xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 3a8c51480ff881ff7fcd5831bf1b31d3c66519ed)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCContext.h"
34 #include "llvm/Support/DataTypes.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <algorithm>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "codegen"
42 
43 static cl::opt<bool> PrintSlotIndexes(
44     "print-slotindexes",
45     cl::desc("When printing machine IR, annotate instructions and blocks with "
46              "SlotIndexes when available"),
47     cl::init(true), cl::Hidden);
48 
49 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
50     : BB(B), Number(-1), xParent(&MF) {
51   Insts.Parent = this;
52   if (B)
53     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
54 }
55 
56 MachineBasicBlock::~MachineBasicBlock() = default;
57 
58 /// Return the MCSymbol for this basic block.
59 MCSymbol *MachineBasicBlock::getSymbol() const {
60   if (!CachedMCSymbol) {
61     const MachineFunction *MF = getParent();
62     MCContext &Ctx = MF->getContext();
63 
64     // We emit a non-temporary symbol -- with a descriptive name -- if it begins
65     // a section (with basic block sections). Otherwise we fall back to use temp
66     // label.
67     if (MF->hasBBSections() && isBeginSection()) {
68       SmallString<5> Suffix;
69       if (SectionID == MBBSectionID::ColdSectionID) {
70         Suffix += ".cold";
71       } else if (SectionID == MBBSectionID::ExceptionSectionID) {
72         Suffix += ".eh";
73       } else {
74         // For symbols that represent basic block sections, we add ".__part." to
75         // allow tools like symbolizers to know that this represents a part of
76         // the original function.
77         Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
78       }
79       CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
80     } else {
81       const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
82       CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
83                                              Twine(MF->getFunctionNumber()) +
84                                              "_" + Twine(getNumber()));
85     }
86   }
87   return CachedMCSymbol;
88 }
89 
90 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
91   if (!CachedEHCatchretMCSymbol) {
92     const MachineFunction *MF = getParent();
93     SmallString<128> SymbolName;
94     raw_svector_ostream(SymbolName)
95         << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
96     CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
97   }
98   return CachedEHCatchretMCSymbol;
99 }
100 
101 MCSymbol *MachineBasicBlock::getEndSymbol() const {
102   if (!CachedEndMCSymbol) {
103     const MachineFunction *MF = getParent();
104     MCContext &Ctx = MF->getContext();
105     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
106     CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
107                                               Twine(MF->getFunctionNumber()) +
108                                               "_" + Twine(getNumber()));
109   }
110   return CachedEndMCSymbol;
111 }
112 
113 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
114   MBB.print(OS);
115   return OS;
116 }
117 
118 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
119   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
120 }
121 
122 /// When an MBB is added to an MF, we need to update the parent pointer of the
123 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
124 /// operand list for registers.
125 ///
126 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
127 /// gets the next available unique MBB number. If it is removed from a
128 /// MachineFunction, it goes back to being #-1.
129 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
130     MachineBasicBlock *N) {
131   MachineFunction &MF = *N->getParent();
132   N->Number = MF.addToMBBNumbering(N);
133 
134   // Make sure the instructions have their operands in the reginfo lists.
135   MachineRegisterInfo &RegInfo = MF.getRegInfo();
136   for (MachineInstr &MI : N->instrs())
137     MI.AddRegOperandsToUseLists(RegInfo);
138 }
139 
140 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
141     MachineBasicBlock *N) {
142   N->getParent()->removeFromMBBNumbering(N->Number);
143   N->Number = -1;
144 }
145 
146 /// When we add an instruction to a basic block list, we update its parent
147 /// pointer and add its operands from reg use/def lists if appropriate.
148 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
149   assert(!N->getParent() && "machine instruction already in a basic block");
150   N->setParent(Parent);
151 
152   // Add the instruction's register operands to their corresponding
153   // use/def lists.
154   MachineFunction *MF = Parent->getParent();
155   N->AddRegOperandsToUseLists(MF->getRegInfo());
156   MF->handleInsertion(*N);
157 }
158 
159 /// When we remove an instruction from a basic block list, we update its parent
160 /// pointer and remove its operands from reg use/def lists if appropriate.
161 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
162   assert(N->getParent() && "machine instruction not in a basic block");
163 
164   // Remove from the use/def lists.
165   if (MachineFunction *MF = N->getMF()) {
166     MF->handleRemoval(*N);
167     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
168   }
169 
170   N->setParent(nullptr);
171 }
172 
173 /// When moving a range of instructions from one MBB list to another, we need to
174 /// update the parent pointers and the use/def lists.
