xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 3fbbdf3144b9bd202564dcab5c96ca6b5c91e296)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
43     : BB(B), Number(-1), xParent(&MF) {
44   Insts.Parent = this;
45   if (B)
46     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
47 }
48 
49 MachineBasicBlock::~MachineBasicBlock() {
50 }
51 
52 /// Return the MCSymbol for this basic block.
53 MCSymbol *MachineBasicBlock::getSymbol() const {
54   if (!CachedMCSymbol) {
55     const MachineFunction *MF = getParent();
56     MCContext &Ctx = MF->getContext();
57     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
58     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
59     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
60                                            Twine(MF->getFunctionNumber()) +
61                                            "_" + Twine(getNumber()));
62   }
63 
64   return CachedMCSymbol;
65 }
66 
67 
68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
69   MBB.print(OS);
70   return OS;
71 }
72 
73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
74   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
75 }
76 
77 /// When an MBB is added to an MF, we need to update the parent pointer of the
78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
79 /// operand list for registers.
80 ///
81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
82 /// gets the next available unique MBB number. If it is removed from a
83 /// MachineFunction, it goes back to being #-1.
84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
85     MachineBasicBlock *N) {
86   MachineFunction &MF = *N->getParent();
87   N->Number = MF.addToMBBNumbering(N);
88 
89   // Make sure the instructions have their operands in the reginfo lists.
90   MachineRegisterInfo &RegInfo = MF.getRegInfo();
91   for (MachineBasicBlock::instr_iterator
92          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
93     I->AddRegOperandsToUseLists(RegInfo);
94 }
95 
96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
97     MachineBasicBlock *N) {
98   N->getParent()->removeFromMBBNumbering(N->Number);
99   N->Number = -1;
100 }
101 
102 /// When we add an instruction to a basic block list, we update its parent
103 /// pointer and add its operands from reg use/def lists if appropriate.
104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
105   assert(!N->getParent() && "machine instruction already in a basic block");
106   N->setParent(Parent);
107 
108   // Add the instruction's register operands to their corresponding
109   // use/def lists.
110   MachineFunction *MF = Parent->getParent();
111   N->AddRegOperandsToUseLists(MF->getRegInfo());
112 }
113 
114 /// When we remove an instruction from a basic block list, we update its parent
115 /// pointer and remove its operands from reg use/def lists if appropriate.
116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
117   assert(N->getParent() && "machine instruction not in a basic block");
118 
119   // Remove from the use/def lists.
120   if (MachineFunction *MF = N->getMF())
121     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
122 
123   N->setParent(nullptr);
124 }
125 
126 /// When moving a range of instructions from one MBB list to another, we need to
127 /// update the parent pointers and the use/def lists.
128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
129                                                        instr_iterator First,
130                                                        instr_iterator Last) {
131   assert(Parent->getParent() == FromList.Parent->getParent() &&
132         "MachineInstr parent mismatch!");
133   assert(this != &FromList && "Called without a real transfer...");
134   assert(Parent != FromList.Parent && "Two lists have the same parent?");
135 
136   // If splicing between two blocks within the same function, just update the
137   // parent pointers.
138   for (; First != Last; ++First)
139     First->setParent(Parent);
140 }
141 
142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
143   assert(!MI->getParent() && "MI is still in a block!");
144   Parent->getParent()->DeleteMachineInstr(MI);
145 }
146 
147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
148   instr_iterator I = instr_begin(), E = instr_end();
149   while (I != E && I->isPHI())
150     ++I;
151   assert((I == E || !I->isInsideBundle()) &&
152          "First non-phi MI cannot be inside a bundle!");
153   return I;
154 }
155 
156 MachineBasicBlock::iterator
157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
158   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
159 
160   iterator E = end();
161   while (I != E && (I->isPHI() || I->isPosition() ||
162                     TII->isBasicBlockPrologue(*I)))
163     ++I;
164   // FIXME: This needs to change if we wish to bundle labels
165   // inside the bundle.
166   assert((I == E || !I->isInsideBundle()) &&
167          "First non-phi / non-label instruction is inside a bundle!");
168   return I;
169 }
170 
171 MachineBasicBlock::iterator
172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
173   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
174 
175   iterator E = end();
176   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() ||
177                     TII->isBasicBlockPrologue(*I)))
178     ++I;
179   // FIXME: This needs to change if we wish to bundle labels / dbg_values
180   // inside the bundle.
181   assert((I == E || !I->isInsideBundle()) &&
182          "First non-phi / non-label / non-debug "
183          "instruction is inside a bundle!");
184   return I;
185 }
186 
187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
188   iterator B = begin(), E = end(), I = E;
189   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
190     ; /*noop */
191   while (I != E && !I->isTerminator())
192     ++I;
193   return I;
194 }
195 
196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
197   instr_iterator B = instr_begin(), E = instr_end(), I = E;
198   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
199     ; /*noop */
200   while (I != E && !I->isTerminator())
201     ++I;
202   return I;
203 }
204 
205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
206   // Skip over begin-of-block dbg_value instructions.
207   return skipDebugInstructionsForward(begin(), end());
208 }
209 
210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
211   // Skip over end-of-block dbg_value instructions.
212   instr_iterator B = instr_begin(), I = instr_end();
213   while (I != B) {
214     --I;
215     // Return instruction that starts a bundle.
216     if (I->isDebugValue() || I->isInsideBundle())
217       continue;
218     return I;
219   }
220   // The block is all debug values.
