E && I->isPHI(); ++I) { 1258 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1259 if (I->getOperand(ni+1).getMBB() == NMBB) { 1260 MachineOperand &MO = I->getOperand(ni); 1261 Register Reg = MO.getReg(); 1262 PHISrcRegs.insert(Reg); 1263 if (MO.isUndef()) 1264 continue; 1265 1266 LiveInterval &LI = LIS->getInterval(Reg); 1267 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1268 assert(VNI && 1269 "PHI sources should be live out of their predecessors."); 1270 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1271 } 1272 } 1273 } 1274 1275 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1276 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1277 Register Reg = Register::index2VirtReg(i); 1278 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1279 continue; 1280 1281 LiveInterval &LI = LIS->getInterval(Reg); 1282 if (!LI.liveAt(PrevIndex)) 1283 continue; 1284 1285 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1286 if (isLiveOut && isLastMBB) { 1287 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1288 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1289 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1290 } else if (!isLiveOut && !isLastMBB) { 1291 LI.removeSegment(StartIndex, EndIndex); 1292 } 1293 } 1294 1295 // Update all intervals for registers whose uses may have been modified by 1296 // updateTerminator(). 1297 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1298 } 1299 1300 if (MachineDominatorTree *MDT = 1301 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1302 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1303 1304 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1305 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1306 // If one or the other blocks were not in a loop, the new block is not 1307 // either, and thus LI doesn't need to be updated. 1308 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1309 if (TIL == DestLoop) { 1310 // Both in the same loop, the NMBB joins loop. 1311 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1312 } else if (TIL->contains(DestLoop)) { 1313 // Edge from an outer loop to an inner loop. Add to the outer loop. 1314 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1315 } else if (DestLoop->contains(TIL)) { 1316 // Edge from an inner loop to an outer loop. Add to the outer loop. 1317 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1318 } else { 1319 // Edge from two loops with no containment relation. Because these 1320 // are natural loops, we know that the destination block must be the 1321 // header of its loop (adding a branch into a loop elsewhere would 1322 // create an irreducible loop). 1323 assert(DestLoop->getHeader() == Succ && 1324 "Should not create irreducible loops!"); 1325 if (MachineLoop *P = DestLoop->getParentLoop()) 1326 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1327 } 1328 } 1329 } 1330 1331 return NMBB; 1332 } 1333 1334 bool MachineBasicBlock::canSplitCriticalEdge( 1335 const MachineBasicBlock *Succ) const { 1336 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1337 // it in this generic function. 1338 if (Succ->isEHPad()) 1339 return false; 1340 1341 // Splitting the critical edge to a callbr's indirect block isn't advised. 1342 // Don't do it in this generic function. 1343 if (Succ->isInlineAsmBrIndirectTarget()) 1344 return false; 1345 1346 const MachineFunction *MF = getParent(); 1347 // Performance might be harmed on HW that implements branching using exec mask 1348 // where both sides of the branches are always executed. 1349 if (MF->getTarget().requiresStructuredCFG()) 1350 return false; 1351 1352 // Do we have an Indirect jump with a jumptable that we can rewrite? 1353 int JTI = findJumpTableIndex(*this); 1354 if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI)) 1355 return true; 1356 1357 // We may need to update this's terminator, but we can't do that if 1358 // analyzeBranch fails. 1359 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1360 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1361 SmallVector<MachineOperand, 4> Cond; 1362 // AnalyzeBanch should modify this, since we did not allow modification. 