175 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
176                                                        instr_iterator First,
177                                                        instr_iterator Last) {
178   assert(Parent->getParent() == FromList.Parent->getParent() &&
179          "cannot transfer MachineInstrs between MachineFunctions");
180 
181   // If it's within the same BB, there's nothing to do.
182   if (this == &FromList)
183     return;
184 
185   assert(Parent != FromList.Parent && "Two lists have the same parent?");
186 
187   // If splicing between two blocks within the same function, just update the
188   // parent pointers.
189   for (; First != Last; ++First)
190     First->setParent(Parent);
191 }
192 
193 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
194   assert(!MI->getParent() && "MI is still in a block!");
195   Parent->getParent()->deleteMachineInstr(MI);
196 }
197 
198 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
199   instr_iterator I = instr_begin(), E = instr_end();
200   while (I != E && I->isPHI())
201     ++I;
202   assert((I == E || !I->isInsideBundle()) &&
203          "First non-phi MI cannot be inside a bundle!");
204   return I;
205 }
206 
207 MachineBasicBlock::iterator
208 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
209   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
210 
211   iterator E = end();
212   while (I != E && (I->isPHI() || I->isPosition() ||
213                     TII->isBasicBlockPrologue(*I)))
214     ++I;
215   // FIXME: This needs to change if we wish to bundle labels
216   // inside the bundle.
217   assert((I == E || !I->isInsideBundle()) &&
218          "First non-phi / non-label instruction is inside a bundle!");
219   return I;
220 }
221 
222 MachineBasicBlock::iterator
223 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
224                                           bool SkipPseudoOp) {
225   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
226 
227   iterator E = end();
228   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
229                     (SkipPseudoOp && I->isPseudoProbe()) ||
230                     TII->isBasicBlockPrologue(*I)))
231     ++I;
232   // FIXME: This needs to change if we wish to bundle labels / dbg_values
233   // inside the bundle.
234   assert((I == E || !I->isInsideBundle()) &&
235          "First non-phi / non-label / non-debug "
236          "instruction is inside a bundle!");
237   return I;
238 }
239 
240 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
241   iterator B = begin(), E = end(), I = E;
242   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
243     ; /*noop */
244   while (I != E && !I->isTerminator())
245     ++I;
246   return I;
247 }
248 
249 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
250   instr_iterator B = instr_begin(), E = instr_end(), I = E;
251   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
252     ; /*noop */
253   while (I != E && !I->isTerminator())
254     ++I;
255   return I;
256 }
257 
258 MachineBasicBlock::iterator
259 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
260   // Skip over begin-of-block dbg_value instructions.
261   return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
262 }
263 
264 MachineBasicBlock::iterator
265 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
266   // Skip over end-of-block dbg_value instructions.
267   instr_iterator B = instr_begin(), I = instr_end();
268   while (I != B) {
269     --I;
270     // Return instruction that starts a bundle.
271     if (I->isDebugInstr() || I->isInsideBundle())
272       continue;
273     if (SkipPseudoOp && I->isPseudoProbe())
274       continue;
275     return I;
276   }
277   // The block is all debug values.
278   return end();
279 }
280 
281 bool MachineBasicBlock::hasEHPadSuccessor() const {
282   for (const MachineBasicBlock *Succ : successors())
283     if (Succ->isEHPad())
284       return true;
285   return false;
286 }
287 
288 bool MachineBasicBlock::isEntryBlock() const {
289   return getParent()->begin() == getIterator();
290 }
291 
292 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
293 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
294   print(dbgs());
295 }
296 #endif
297 
298 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
299   for (const MachineBasicBlock *Succ : successors()) {
300     if (Succ->isInlineAsmBrIndirectTarget())
301       return true;
302   }
303   return false;
304 }
305 
306 bool MachineBasicBlock::isLegalToHoistInto() const {
307   if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
308     return false;
309   return true;
310 }
311 
312 StringRef MachineBasicBlock::getName() const {
313   if (const BasicBlock *LBB = getBasicBlock())
314     return LBB->getName();
315   else
316     return StringRef("", 0);
317 }
318 
319 /// Return a hopefully unique identifier for this block.