221   return end();
222 }
223 
224 bool MachineBasicBlock::hasEHPadSuccessor() const {
225   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
226     if ((*I)->isEHPad())
227       return true;
228   return false;
229 }
230 
231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
233   print(dbgs());
234 }
235 #endif
236 
237 bool MachineBasicBlock::isLegalToHoistInto() const {
238   if (isReturnBlock() || hasEHPadSuccessor())
239     return false;
240   return true;
241 }
242 
243 StringRef MachineBasicBlock::getName() const {
244   if (const BasicBlock *LBB = getBasicBlock())
245     return LBB->getName();
246   else
247     return StringRef("", 0);
248 }
249 
250 /// Return a hopefully unique identifier for this block.
251 std::string MachineBasicBlock::getFullName() const {
252   std::string Name;
253   if (getParent())
254     Name = (getParent()->getName() + ":").str();
255   if (getBasicBlock())
256     Name += getBasicBlock()->getName();
257   else
258     Name += ("BB" + Twine(getNumber())).str();
259   return Name;
260 }
261 
262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
263                               bool IsStandalone) const {
264   const MachineFunction *MF = getParent();
265   if (!MF) {
266     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
267        << " is null\n";
268     return;
269   }
270   const Function &F = MF->getFunction();
271   const Module *M = F.getParent();
272   ModuleSlotTracker MST(M);
273   MST.incorporateFunction(F);
274   print(OS, MST, Indexes, IsStandalone);
275 }
276 
277 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
278                               const SlotIndexes *Indexes,
279                               bool IsStandalone) const {
280   const MachineFunction *MF = getParent();
281   if (!MF) {
282     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
283        << " is null\n";
284     return;
285   }
286 
287   if (Indexes)
288     OS << Indexes->getMBBStartIdx(this) << '\t';
289 
290   OS << "bb." << getNumber();
291   bool HasAttributes = false;
292   if (const auto *BB = getBasicBlock()) {
293     if (BB->hasName()) {
294       OS << "." << BB->getName();
295     } else {
296       HasAttributes = true;
297       OS << " (";
298       int Slot = MST.getLocalSlot(BB);
299       if (Slot == -1)
300         OS << "<ir-block badref>";
301       else
302         OS << (Twine("%ir-block.") + Twine(Slot)).str();
303     }
304   }
305 
306   if (hasAddressTaken()) {
307     OS << (HasAttributes ? ", " : " (");
308     OS << "address-taken";
309     HasAttributes = true;
310   }
311   if (isEHPad()) {
312     OS << (HasAttributes ? ", " : " (");
313     OS << "landing-pad";
314     HasAttributes = true;
315   }
316   if (getAlignment()) {
317     OS << (HasAttributes ? ", " : " (");
318     OS << "align " << getAlignment();
319     HasAttributes = true;
320   }
321   if (HasAttributes)
322     OS << ")";
323   OS << ":\n";
324 
325   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
326   const MachineRegisterInfo &MRI = MF->getRegInfo();
327   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
328   bool HasLineAttributes = false;
329 
330   // Print the preds of this block according to the CFG.
331   if (!pred_empty()) {
332     if (Indexes) OS << '\t';
333     // Don't indent(2), align with previous line attributes.
334     OS << "; predecessors: ";
335     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
336       if (I != pred_begin())
337         OS << ", ";
338       OS << printMBBReference(**I);
339     }
340     OS << '\n';
341     HasLineAttributes = true;
342   }
343 
344   if (!succ_empty()) {
345     if (Indexes) OS << '\t';
346     // Print the successors
347     OS.indent(2) << "successors: ";
348     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
349       if (I != succ_begin())
350         OS << ", ";
351       OS << printMBBReference(**I);
352       if (!Probs.empty())
353         OS << '('
354            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
355            << ')';
356     }
357     if (!Probs.empty()) {
358       // Print human readable probabilities as comments.
359       OS << "; ";
360       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
361         const BranchProbability &BP = *getProbabilityIterator(I);
362         if (I != succ_begin())
363           OS << ", ";
364         OS << printMBBReference(**I) << '('
365            << format("%.2f%%",
366                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
367                           100.0 * 100.0) /
368                          100.0)
369            << ')';
370       }
371     }
372 
373     OS << '\n';
374     HasLineAttributes = true;
375   }
376 
377   if (!livein_empty() && MRI.tracksLiveness()) {
378     if (Indexes) OS << '\t';
379     OS.indent(2) << "liveins: ";
380 
381     bool First = true;
382     for (const auto &LI : liveins()) {
383       if (!First)
384         OS << ", ";
385       First = false;
386       OS << printReg(LI.PhysReg, TRI);
387       if (!LI.LaneMask.all())
388         OS << ":0x" << PrintLaneMask(LI.LaneMask);
389     }
390     OS << '\n';
391     HasLineAttributes = true;
392   }
393 
394   if (HasLineAttributes)
395     OS << '\n';
396 
397   bool IsInBundle = false;
398   for (const MachineInstr &MI : instrs()) {
399     if (Indexes) {
400       if (Indexes->hasIndex(MI))
401         OS << Indexes->getInstructionIndex(MI);
402       OS << '\t';
403     }
404 
405     if (IsInBundle && !MI.isInsideBundle()) {
406       OS.indent(2) << "}\n";
407       IsInBundle = false;
408     }
409 
410     OS.indent(IsInBundle ? 4 : 2);
411     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
412              &TII);
413 
414     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
415       OS << " {";
416       IsInBundle = true;
417     }
418 
419     OS << '\n';
420   }
421 
422   if (IsInBundle)
423     OS.indent(2) << "}\n";
424 
425   if (IrrLoopHeaderWeight) {
426     if (Indexes) OS << '\t';
427     OS.indent(2) << "; Irreducible loop header weight: "
428                  << IrrLoopHeaderWeight.getValue() << '\n';
429   }
430 }
431 
432 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
433                                        bool /*PrintType*/) const {
434   OS << "%bb." << getNumber();
435 }
436 
437 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
438   LiveInVector::iterator I = find_if(
439       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
440   if (I == LiveIns.end())
441     return;
442 
443   I->LaneMask &= ~LaneMask;
444   if (I->LaneMask.none())
445     LiveIns.erase(I);
446 }
447 
448 MachineBasicBlock::livein_iterator
449 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
450   // Get non-const version of iterator.