1363 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1364 /*AllowModify*/ false)) 1365 return false; 1366 1367 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1368 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1369 // case that we can't handle. Since this never happens in properly optimized 1370 // code, just skip those edges. 1371 if (TBB && TBB == FBB) { 1372 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1373 << printMBBReference(*this) << '\n'); 1374 return false; 1375 } 1376 return true; 1377 } 1378 1379 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1380 /// neighboring instructions so the bundle won't be broken by removing MI. 1381 static void unbundleSingleMI(MachineInstr *MI) { 1382 // Removing the first instruction in a bundle. 1383 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1384 MI->unbundleFromSucc(); 1385 // Removing the last instruction in a bundle. 1386 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1387 MI->unbundleFromPred(); 1388 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1389 // are already fine. 1390 } 1391 1392 MachineBasicBlock::instr_iterator 1393 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1394 unbundleSingleMI(&*I); 1395 return Insts.erase(I); 1396 } 1397 1398 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1399 unbundleSingleMI(MI); 1400 MI->clearFlag(MachineInstr::BundledPred); 1401 MI->clearFlag(MachineInstr::BundledSucc); 1402 return Insts.remove(MI); 1403 } 1404 1405 MachineBasicBlock::instr_iterator 1406 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1407 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1408 "Cannot insert instruction with bundle flags"); 1409 // Set the bundle flags when inserting inside a bundle. 1410 if (I != instr_end() && I->isBundledWithPred()) { 1411 MI->setFlag(MachineInstr::BundledPred); 1412 MI->setFlag(MachineInstr::BundledSucc); 1413 } 1414 return Insts.insert(I, MI); 1415 } 1416 1417 /// This method unlinks 'this' from the containing function, and returns it, but 1418 /// does not delete it. 1419 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1420 assert(getParent() && "Not embedded in a function!"); 1421 getParent()->remove(this); 1422 return this; 1423 } 1424 1425 /// This method unlinks 'this' from the containing function, and deletes it. 1426 void MachineBasicBlock::eraseFromParent() { 1427 assert(getParent() && "Not embedded in a function!"); 1428 getParent()->erase(this); 1429 } 1430 1431 /// Given a machine basic block that branched to 'Old', change the code and CFG 1432 /// so that it branches to 'New' instead. 1433 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1434 MachineBasicBlock *New) { 1435 assert(Old != New && "Cannot replace self with self!"); 1436 1437 MachineBasicBlock::instr_iterator I = instr_end(); 1438 while (I != instr_begin()) { 1439 --I; 1440 if (!I->isTerminator()) break; 1441 1442 // Scan the operands of this machine instruction, replacing any uses of Old 1443 // with New. 1444 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1445 if (I->getOperand(i).isMBB() && 1446 I->getOperand(i).getMBB() == Old) 1447 I->getOperand(i).setMBB(New); 1448 } 1449 1450 // Update the successor information. 1451 replaceSuccessor(Old, New); 1452 } 1453 1454 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1455 MachineBasicBlock *New) { 1456 for (MachineInstr &MI : phis()) 1457 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1458 MachineOperand &MO = MI.getOperand(i); 1459 if (MO.getMBB() == Old) 1460 MO.setMBB(New); 1461 } 1462 } 1463 1464 /// Find the next valid DebugLoc starting at MBBI, skipping any debug 1465 /// instructions. Return UnknownLoc if there is none. 1466 DebugLoc 1467 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1468 // Skip debug declarations, we don't want a DebugLoc from them. 1469 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1470 if (MBBI != instr_end()) 1471 return MBBI->getDebugLoc(); 1472 return {}; 1473 } 1474 1475 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) { 1476 if (MBBI == instr_rend()) 1477 return findDebugLoc(instr_begin()); 1478 // Skip debug declarations, we don't want a DebugLoc from them. 1479 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin()); 1480 if (!MBBI->isDebugInstr()) 1481 return MBBI->getDebugLoc(); 1482 return {}; 1483 } 1484 1485 /// Find the previous valid DebugLoc preceding MBBI, skipping any debug 1486 /// instructions. Return UnknownLoc if there is none. 