320 std::string MachineBasicBlock::getFullName() const {
321   std::string Name;
322   if (getParent())
323     Name = (getParent()->getName() + ":").str();
324   if (getBasicBlock())
325     Name += getBasicBlock()->getName();
326   else
327     Name += ("BB" + Twine(getNumber())).str();
328   return Name;
329 }
330 
331 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
332                               bool IsStandalone) const {
333   const MachineFunction *MF = getParent();
334   if (!MF) {
335     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
336        << " is null\n";
337     return;
338   }
339   const Function &F = MF->getFunction();
340   const Module *M = F.getParent();
341   ModuleSlotTracker MST(M);
342   MST.incorporateFunction(F);
343   print(OS, MST, Indexes, IsStandalone);
344 }
345 
346 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
347                               const SlotIndexes *Indexes,
348                               bool IsStandalone) const {
349   const MachineFunction *MF = getParent();
350   if (!MF) {
351     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
352        << " is null\n";
353     return;
354   }
355 
356   if (Indexes && PrintSlotIndexes)
357     OS << Indexes->getMBBStartIdx(this) << '\t';
358 
359   printName(OS, PrintNameIr | PrintNameAttributes, &MST);
360   OS << ":\n";
361 
362   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
363   const MachineRegisterInfo &MRI = MF->getRegInfo();
364   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
365   bool HasLineAttributes = false;
366 
367   // Print the preds of this block according to the CFG.
368   if (!pred_empty() && IsStandalone) {
369     if (Indexes) OS << '\t';
370     // Don't indent(2), align with previous line attributes.
371     OS << "; predecessors: ";
372     ListSeparator LS;
373     for (auto *Pred : predecessors())
374       OS << LS << printMBBReference(*Pred);
375     OS << '\n';
376     HasLineAttributes = true;
377   }
378 
379   if (!succ_empty()) {
380     if (Indexes) OS << '\t';
381     // Print the successors
382     OS.indent(2) << "successors: ";
383     ListSeparator LS;
384     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
385       OS << LS << printMBBReference(**I);
386       if (!Probs.empty())
387         OS << '('
388            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
389            << ')';
390     }
391     if (!Probs.empty() && IsStandalone) {
392       // Print human readable probabilities as comments.
393       OS << "; ";
394       ListSeparator LS;
395       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
396         const BranchProbability &BP = getSuccProbability(I);
397         OS << LS << printMBBReference(**I) << '('
398            << format("%.2f%%",
399                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
400                           100.0 * 100.0) /
401                          100.0)
402            << ')';
403       }
404     }
405 
406     OS << '\n';
407     HasLineAttributes = true;
408   }
409 
410   if (!livein_empty() && MRI.tracksLiveness()) {
411     if (Indexes) OS << '\t';
412     OS.indent(2) << "liveins: ";
413 
414     ListSeparator LS;
415     for (const auto &LI : liveins()) {
416       OS << LS << printReg(LI.PhysReg, TRI);
417       if (!LI.LaneMask.all())
418         OS << ":0x" << PrintLaneMask(LI.LaneMask);
419     }
420     HasLineAttributes = true;
421   }
422 
423   if (HasLineAttributes)
424     OS << '\n';
425 
426   bool IsInBundle = false;
427   for (const MachineInstr &MI : instrs()) {
428     if (Indexes && PrintSlotIndexes) {
429       if (Indexes->hasIndex(MI))
430         OS << Indexes->getInstructionIndex(MI);
431       OS << '\t';
432     }
433 
434     if (IsInBundle && !MI.isInsideBundle()) {
435       OS.indent(2) << "}\n";
436       IsInBundle = false;
437     }
438 
439     OS.indent(IsInBundle ? 4 : 2);
440     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
441              /*AddNewLine=*/false, &TII);
442 
443     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
444       OS << " {";
445       IsInBundle = true;
446     }
447     OS << '\n';
448   }
449 
450   if (IsInBundle)
451     OS.indent(2) << "}\n";
452 
453   if (IrrLoopHeaderWeight && IsStandalone) {
454     if (Indexes) OS << '\t';
455     OS.indent(2) << "; Irreducible loop header weight: "
456                  << IrrLoopHeaderWeight.getValue() << '\n';
457   }
458 }
459 
460 /// Print the basic block's name as:
461 ///
462 ///    bb.{number}[.{ir-name}] [(attributes...)]
463 ///
464 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
465 /// (which is the default). If the IR block has no name, it is identified
466 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
467 ///
468 /// When the \ref PrintNameAttributes flag is passed, additional attributes
469 /// of the block are printed when set.
470 ///
471 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
472 ///                       the parts to print.
473 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
474 ///                          incorporate its own tracker when necessary to
475 ///                          determine the block's IR name.