451   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
452   return LiveIns.erase(LI);
453 }
454 
455 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
456   livein_iterator I = find_if(
457       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
458   return I != livein_end() && (I->LaneMask & LaneMask).any();
459 }
460 
461 void MachineBasicBlock::sortUniqueLiveIns() {
462   std::sort(LiveIns.begin(), LiveIns.end(),
463             [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
464               return LI0.PhysReg < LI1.PhysReg;
465             });
466   // Liveins are sorted by physreg now we can merge their lanemasks.
467   LiveInVector::const_iterator I = LiveIns.begin();
468   LiveInVector::const_iterator J;
469   LiveInVector::iterator Out = LiveIns.begin();
470   for (; I != LiveIns.end(); ++Out, I = J) {
471     unsigned PhysReg = I->PhysReg;
472     LaneBitmask LaneMask = I->LaneMask;
473     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
474       LaneMask |= J->LaneMask;
475     Out->PhysReg = PhysReg;
476     Out->LaneMask = LaneMask;
477   }
478   LiveIns.erase(Out, LiveIns.end());
479 }
480 
481 unsigned
482 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
483   assert(getParent() && "MBB must be inserted in function");
484   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
485   assert(RC && "Register class is required");
486   assert((isEHPad() || this == &getParent()->front()) &&
487          "Only the entry block and landing pads can have physreg live ins");
488 
489   bool LiveIn = isLiveIn(PhysReg);
490   iterator I = SkipPHIsAndLabels(begin()), E = end();
491   MachineRegisterInfo &MRI = getParent()->getRegInfo();
492   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
493 
494   // Look for an existing copy.
495   if (LiveIn)
496     for (;I != E && I->isCopy(); ++I)
497       if (I->getOperand(1).getReg() == PhysReg) {
498         unsigned VirtReg = I->getOperand(0).getReg();
499         if (!MRI.constrainRegClass(VirtReg, RC))
500           llvm_unreachable("Incompatible live-in register class.");
501         return VirtReg;
502       }
503 
504   // No luck, create a virtual register.
505   unsigned VirtReg = MRI.createVirtualRegister(RC);
506   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
507     .addReg(PhysReg, RegState::Kill);
508   if (!LiveIn)
509     addLiveIn(PhysReg);
510   return VirtReg;
511 }
512 
513 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
514   getParent()->splice(NewAfter->getIterator(), getIterator());
515 }
516 
517 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
518   getParent()->splice(++NewBefore->getIterator(), getIterator());
519 }
520 
521 void MachineBasicBlock::updateTerminator() {
522   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
523   // A block with no successors has no concerns with fall-through edges.
524   if (this->succ_empty())
525     return;
526 
527   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
528   SmallVector<MachineOperand, 4> Cond;
529   DebugLoc DL = findBranchDebugLoc();
530   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
531   (void) B;
532   assert(!B && "UpdateTerminators requires analyzable predecessors!");
533   if (Cond.empty()) {
534     if (TBB) {
535       // The block has an unconditional branch. If its successor is now its
536       // layout successor, delete the branch.
537       if (isLayoutSuccessor(TBB))
538         TII->removeBranch(*this);
539     } else {
540       // The block has an unconditional fallthrough. If its successor is not its
541       // layout successor, insert a branch. First we have to locate the only
542       // non-landing-pad successor, as that is the fallthrough block.
543       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
544         if ((*SI)->isEHPad())
545           continue;
546         assert(!TBB && "Found more than one non-landing-pad successor!");
547         TBB = *SI;
548       }
549 
550       // If there is no non-landing-pad successor, the block has no fall-through
551       // edges to be concerned with.
552       if (!TBB)
553         return;
554 
555       // Finally update the unconditional successor to be reached via a branch
556       // if it would not be reached by fallthrough.
557       if (!isLayoutSuccessor(TBB))
558         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
559     }
560     return;
561   }
562 
563   if (FBB) {
564     // The block has a non-fallthrough conditional branch. If one of its
565     // successors is its layout successor, rewrite it to a fallthrough
566     // conditional branch.
567     if (isLayoutSuccessor(TBB)) {
568       if (TII->reverseBranchCondition(Cond))
569         return;
570       TII->removeBranch(*this);
571       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
572     } else if (isLayoutSuccessor(FBB)) {
573       TII->removeBranch(*this);
574       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
575     }
576     return;
577   }
578 
579   // Walk through the successors and find the successor which is not a landing
580   // pad and is not the conditional branch destination (in TBB) as the
581   // fallthrough successor.
582   MachineBasicBlock *FallthroughBB = nullptr;
583   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
584     if ((*SI)->isEHPad() || *SI == TBB)
585       continue;
586     assert(!FallthroughBB && "Found more than one fallthrough successor.");
587     FallthroughBB = *SI;
588   }
589 
590   if (!FallthroughBB) {
591     if (canFallThrough()) {
592       // We fallthrough to the same basic block as the conditional jump targets.