1487 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1488 if (MBBI == instr_begin()) 1489 return {}; 1490 // Skip debug instructions, we don't want a DebugLoc from them. 1491 MBBI = prev_nodbg(MBBI, instr_begin()); 1492 if (!MBBI->isDebugInstr()) 1493 return MBBI->getDebugLoc(); 1494 return {}; 1495 } 1496 1497 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) { 1498 if (MBBI == instr_rend()) 1499 return {}; 1500 // Skip debug declarations, we don't want a DebugLoc from them. 1501 MBBI = next_nodbg(MBBI, instr_rend()); 1502 if (MBBI != instr_rend()) 1503 return MBBI->getDebugLoc(); 1504 return {}; 1505 } 1506 1507 /// Find and return the merged DebugLoc of the branch instructions of the block. 1508 /// Return UnknownLoc if there is none. 1509 DebugLoc 1510 MachineBasicBlock::findBranchDebugLoc() { 1511 DebugLoc DL; 1512 auto TI = getFirstTerminator(); 1513 while (TI != end() && !TI->isBranch()) 1514 ++TI; 1515 1516 if (TI != end()) { 1517 DL = TI->getDebugLoc(); 1518 for (++TI ; TI != end() ; ++TI) 1519 if (TI->isBranch()) 1520 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1521 } 1522 return DL; 1523 } 1524 1525 /// Return probability of the edge from this block to MBB. 1526 BranchProbability 1527 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1528 if (Probs.empty()) 1529 return BranchProbability(1, succ_size()); 1530 1531 const auto &Prob = *getProbabilityIterator(Succ); 1532 if (Prob.isUnknown()) { 1533 // For unknown probabilities, collect the sum of all known ones, and evenly 1534 // ditribute the complemental of the sum to each unknown probability. 1535 unsigned KnownProbNum = 0; 1536 auto Sum = BranchProbability::getZero(); 1537 for (const auto &P : Probs) { 1538 if (!P.isUnknown()) { 1539 Sum += P; 1540 KnownProbNum++; 1541 } 1542 } 1543 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1544 } else 1545 return Prob; 1546 } 1547 1548 /// Set successor probability of a given iterator. 1549 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1550 BranchProbability Prob) { 1551 assert(!Prob.isUnknown()); 1552 if (Probs.empty()) 1553 return; 1554 *getProbabilityIterator(I) = Prob; 1555 } 1556 1557 /// Return probability iterator corresonding to the I successor iterator 1558 MachineBasicBlock::const_probability_iterator 1559 MachineBasicBlock::getProbabilityIterator( 1560 MachineBasicBlock::const_succ_iterator I) const { 1561 assert(Probs.size() == Successors.size() && "Async probability list!"); 1562 const size_t index = std::distance(Successors.begin(), I); 1563 assert(index < Probs.size() && "Not a current successor!"); 1564 return Probs.begin() + index; 1565 } 1566 1567 /// Return probability iterator corresonding to the I successor iterator. 1568 MachineBasicBlock::probability_iterator 1569 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1570 assert(Probs.size() == Successors.size() && "Async probability list!"); 1571 const size_t index = std::distance(Successors.begin(), I); 1572 assert(index < Probs.size() && "Not a current successor!"); 1573 return Probs.begin() + index; 1574 } 1575 1576 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1577 /// as of just before "MI". 1578 /// 1579 /// Search is localised to a neighborhood of 1580 /// Neighborhood instructions before (searching for defs or kills) and N 1581 /// instructions after (searching just for defs) MI. 1582 MachineBasicBlock::LivenessQueryResult 1583 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1584 MCRegister Reg, const_iterator Before, 1585 unsigned Neighborhood) const { 1586 unsigned N = Neighborhood; 1587 1588 // Try searching forwards from Before, looking for reads or defs. 1589 const_iterator I(Before); 1590 for (; I != end() && N > 0; ++I) { 1591 if (I->isDebugOrPseudoInstr()) 1592 continue; 1593 1594 --N; 1595 1596 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1597 1598 // Register is live when we read it here. 1599 if (Info.Read) 1600 return LQR_Live; 1601 // Register is dead if we can fully overwrite or clobber it here. 1602 if (Info.FullyDefined || Info.Clobbered) 1603 return LQR_Dead; 1604 } 1605 1606 // If we reached the end, it is safe to clobber Reg at the end of a block of 1607 // no successor has it live in. 1608 if (I == end()) { 1609 for (MachineBasicBlock *S : successors()) { 1610 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1611 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1612 return LQR_Live; 1613 } 1614 } 1615 1616 return LQR_Dead; 1617 } 1618 1619 1620 N = Neighborhood; 1621 1622 // Start by searching backwards from Before, looking for kills, reads or defs. 1623 I = const_iterator(Before); 1624 // If this is the first insn in the block, don't search backwards. 