476 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
477                                   ModuleSlotTracker *moduleSlotTracker) const {
478   os << "bb." << getNumber();
479   bool hasAttributes = false;
480 
481   if (printNameFlags & PrintNameIr) {
482     if (const auto *bb = getBasicBlock()) {
483       if (bb->hasName()) {
484         os << '.' << bb->getName();
485       } else {
486         hasAttributes = true;
487         os << " (";
488 
489         int slot = -1;
490 
491         if (moduleSlotTracker) {
492           slot = moduleSlotTracker->getLocalSlot(bb);
493         } else if (bb->getParent()) {
494           ModuleSlotTracker tmpTracker(bb->getModule(), false);
495           tmpTracker.incorporateFunction(*bb->getParent());
496           slot = tmpTracker.getLocalSlot(bb);
497         }
498 
499         if (slot == -1)
500           os << "<ir-block badref>";
501         else
502           os << (Twine("%ir-block.") + Twine(slot)).str();
503       }
504     }
505   }
506 
507   if (printNameFlags & PrintNameAttributes) {
508     if (hasAddressTaken()) {
509       os << (hasAttributes ? ", " : " (");
510       os << "address-taken";
511       hasAttributes = true;
512     }
513     if (isEHPad()) {
514       os << (hasAttributes ? ", " : " (");
515       os << "landing-pad";
516       hasAttributes = true;
517     }
518     if (isInlineAsmBrIndirectTarget()) {
519       os << (hasAttributes ? ", " : " (");
520       os << "inlineasm-br-indirect-target";
521       hasAttributes = true;
522     }
523     if (isEHFuncletEntry()) {
524       os << (hasAttributes ? ", " : " (");
525       os << "ehfunclet-entry";
526       hasAttributes = true;
527     }
528     if (getAlignment() != Align(1)) {
529       os << (hasAttributes ? ", " : " (");
530       os << "align " << getAlignment().value();
531       hasAttributes = true;
532     }
533     if (getSectionID() != MBBSectionID(0)) {
534       os << (hasAttributes ? ", " : " (");
535       os << "bbsections ";
536       switch (getSectionID().Type) {
537       case MBBSectionID::SectionType::Exception:
538         os << "Exception";
539         break;
540       case MBBSectionID::SectionType::Cold:
541         os << "Cold";
542         break;
543       default:
544         os << getSectionID().Number;
545       }
546       hasAttributes = true;
547     }
548   }
549 
550   if (hasAttributes)
551     os << ')';
552 }
553 
554 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
555                                        bool /*PrintType*/) const {
556   OS << '%';
557   printName(OS, 0);
558 }
559 
560 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
561   LiveInVector::iterator I = find_if(
562       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
563   if (I == LiveIns.end())
564     return;
565 
566   I->LaneMask &= ~LaneMask;
567   if (I->LaneMask.none())
568     LiveIns.erase(I);
569 }
570 
571 MachineBasicBlock::livein_iterator
572 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
573   // Get non-const version of iterator.
574   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
575   return LiveIns.erase(LI);
576 }
577 
578 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
579   livein_iterator I = find_if(
580       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
581   return I != livein_end() && (I->LaneMask & LaneMask).any();
582 }
583 
584 void MachineBasicBlock::sortUniqueLiveIns() {
585   llvm::sort(LiveIns,
586              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
587                return LI0.PhysReg < LI1.PhysReg;
588              });
589   // Liveins are sorted by physreg now we can merge their lanemasks.
590   LiveInVector::const_iterator I = LiveIns.begin();
591   LiveInVector::const_iterator J;
592   LiveInVector::iterator Out = LiveIns.begin();
593   for (; I != LiveIns.end(); ++Out, I = J) {
594     MCRegister PhysReg = I->PhysReg;
595     LaneBitmask LaneMask = I->LaneMask;
596     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
597       LaneMask |= J->LaneMask;
598     Out->PhysReg = PhysReg;
599     Out->LaneMask = LaneMask;
600   }
601   LiveIns.erase(Out, LiveIns.end());
602 }
603 
604 Register
605 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
606   assert(getParent() && "MBB must be inserted in function");
607   assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
608   assert(RC && "Register class is required");
609   assert((isEHPad() || this == &getParent()->front()) &&
610          "Only the entry block and landing pads can have physreg live ins");
611 
612   bool LiveIn = isLiveIn(PhysReg);
613   iterator I = SkipPHIsAndLabels(begin()), E = end();
614   MachineRegisterInfo &MRI = getParent()->getRegInfo();
615   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
616 
617   // Look for an existing copy.