593       // Remove the conditional jump, leaving unconditional fallthrough.
594       // FIXME: This does not seem like a reasonable pattern to support, but it
595       // has been seen in the wild coming out of degenerate ARM test cases.
596       TII->removeBranch(*this);
597 
598       // Finally update the unconditional successor to be reached via a branch if
599       // it would not be reached by fallthrough.
600       if (!isLayoutSuccessor(TBB))
601         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
602       return;
603     }
604 
605     // We enter here iff exactly one successor is TBB which cannot fallthrough
606     // and the rest successors if any are EHPads.  In this case, we need to
607     // change the conditional branch into unconditional branch.
608     TII->removeBranch(*this);
609     Cond.clear();
610     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
611     return;
612   }
613 
614   // The block has a fallthrough conditional branch.
615   if (isLayoutSuccessor(TBB)) {
616     if (TII->reverseBranchCondition(Cond)) {
617       // We can't reverse the condition, add an unconditional branch.
618       Cond.clear();
619       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
620       return;
621     }
622     TII->removeBranch(*this);
623     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
624   } else if (!isLayoutSuccessor(FallthroughBB)) {
625     TII->removeBranch(*this);
626     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
627   }
628 }
629 
630 void MachineBasicBlock::validateSuccProbs() const {
631 #ifndef NDEBUG
632   int64_t Sum = 0;
633   for (auto Prob : Probs)
634     Sum += Prob.getNumerator();
635   // Due to precision issue, we assume that the sum of probabilities is one if
636   // the difference between the sum of their numerators and the denominator is
637   // no greater than the number of successors.
638   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
639              Probs.size() &&
640          "The sum of successors's probabilities exceeds one.");
641 #endif // NDEBUG
642 }
643 
644 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
645                                      BranchProbability Prob) {
646   // Probability list is either empty (if successor list isn't empty, this means
647   // disabled optimization) or has the same size as successor list.
648   if (!(Probs.empty() && !Successors.empty()))
649     Probs.push_back(Prob);
650   Successors.push_back(Succ);
651   Succ->addPredecessor(this);
652 }
653 
654 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
655   // We need to make sure probability list is either empty or has the same size
656   // of successor list. When this function is called, we can safely delete all
657   // probability in the list.
658   Probs.clear();
659   Successors.push_back(Succ);
660   Succ->addPredecessor(this);
661 }
662 
663 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
664                                         bool NormalizeSuccProbs) {
665   succ_iterator I = find(Successors, Succ);
666   removeSuccessor(I, NormalizeSuccProbs);
667 }
668 
669 MachineBasicBlock::succ_iterator
670 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
671   assert(I != Successors.end() && "Not a current successor!");
672 
673   // If probability list is empty it means we don't use it (disabled
674   // optimization).
675   if (!Probs.empty()) {
676     probability_iterator WI = getProbabilityIterator(I);
677     Probs.erase(WI);
678     if (NormalizeSuccProbs)
679       normalizeSuccProbs();
680   }
681 
682   (*I)->removePredecessor(this);
683   return Successors.erase(I);
684 }
685 
686 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
687                                          MachineBasicBlock *New) {
688   if (Old == New)
689     return;
690 
691   succ_iterator E = succ_end();
692   succ_iterator NewI = E;
693   succ_iterator OldI = E;
694   for (succ_iterator I = succ_begin(); I != E; ++I) {
695     if (*I == Old) {
696       OldI = I;
697       if (NewI != E)
698         break;
699     }
700     if (*I == New) {
701       NewI = I;
702       if (OldI != E)
703         break;
704     }
705   }
706   assert(OldI != E && "Old is not a successor of this block");
707 
708   // If New isn't already a successor, let it take Old's place.
709   if (NewI == E) {
710     Old->removePredecessor(this);
711     New->addPredecessor(this);
712     *OldI = New;
713     return;
714   }
715 
716   // New is already a successor.
717   // Update its probability instead of adding a duplicate edge.
718   if (!Probs.empty()) {
719     auto ProbIter = getProbabilityIterator(NewI);
720     if (!ProbIter->isUnknown())
721       *ProbIter += *getProbabilityIterator(OldI);
722   }
723   removeSuccessor(OldI);
724 }
725 
726 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
727   Predecessors.push_back(Pred);
728 }
729 
730 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
731   pred_iterator I = find(Predecessors, Pred);
732   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
733   Predecessors.erase(I);
734 }
735 
736 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
737   if (this == FromMBB)
738     return;
739 
740   while (!FromMBB->succ_empty()) {
741     MachineBasicBlock *Succ = *FromMBB->succ_begin();
742 
743     // If probability list is empty it means we don't use it (disabled optimization).
744     if (!FromMBB->Probs.empty()) {
745       auto Prob = *FromMBB->Probs.begin();
746       addSuccessor(Succ, Prob);
747     } else
748       addSuccessorWithoutProb(Succ);
749 
750     FromMBB->removeSuccessor(Succ);
751   }
752 }
753 
754 void
755 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
756   if (this == FromMBB)
757     return;
758 
759   while (!FromMBB->succ_empty()) {
760     MachineBasicBlock *Succ = *FromMBB->succ_begin();
761     if (!FromMBB->Probs.empty()) {
762       auto Prob = *FromMBB->Probs.begin();
763       addSuccessor(Succ, Prob);
764     } else
765       addSuccessorWithoutProb(Succ);
766     FromMBB->removeSuccessor(Succ);
767 
768     // Fix up any PHI nodes in the successor.