1625 if (I != begin()) { 1626 do { 1627 --I; 1628 1629 if (I->isDebugOrPseudoInstr()) 1630 continue; 1631 1632 --N; 1633 1634 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1635 1636 // Defs happen after uses so they take precedence if both are present. 1637 1638 // Register is dead after a dead def of the full register. 1639 if (Info.DeadDef) 1640 return LQR_Dead; 1641 // Register is (at least partially) live after a def. 1642 if (Info.Defined) { 1643 if (!Info.PartialDeadDef) 1644 return LQR_Live; 1645 // As soon as we saw a partial definition (dead or not), 1646 // we cannot tell if the value is partial live without 1647 // tracking the lanemasks. We are not going to do this, 1648 // so fall back on the remaining of the analysis. 1649 break; 1650 } 1651 // Register is dead after a full kill or clobber and no def. 1652 if (Info.Killed || Info.Clobbered) 1653 return LQR_Dead; 1654 // Register must be live if we read it. 1655 if (Info.Read) 1656 return LQR_Live; 1657 1658 } while (I != begin() && N > 0); 1659 } 1660 1661 // If all the instructions before this in the block are debug instructions, 1662 // skip over them. 1663 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr()) 1664 --I; 1665 1666 // Did we get to the start of the block? 1667 if (I == begin()) { 1668 // If so, the register's state is definitely defined by the live-in state. 1669 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1670 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1671 return LQR_Live; 1672 1673 return LQR_Dead; 1674 } 1675 1676 // At this point we have no idea of the liveness of the register. 1677 return LQR_Unknown; 1678 } 1679 1680 const uint32_t * 1681 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1682 // EH funclet entry does not preserve any registers. 1683 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1684 } 1685 1686 const uint32_t * 1687 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1688 // If we see a return block with successors, this must be a funclet return, 1689 // which does not preserve any registers. If there are no successors, we don't 1690 // care what kind of return it is, putting a mask after it is a no-op. 1691 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1692 } 1693 1694 void MachineBasicBlock::clearLiveIns() { 1695 LiveIns.clear(); 1696 } 1697 1698 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1699 assert(getParent()->getProperties().hasProperty( 1700 MachineFunctionProperties::Property::TracksLiveness) && 1701 "Liveness information is accurate"); 1702 return LiveIns.begin(); 1703 } 1704 1705 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const { 1706 const MachineFunction &MF = *getParent(); 1707 assert(MF.getProperties().hasProperty( 1708 MachineFunctionProperties::Property::TracksLiveness) && 1709 "Liveness information is accurate"); 1710 1711 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1712 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0; 1713 if (MF.getFunction().hasPersonalityFn()) { 1714 auto PersonalityFn = MF.getFunction().getPersonalityFn(); 1715 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn); 1716 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn); 1717 } 1718 1719 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false); 1720 } 1721 1722 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const { 1723 unsigned Cntr = 0; 1724 auto R = instructionsWithoutDebug(begin(), end()); 1725 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1726 if (++Cntr > Limit) 1727 return true; 1728 } 1729 return false; 1730 } 1731 1732 unsigned MachineBasicBlock::getBBIDOrNumber() const { 1733 uint8_t BBAddrMapVersion = getParent()->getContext().getBBAddrMapVersion(); 1734 return BBAddrMapVersion < 2 ? getNumber() : *getBBID(); 1735 } 1736 1737 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); 1738 const MBBSectionID 1739 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception); 1740