618   if (LiveIn)
619     for (;I != E && I->isCopy(); ++I)
620       if (I->getOperand(1).getReg() == PhysReg) {
621         Register VirtReg = I->getOperand(0).getReg();
622         if (!MRI.constrainRegClass(VirtReg, RC))
623           llvm_unreachable("Incompatible live-in register class.");
624         return VirtReg;
625       }
626 
627   // No luck, create a virtual register.
628   Register VirtReg = MRI.createVirtualRegister(RC);
629   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
630     .addReg(PhysReg, RegState::Kill);
631   if (!LiveIn)
632     addLiveIn(PhysReg);
633   return VirtReg;
634 }
635 
636 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
637   getParent()->splice(NewAfter->getIterator(), getIterator());
638 }
639 
640 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
641   getParent()->splice(++NewBefore->getIterator(), getIterator());
642 }
643 
644 void MachineBasicBlock::updateTerminator(
645     MachineBasicBlock *PreviousLayoutSuccessor) {
646   LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
647                     << "\n");
648 
649   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
650   // A block with no successors has no concerns with fall-through edges.
651   if (this->succ_empty())
652     return;
653 
654   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
655   SmallVector<MachineOperand, 4> Cond;
656   DebugLoc DL = findBranchDebugLoc();
657   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
658   (void) B;
659   assert(!B && "UpdateTerminators requires analyzable predecessors!");
660   if (Cond.empty()) {
661     if (TBB) {
662       // The block has an unconditional branch. If its successor is now its
663       // layout successor, delete the branch.
664       if (isLayoutSuccessor(TBB))
665         TII->removeBranch(*this);
666     } else {
667       // The block has an unconditional fallthrough, or the end of the block is
668       // unreachable.
669 
670       // Unfortunately, whether the end of the block is unreachable is not
671       // immediately obvious; we must fall back to checking the successor list,
672       // and assuming that if the passed in block is in the succesor list and
673       // not an EHPad, it must be the intended target.
674       if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
675           PreviousLayoutSuccessor->isEHPad())
676         return;
677 
678       // If the unconditional successor block is not the current layout
679       // successor, insert a branch to jump to it.
680       if (!isLayoutSuccessor(PreviousLayoutSuccessor))
681         TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
682     }
683     return;
684   }
685 
686   if (FBB) {
687     // The block has a non-fallthrough conditional branch. If one of its
688     // successors is its layout successor, rewrite it to a fallthrough
689     // conditional branch.
690     if (isLayoutSuccessor(TBB)) {
691       if (TII->reverseBranchCondition(Cond))
692         return;
693       TII->removeBranch(*this);
694       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
695     } else if (isLayoutSuccessor(FBB)) {
696       TII->removeBranch(*this);
697       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
698     }
699     return;
700   }
701 
702   // We now know we're going to fallthrough to PreviousLayoutSuccessor.
703   assert(PreviousLayoutSuccessor);
704   assert(!PreviousLayoutSuccessor->isEHPad());
705   assert(isSuccessor(PreviousLayoutSuccessor));
706 
707   if (PreviousLayoutSuccessor == TBB) {
708     // We had a fallthrough to the same basic block as the conditional jump
709     // targets.  Remove the conditional jump, leaving an unconditional
710     // fallthrough or an unconditional jump.
711     TII->removeBranch(*this);
712     if (!isLayoutSuccessor(TBB)) {
713       Cond.clear();
714       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
715     }
716     return;
717   }
718 
719   // The block has a fallthrough conditional branch.
720   if (isLayoutSuccessor(TBB)) {
721     if (TII->reverseBranchCondition(Cond)) {
722       // We can't reverse the condition, add an unconditional branch.
723       Cond.clear();
724       TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
725       return;
726     }
727     TII->removeBranch(*this);
728     TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
729   } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
730     TII->removeBranch(*this);
731     TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
732   }
733 }
734 
735 void MachineBasicBlock::validateSuccProbs() const {
736 #ifndef NDEBUG
737   int64_t Sum = 0;
738   for (auto Prob : Probs)
739     Sum += Prob.getNumerator();
740   // Due to precision issue, we assume that the sum of probabilities is one if
741   // the difference between the sum of their numerators and the denominator is
742   // no greater than the number of successors.
743   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
744              Probs.size() &&
745          "The sum of successors's probabilities exceeds one.");
746 #endif // NDEBUG
747 }
748 
749 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
750                                      BranchProbability Prob) {
751   // Probability list is either empty (if successor list isn't empty, this means
752   // disabled optimization) or has the same size as successor list.