769     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
770            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
771       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
772         MachineOperand &MO = MI->getOperand(i);
773         if (MO.getMBB() == FromMBB)
774           MO.setMBB(this);
775       }
776   }
777   normalizeSuccProbs();
778 }
779 
780 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
781   return is_contained(predecessors(), MBB);
782 }
783 
784 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
785   return is_contained(successors(), MBB);
786 }
787 
788 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
789   MachineFunction::const_iterator I(this);
790   return std::next(I) == MachineFunction::const_iterator(MBB);
791 }
792 
793 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
794   MachineFunction::iterator Fallthrough = getIterator();
795   ++Fallthrough;
796   // If FallthroughBlock is off the end of the function, it can't fall through.
797   if (Fallthrough == getParent()->end())
798     return nullptr;
799 
800   // If FallthroughBlock isn't a successor, no fallthrough is possible.
801   if (!isSuccessor(&*Fallthrough))
802     return nullptr;
803 
804   // Analyze the branches, if any, at the end of the block.
805   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
806   SmallVector<MachineOperand, 4> Cond;
807   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
808   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
809     // If we couldn't analyze the branch, examine the last instruction.
810     // If the block doesn't end in a known control barrier, assume fallthrough
811     // is possible. The isPredicated check is needed because this code can be
812     // called during IfConversion, where an instruction which is normally a
813     // Barrier is predicated and thus no longer an actual control barrier.
814     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
815                ? &*Fallthrough
816                : nullptr;
817   }
818 
819   // If there is no branch, control always falls through.
820   if (!TBB) return &*Fallthrough;
821 
822   // If there is some explicit branch to the fallthrough block, it can obviously
823   // reach, even though the branch should get folded to fall through implicitly.
824   if (MachineFunction::iterator(TBB) == Fallthrough ||
825       MachineFunction::iterator(FBB) == Fallthrough)
826     return &*Fallthrough;
827 
828   // If it's an unconditional branch to some block not the fall through, it
829   // doesn't fall through.
830   if (Cond.empty()) return nullptr;
831 
832   // Otherwise, if it is conditional and has no explicit false block, it falls
833   // through.
834   return (FBB == nullptr) ? &*Fallthrough : nullptr;
835 }
836 
837 bool MachineBasicBlock::canFallThrough() {
838   return getFallThrough() != nullptr;
839 }
840 
841 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
842                                                         Pass &P) {
843   if (!canSplitCriticalEdge(Succ))
844     return nullptr;
845 
846   MachineFunction *MF = getParent();
847   DebugLoc DL;  // FIXME: this is nowhere
848 
849   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
850   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
851   DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
852                << " -- " << printMBBReference(*NMBB) << " -- "
853                << printMBBReference(*Succ) << '\n');
854 
855   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
856   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
857   if (LIS)
858     LIS->insertMBBInMaps(NMBB);
859   else if (Indexes)
860     Indexes->insertMBBInMaps(NMBB);
861 
862   // On some targets like Mips, branches may kill virtual registers. Make sure
863   // that LiveVariables is properly updated after updateTerminator replaces the
864   // terminators.
865   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
866 
867   // Collect a list of virtual registers killed by the terminators.
868   SmallVector<unsigned, 4> KilledRegs;
869   if (LV)
870     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
871          I != E; ++I) {
872       MachineInstr *MI = &*I;
873       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
874            OE = MI->operands_end(); OI != OE; ++OI) {
875         if (!OI->isReg() || OI->getReg() == 0 ||
876             !OI->isUse() || !OI->isKill() || OI->isUndef())
877           continue;
878         unsigned Reg = OI->getReg();
879         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
880             LV->getVarInfo(Reg).removeKill(*MI)) {
881           KilledRegs.push_back(Reg);
882           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
883           OI->setIsKill(false);
884         }
885       }
886     }
887 
888   SmallVector<unsigned, 4> UsedRegs;
889   if (LIS) {
890     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
891          I != E; ++I) {
892       MachineInstr *MI = &*I;
893 
894       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
895            OE = MI->operands_end(); OI != OE; ++OI) {
896         if (!OI->isReg() || OI->getReg() == 0)
897           continue;
898 
899         unsigned Reg = OI->getReg();
900         if (!is_contained(UsedRegs, Reg))
901           UsedRegs.push_back(Reg);
902       }
903     }
904   }
905 
906   ReplaceUsesOfBlockWith(Succ, NMBB);
907 
908   // If updateTerminator() removes instructions, we need to remove them from
909   // SlotIndexes.
910   SmallVector<MachineInstr*, 4> Terminators;
911   if (Indexes) {
912     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
913          I != E; ++I)
914       Terminators.push_back(&*I);
915   }
916 
917   updateTerminator();
918 
919   if (Indexes) {
920     SmallVector<MachineInstr*, 4> NewTerminators;
921     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
922          I != E; ++I)
923       NewTerminators.push_back(&*I);
924 
925     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
926         E = Terminators.end(); I != E; ++I) {
927       if (!is_contained(NewTerminators, *I))
928         Indexes->removeMachineInstrFromMaps(**I);
929     }
930   }
931 
932   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
933   NMBB->addSuccessor(Succ);
934   if (!NMBB->isLayoutSuccessor(Succ)) {
935     SmallVector<MachineOperand, 4> Cond;
936     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
937     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
938 
939     if (Indexes) {
940       for (MachineInstr &MI : NMBB->instrs()) {
941         // Some instructions may have been moved to NMBB by updateTerminator(),
942         // so we first remove any instruction that already has an index.