753   if (!(Probs.empty() && !Successors.empty()))
754     Probs.push_back(Prob);
755   Successors.push_back(Succ);
756   Succ->addPredecessor(this);
757 }
758 
759 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
760   // We need to make sure probability list is either empty or has the same size
761   // of successor list. When this function is called, we can safely delete all
762   // probability in the list.
763   Probs.clear();
764   Successors.push_back(Succ);
765   Succ->addPredecessor(this);
766 }
767 
768 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
769                                        MachineBasicBlock *New,
770                                        bool NormalizeSuccProbs) {
771   succ_iterator OldI = llvm::find(successors(), Old);
772   assert(OldI != succ_end() && "Old is not a successor of this block!");
773   assert(!llvm::is_contained(successors(), New) &&
774          "New is already a successor of this block!");
775 
776   // Add a new successor with equal probability as the original one. Note
777   // that we directly copy the probability using the iterator rather than
778   // getting a potentially synthetic probability computed when unknown. This
779   // preserves the probabilities as-is and then we can renormalize them and
780   // query them effectively afterward.
781   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
782                                   : *getProbabilityIterator(OldI));
783   if (NormalizeSuccProbs)
784     normalizeSuccProbs();
785 }
786 
787 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
788                                         bool NormalizeSuccProbs) {
789   succ_iterator I = find(Successors, Succ);
790   removeSuccessor(I, NormalizeSuccProbs);
791 }
792 
793 MachineBasicBlock::succ_iterator
794 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
795   assert(I != Successors.end() && "Not a current successor!");
796 
797   // If probability list is empty it means we don't use it (disabled
798   // optimization).
799   if (!Probs.empty()) {
800     probability_iterator WI = getProbabilityIterator(I);
801     Probs.erase(WI);
802     if (NormalizeSuccProbs)
803       normalizeSuccProbs();
804   }
805 
806   (*I)->removePredecessor(this);
807   return Successors.erase(I);
808 }
809 
810 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
811                                          MachineBasicBlock *New) {
812   if (Old == New)
813     return;
814 
815   succ_iterator E = succ_end();
816   succ_iterator NewI = E;
817   succ_iterator OldI = E;
818   for (succ_iterator I = succ_begin(); I != E; ++I) {
819     if (*I == Old) {
820       OldI = I;
821       if (NewI != E)
822         break;
823     }
824     if (*I == New) {
825       NewI = I;
826       if (OldI != E)
827         break;
828     }
829   }
830   assert(OldI != E && "Old is not a successor of this block");
831 
832   // If New isn't already a successor, let it take Old's place.
833   if (NewI == E) {
834     Old->removePredecessor(this);
835     New->addPredecessor(this);
836     *OldI = New;
837     return;
838   }
839 
840   // New is already a successor.
841   // Update its probability instead of adding a duplicate edge.
842   if (!Probs.empty()) {
843     auto ProbIter = getProbabilityIterator(NewI);
844     if (!ProbIter->isUnknown())
845       *ProbIter += *getProbabilityIterator(OldI);
846   }
847   removeSuccessor(OldI);
848 }
849 
850 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
851                                       succ_iterator I) {
852   if (!Orig->Probs.empty())
853     addSuccessor(*I, Orig->getSuccProbability(I));
854   else
855     addSuccessorWithoutProb(*I);
856 }
857 
858 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
859   Predecessors.push_back(Pred);
860 }
861 
862 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
863   pred_iterator I = find(Predecessors, Pred);
864   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
865   Predecessors.erase(I);
866 }
867 
868 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
869   if (this == FromMBB)
870     return;
871 
872   while (!FromMBB->succ_empty()) {
873     MachineBasicBlock *Succ = *FromMBB->succ_begin();
874 
875     // If probability list is empty it means we don't use it (disabled
876     // optimization).
877     if (!FromMBB->Probs.empty()) {
878       auto Prob = *FromMBB->Probs.begin();
879       addSuccessor(Succ, Prob);
880     } else
881       addSuccessorWithoutProb(Succ);
882 
883     FromMBB->removeSuccessor(Succ);
884   }
885 }
886 
887 void
888 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
889   if (this == FromMBB)
890     return;
891 
892   while (!FromMBB->succ_empty()) {
893     MachineBasicBlock *Succ = *FromMBB->succ_begin();
894     if (!FromMBB->Probs.empty()) {
895       auto Prob = *FromMBB->Probs.begin();
896       addSuccessor(Succ, Prob);
897     } else
898       addSuccessorWithoutProb(Succ);
899     FromMBB->removeSuccessor(Succ);
900 
901     // Fix up any PHI nodes in the successor.