943         if (Indexes->hasIndex(MI))
944           Indexes->removeMachineInstrFromMaps(MI);
945         Indexes->insertMachineInstrInMaps(MI);
946       }
947     }
948   }
949 
950   // Fix PHI nodes in Succ so they refer to NMBB instead of this
951   for (MachineBasicBlock::instr_iterator
952          i = Succ->instr_begin(),e = Succ->instr_end();
953        i != e && i->isPHI(); ++i)
954     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
955       if (i->getOperand(ni+1).getMBB() == this)
956         i->getOperand(ni+1).setMBB(NMBB);
957 
958   // Inherit live-ins from the successor
959   for (const auto &LI : Succ->liveins())
960     NMBB->addLiveIn(LI);
961 
962   // Update LiveVariables.
963   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
964   if (LV) {
965     // Restore kills of virtual registers that were killed by the terminators.
966     while (!KilledRegs.empty()) {
967       unsigned Reg = KilledRegs.pop_back_val();
968       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
969         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
970           continue;
971         if (TargetRegisterInfo::isVirtualRegister(Reg))
972           LV->getVarInfo(Reg).Kills.push_back(&*I);
973         DEBUG(dbgs() << "Restored terminator kill: " << *I);
974         break;
975       }
976     }
977     // Update relevant live-through information.
978     LV->addNewBlock(NMBB, this, Succ);
979   }
980 
981   if (LIS) {
982     // After splitting the edge and updating SlotIndexes, live intervals may be
983     // in one of two situations, depending on whether this block was the last in
984     // the function. If the original block was the last in the function, all
985     // live intervals will end prior to the beginning of the new split block. If
986     // the original block was not at the end of the function, all live intervals
987     // will extend to the end of the new split block.
988 
989     bool isLastMBB =
990       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
991 
992     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
993     SlotIndex PrevIndex = StartIndex.getPrevSlot();
994     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
995 
996     // Find the registers used from NMBB in PHIs in Succ.
997     SmallSet<unsigned, 8> PHISrcRegs;
998     for (MachineBasicBlock::instr_iterator
999          I = Succ->instr_begin(), E = Succ->instr_end();
1000          I != E && I->isPHI(); ++I) {
1001       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1002         if (I->getOperand(ni+1).getMBB() == NMBB) {
1003           MachineOperand &MO = I->getOperand(ni);
1004           unsigned Reg = MO.getReg();
1005           PHISrcRegs.insert(Reg);
1006           if (MO.isUndef())
1007             continue;
1008 
1009           LiveInterval &LI = LIS->getInterval(Reg);
1010           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1011           assert(VNI &&
1012                  "PHI sources should be live out of their predecessors.");
1013           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1014         }
1015       }
1016     }
1017 
1018     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1019     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1020       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1021       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1022         continue;
1023 
1024       LiveInterval &LI = LIS->getInterval(Reg);
1025       if (!LI.liveAt(PrevIndex))
1026         continue;
1027 
1028       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1029       if (isLiveOut && isLastMBB) {
1030         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1031         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1032         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1033       } else if (!isLiveOut && !isLastMBB) {
1034         LI.removeSegment(StartIndex, EndIndex);
1035       }
1036     }
1037 
1038     // Update all intervals for registers whose uses may have been modified by
1039     // updateTerminator().
1040     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1041   }
1042 
1043   if (MachineDominatorTree *MDT =
1044           P.getAnalysisIfAvailable<MachineDominatorTree>())
1045     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1046 
1047   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1048     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1049       // If one or the other blocks were not in a loop, the new block is not
1050       // either, and thus LI doesn't need to be updated.
1051       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1052         if (TIL == DestLoop) {
1053           // Both in the same loop, the NMBB joins loop.
1054           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1055         } else if (TIL->contains(DestLoop)) {
1056           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1057           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1058         } else if (DestLoop->contains(TIL)) {
1059           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1060           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1061         } else {
1062           // Edge from two loops with no containment relation.  Because these
1063           // are natural loops, we know that the destination block must be the
1064           // header of its loop (adding a branch into a loop elsewhere would
1065           // create an irreducible loop).
1066           assert(DestLoop->getHeader() == Succ &&
1067                  "Should not create irreducible loops!");
1068           if (MachineLoop *P = DestLoop->getParentLoop())
1069             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1070         }
1071       }
1072     }
1073 
1074   return NMBB;
1075 }
1076 
1077 bool MachineBasicBlock::canSplitCriticalEdge(
1078     const MachineBasicBlock *Succ) const {
1079   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1080   // it in this generic function.
1081   if (Succ->isEHPad())
1082     return false;
1083 
1084   const MachineFunction *MF = getParent();
1085 
1086   // Performance might be harmed on HW that implements branching using exec mask
1087   // where both sides of the branches are always executed.
1088   if (MF->getTarget().requiresStructuredCFG())
1089     return false;
1090 
1091   // We may need to update this's terminator, but we can't do that if
1092   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1093   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1094   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1095   SmallVector<MachineOperand, 4> Cond;
1096   // AnalyzeBanch should modify this, since we did not allow modification.
1097   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1098                          /*AllowModify*/ false))
1099     return false;
1100 
1101   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1102   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1103   // case that we can't handle. Since this never happens in properly optimized
1104   // code, just skip those edges.
1105   if (TBB && TBB == FBB) {
1106     DEBUG(dbgs() << "Won't split critical edge after degenerate "
1107                  << printMBBReference(*this) << '\n');
1108     return false;
1109   }
1110   return true;
1111 }
1112 
1113 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1114 /// neighboring instructions so the bundle won't be broken by removing MI.
1115 static void unbundleSingleMI(MachineInstr *MI) {
1116   // Removing the first instruction in a bundle.
1117   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1118     MI->unbundleFromSucc();
1119   // Removing the last instruction in a bundle.
1120   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1121     MI->unbundleFromPred();
1122   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1123   // are already fine.
1124 }
1125 
1126 MachineBasicBlock::instr_iterator
1127 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1128   unbundleSingleMI(&*I);
1129   return Insts.erase(I);
1130 }
1131 
1132 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1133   unbundleSingleMI(MI);
1134   MI->clearFlag(MachineInstr::BundledPred);
1135   MI->clearFlag(MachineInstr::BundledSucc);
1136   return Insts.remove(MI);
1137 }
1138 
1139 MachineBasicBlock::instr_iterator
1140 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1141   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1142          "Cannot insert instruction with bundle flags");
1143   // Set the bundle flags when inserting inside a bundle.
1144   if (I != instr_end() && I->isBundledWithPred()) {
1145     MI->setFlag(MachineInstr::BundledPred);
1146     MI->setFlag(MachineInstr::BundledSucc);
1147   }
1148   return Insts.insert(I, MI);
1149 }
1150 
1151 /// This method unlinks 'this' from the containing function, and returns it, but
1152 /// does not delete it.
1153 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1154   assert(getParent() && "Not embedded in a function!");
1155   getParent()->remove(this);
1156   return this;
1157 }
1158 
1159 /// This method unlinks 'this' from the containing function, and deletes it.
1160 void MachineBasicBlock::eraseFromParent() {
1161   assert(getParent() && "Not embedded in a function!");
1162   getParent()->erase(this);
1163 }
1164 
1165 /// Given a machine basic block that branched to 'Old', change the code and CFG
1166 /// so that it branches to 'New' instead.
1167 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1168                                                MachineBasicBlock *New) {
1169   assert(Old != New && "Cannot replace self with self!");
1170 
1171   MachineBasicBlock::instr_iterator I = instr_end();
1172   while (I != instr_begin()) {
1173     --I;
1174     if (!I->isTerminator()) break;
1175 
1176     // Scan the operands of this machine instruction, replacing any uses of Old
1177     // with New.
1178     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1179       if (I->getOperand(i).isMBB() &&
1180           I->getOperand(i).getMBB() == Old)
1181         I->getOperand(i).setMBB(New);
1182   }
1183 
1184   // Update the successor information.
1185   replaceSuccessor(Old, New);
1186 }
1187 
1188 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1189 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1190 /// MBB successors from the CFG.  DestA and DestB can be null.
1191 ///
1192 /// Besides DestA and DestB, retain other edges leading to LandingPads
1193 /// (currently there can be only one; we don't check or require that here).
1194 /// Note it is possible that DestA and/or DestB are LandingPads.
1195 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1196                                              MachineBasicBlock *DestB,
1197                                              bool IsCond) {
1198   // The values of DestA and DestB frequently come from a call to the
1199   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1200   // values from there.
1201   //
1202   // 1. If both DestA and DestB are null, then the block ends with no branches
1203   //    (it falls through to its successor).
1204   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1205   //    with only an unconditional branch.
1206   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1207   //    with a conditional branch that falls through to a successor (DestB).
1208   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1209   //    conditional branch followed by an unconditional branch. DestA is the
1210   //    'true' destination and DestB is the 'false' destination.
1211 
1212   bool Changed = false;
1213 
1214   MachineBasicBlock *FallThru = getNextNode();
1215 
1216   if (!DestA && !DestB) {
1217     // Block falls through to successor.
1218     DestA = FallThru;
1219     DestB = FallThru;
1220   } else if (DestA && !DestB) {
1221     if (IsCond)
1222       // Block ends in conditional jump that falls through to successor.
1223       DestB = FallThru;
1224   } else {
1225     assert(DestA && DestB && IsCond &&
1226            "CFG in a bad state. Cannot correct CFG edges");
1227   }
1228 
1229   // Remove superfluous edges. I.e., those which aren't destinations of this
1230   // basic block, duplicate edges, or landing pads.
1231   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1232   MachineBasicBlock::succ_iterator SI = succ_begin();
1233   while (SI != succ_end()) {
1234     const MachineBasicBlock *MBB = *SI;
1235     if (!SeenMBBs.insert(MBB).second ||
1236         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1237       // This is a superfluous edge, remove it.
1238       SI = removeSuccessor(SI);
1239       Changed = true;
1240     } else {
1241       ++SI;
1242     }
1243   }
1244 
1245   if (Changed)
1246     normalizeSuccProbs();
1247   return Changed;
1248 }
1249 
1250 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1251 /// instructions.  Return UnknownLoc if there is none.
1252 DebugLoc
1253 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1254   // Skip debug declarations, we don't want a DebugLoc from them.
1255   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1256   if (MBBI != instr_end())
1257     return MBBI->getDebugLoc();
1258   return {};
1259 }
1260 
1261 /// Find and return the merged DebugLoc of the branch instructions of the block.
1262 /// Return UnknownLoc if there is none.
1263 DebugLoc
1264 MachineBasicBlock::findBranchDebugLoc() {
1265   DebugLoc DL;
1266   auto TI = getFirstTerminator();
1267   while (TI != end() && !TI->isBranch())
1268     ++TI;
1269 
1270   if (TI != end()) {
1271     DL = TI->getDebugLoc();
1272     for (++TI ; TI != end() ; ++TI)
1273       if (TI->isBranch())
1274         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1275   }
1276   return DL;
1277 }
1278 
1279 /// Return probability of the edge from this block to MBB.