902     Succ->replacePhiUsesWith(FromMBB, this);
903   }
904   normalizeSuccProbs();
905 }
906 
907 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
908   return is_contained(predecessors(), MBB);
909 }
910 
911 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
912   return is_contained(successors(), MBB);
913 }
914 
915 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
916   MachineFunction::const_iterator I(this);
917   return std::next(I) == MachineFunction::const_iterator(MBB);
918 }
919 
920 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
921   MachineFunction::iterator Fallthrough = getIterator();
922   ++Fallthrough;
923   // If FallthroughBlock is off the end of the function, it can't fall through.
924   if (Fallthrough == getParent()->end())
925     return nullptr;
926 
927   // If FallthroughBlock isn't a successor, no fallthrough is possible.
928   if (!isSuccessor(&*Fallthrough))
929     return nullptr;
930 
931   // Analyze the branches, if any, at the end of the block.
932   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
933   SmallVector<MachineOperand, 4> Cond;
934   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
935   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
936     // If we couldn't analyze the branch, examine the last instruction.
937     // If the block doesn't end in a known control barrier, assume fallthrough
938     // is possible. The isPredicated check is needed because this code can be
939     // called during IfConversion, where an instruction which is normally a
940     // Barrier is predicated and thus no longer an actual control barrier.
941     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
942                ? &*Fallthrough
943                : nullptr;
944   }
945 
946   // If there is no branch, control always falls through.
947   if (!TBB) return &*Fallthrough;
948 
949   // If there is some explicit branch to the fallthrough block, it can obviously
950   // reach, even though the branch should get folded to fall through implicitly.
951   if (MachineFunction::iterator(TBB) == Fallthrough ||
952       MachineFunction::iterator(FBB) == Fallthrough)
953     return &*Fallthrough;
954 
955   // If it's an unconditional branch to some block not the fall through, it
956   // doesn't fall through.
957   if (Cond.empty()) return nullptr;
958 
959   // Otherwise, if it is conditional and has no explicit false block, it falls
960   // through.
961   return (FBB == nullptr) ? &*Fallthrough : nullptr;
962 }
963 
964 bool MachineBasicBlock::canFallThrough() {
965   return getFallThrough() != nullptr;
966 }
967 
968 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
969                                               bool UpdateLiveIns,
970                                               LiveIntervals *LIS) {
971   MachineBasicBlock::iterator SplitPoint(&MI);
972   ++SplitPoint;
973 
974   if (SplitPoint == end()) {
975     // Don't bother with a new block.
976     return this;
977   }
978 
979   MachineFunction *MF = getParent();
980 
981   LivePhysRegs LiveRegs;
982   if (UpdateLiveIns) {
983     // Make sure we add any physregs we define in the block as liveins to the
984     // new block.
985     MachineBasicBlock::iterator Prev(&MI);
986     LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
987     LiveRegs.addLiveOuts(*this);
988     for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
989       LiveRegs.stepBackward(*I);
990   }
991 
992   MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
993 
994   MF->insert(++MachineFunction::iterator(this), SplitBB);
995   SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
996 
997   SplitBB->transferSuccessorsAndUpdatePHIs(this);
998   addSuccessor(SplitBB);
999 
1000   if (UpdateLiveIns)
1001     addLiveIns(*SplitBB, LiveRegs);
1002 
1003   if (LIS)
1004     LIS->insertMBBInMaps(SplitBB);
1005 
1006   return SplitBB;
1007 }
1008 
1009 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1010     MachineBasicBlock *Succ, Pass &P,
1011     std::vector<SparseBitVector<>> *LiveInSets) {
1012   if (!canSplitCriticalEdge(Succ))
1013     return nullptr;
1014 
1015   MachineFunction *MF = getParent();
1016   MachineBasicBlock *PrevFallthrough = getNextNode();
1017   DebugLoc DL;  // FIXME: this is nowhere
1018 
1019   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1020   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1021   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1022                     << " -- " << printMBBReference(*NMBB) << " -- "
1023                     << printMBBReference(*Succ) << '\n');
1024 
1025   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1026   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1027   if (LIS)
1028     LIS->insertMBBInMaps(NMBB);
1029   else if (Indexes)
1030     Indexes->insertMBBInMaps(NMBB);
1031 
1032   // On some targets like Mips, branches may kill virtual registers. Make sure
1033   // that LiveVariables is properly updated after updateTerminator replaces the
1034   // terminators.
1035   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1036 
1037   // Collect a list of virtual registers killed by the terminators.