1280 BranchProbability
1281 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1282   if (Probs.empty())
1283     return BranchProbability(1, succ_size());
1284 
1285   const auto &Prob = *getProbabilityIterator(Succ);
1286   if (Prob.isUnknown()) {
1287     // For unknown probabilities, collect the sum of all known ones, and evenly
1288     // ditribute the complemental of the sum to each unknown probability.
1289     unsigned KnownProbNum = 0;
1290     auto Sum = BranchProbability::getZero();
1291     for (auto &P : Probs) {
1292       if (!P.isUnknown()) {
1293         Sum += P;
1294         KnownProbNum++;
1295       }
1296     }
1297     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1298   } else
1299     return Prob;
1300 }
1301 
1302 /// Set successor probability of a given iterator.
1303 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1304                                            BranchProbability Prob) {
1305   assert(!Prob.isUnknown());
1306   if (Probs.empty())
1307     return;
1308   *getProbabilityIterator(I) = Prob;
1309 }
1310 
1311 /// Return probability iterator corresonding to the I successor iterator
1312 MachineBasicBlock::const_probability_iterator
1313 MachineBasicBlock::getProbabilityIterator(
1314     MachineBasicBlock::const_succ_iterator I) const {
1315   assert(Probs.size() == Successors.size() && "Async probability list!");
1316   const size_t index = std::distance(Successors.begin(), I);
1317   assert(index < Probs.size() && "Not a current successor!");
1318   return Probs.begin() + index;
1319 }
1320 
1321 /// Return probability iterator corresonding to the I successor iterator.
1322 MachineBasicBlock::probability_iterator
1323 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1324   assert(Probs.size() == Successors.size() && "Async probability list!");
1325   const size_t index = std::distance(Successors.begin(), I);
1326   assert(index < Probs.size() && "Not a current successor!");
1327   return Probs.begin() + index;
1328 }
1329 
1330 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1331 /// as of just before "MI".
1332 ///
1333 /// Search is localised to a neighborhood of
1334 /// Neighborhood instructions before (searching for defs or kills) and N
1335 /// instructions after (searching just for defs) MI.
1336 MachineBasicBlock::LivenessQueryResult
1337 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1338                                            unsigned Reg, const_iterator Before,
1339                                            unsigned Neighborhood) const {
1340   unsigned N = Neighborhood;
1341 
1342   // Start by searching backwards from Before, looking for kills, reads or defs.
1343   const_iterator I(Before);
1344   // If this is the first insn in the block, don't search backwards.
1345   if (I != begin()) {
1346     do {
1347       --I;
1348 
1349       MachineOperandIteratorBase::PhysRegInfo Info =
1350           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1351 
1352       // Defs happen after uses so they take precedence if both are present.
1353 
1354       // Register is dead after a dead def of the full register.
1355       if (Info.DeadDef)
1356         return LQR_Dead;
1357       // Register is (at least partially) live after a def.
1358       if (Info.Defined) {
1359         if (!Info.PartialDeadDef)
1360           return LQR_Live;
1361         // As soon as we saw a partial definition (dead or not),
1362         // we cannot tell if the value is partial live without
1363         // tracking the lanemasks. We are not going to do this,
1364         // so fall back on the remaining of the analysis.
1365         break;
1366       }
1367       // Register is dead after a full kill or clobber and no def.
1368       if (Info.Killed || Info.Clobbered)
1369         return LQR_Dead;
1370       // Register must be live if we read it.
1371       if (Info.Read)
1372         return LQR_Live;
1373     } while (I != begin() && --N > 0);
1374   }
1375 
1376   // Did we get to the start of the block?
1377   if (I == begin()) {
1378     // If so, the register's state is definitely defined by the live-in state.
1379     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
1380          ++RAI)
1381       if (isLiveIn(*RAI))
1382         return LQR_Live;
1383 
1384     return LQR_Dead;
1385   }
1386 
1387   N = Neighborhood;
1388 
1389   // Try searching forwards from Before, looking for reads or defs.
1390   I = const_iterator(Before);
1391   // If this is the last insn in the block, don't search forwards.
1392   if (I != end()) {
1393     for (++I; I != end() && N > 0; ++I, --N) {
1394       MachineOperandIteratorBase::PhysRegInfo Info =
1395           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1396 
1397       // Register is live when we read it here.
1398       if (Info.Read)
1399         return LQR_Live;
1400       // Register is dead if we can fully overwrite or clobber it here.
1401       if (Info.FullyDefined || Info.Clobbered)
1402         return LQR_Dead;
1403     }
1404   }
1405 
1406   // At this point we have no idea of the liveness of the register.
1407   return LQR_Unknown;
1408 }
1409 
1410 const uint32_t *
1411 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1412   // EH funclet entry does not preserve any registers.
1413   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1414 }
1415 
1416 const uint32_t *
1417 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1418   // If we see a return block with successors, this must be a funclet return,
1419   // which does not preserve any registers. If there are no successors, we don't
1420   // care what kind of return it is, putting a mask after it is a no-op.
1421   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1422 }
1423 
1424 void MachineBasicBlock::clearLiveIns() {
1425   LiveIns.clear();
1426 }
1427 
1428 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1429   assert(getParent()->getProperties().hasProperty(
1430       MachineFunctionProperties::Property::TracksLiveness) &&
1431       "Liveness information is accurate");
1432   return LiveIns.begin();
1433 }
1434