1038   SmallVector<Register, 4> KilledRegs;
1039   if (LV)
1040     for (MachineInstr &MI :
1041          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1042       for (MachineOperand &MO : MI.operands()) {
1043         if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse() || !MO.isKill() ||
1044             MO.isUndef())
1045           continue;
1046         Register Reg = MO.getReg();
1047         if (Register::isPhysicalRegister(Reg) ||
1048             LV->getVarInfo(Reg).removeKill(MI)) {
1049           KilledRegs.push_back(Reg);
1050           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1051           MO.setIsKill(false);
1052         }
1053       }
1054     }
1055 
1056   SmallVector<Register, 4> UsedRegs;
1057   if (LIS) {
1058     for (MachineInstr &MI :
1059          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1060       for (const MachineOperand &MO : MI.operands()) {
1061         if (!MO.isReg() || MO.getReg() == 0)
1062           continue;
1063 
1064         Register Reg = MO.getReg();
1065         if (!is_contained(UsedRegs, Reg))
1066           UsedRegs.push_back(Reg);
1067       }
1068     }
1069   }
1070 
1071   ReplaceUsesOfBlockWith(Succ, NMBB);
1072 
1073   // If updateTerminator() removes instructions, we need to remove them from
1074   // SlotIndexes.
1075   SmallVector<MachineInstr*, 4> Terminators;
1076   if (Indexes) {
1077     for (MachineInstr &MI :
1078          llvm::make_range(getFirstInstrTerminator(), instr_end()))
1079       Terminators.push_back(&MI);
1080   }
1081 
1082   // Since we replaced all uses of Succ with NMBB, that should also be treated
1083   // as the fallthrough successor
1084   if (Succ == PrevFallthrough)
1085     PrevFallthrough = NMBB;
1086   updateTerminator(PrevFallthrough);
1087 
1088   if (Indexes) {
1089     SmallVector<MachineInstr*, 4> NewTerminators;
1090     for (MachineInstr &MI :
1091          llvm::make_range(getFirstInstrTerminator(), instr_end()))
1092       NewTerminators.push_back(&MI);
1093 
1094     for (MachineInstr *Terminator : Terminators) {
1095       if (!is_contained(NewTerminators, Terminator))
1096         Indexes->removeMachineInstrFromMaps(*Terminator);
1097     }
1098   }
1099 
1100   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1101   NMBB->addSuccessor(Succ);
1102   if (!NMBB->isLayoutSuccessor(Succ)) {
1103     SmallVector<MachineOperand, 4> Cond;
1104     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1105     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1106 
1107     if (Indexes) {
1108       for (MachineInstr &MI : NMBB->instrs()) {
1109         // Some instructions may have been moved to NMBB by updateTerminator(),
1110         // so we first remove any instruction that already has an index.
1111         if (Indexes->hasIndex(MI))
1112           Indexes->removeMachineInstrFromMaps(MI);
1113         Indexes->insertMachineInstrInMaps(MI);
1114       }
1115     }
1116   }
1117 
1118   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1119   Succ->replacePhiUsesWith(this, NMBB);
1120 
1121   // Inherit live-ins from the successor
1122   for (const auto &LI : Succ->liveins())
1123     NMBB->addLiveIn(LI);
1124 
1125   // Update LiveVariables.
1126   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1127   if (LV) {
1128     // Restore kills of virtual registers that were killed by the terminators.
1129     while (!KilledRegs.empty()) {
1130       Register Reg = KilledRegs.pop_back_val();
1131       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1132         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1133           continue;
1134         if (Register::isVirtualRegister(Reg))
1135           LV->getVarInfo(Reg).Kills.push_back(&*I);
1136         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1137         break;
1138       }
1139     }
1140     // Update relevant live-through information.
1141     if (LiveInSets != nullptr)
1142       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1143     else
1144       LV->addNewBlock(NMBB, this, Succ);
1145   }
1146 
1147   if (LIS) {
1148     // After splitting the edge and updating SlotIndexes, live intervals may be
1149     // in one of two situations, depending on whether this block was the last in
1150     // the function. If the original block was the last in the function, all
1151     // live intervals will end prior to the beginning of the new split block. If
1152     // the original block was not at the end of the function, all live intervals
1153     // will extend to the end of the new split block.
1154 
1155     bool isLastMBB =
1156       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1157 
1158     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1159     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1160     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1161 
1162     // Find the registers used from NMBB in PHIs in Succ.
1163     SmallSet<Register, 8> PHISrcRegs;
1164     for (MachineBasicBlock::instr_iterator
1165          I = Succ->instr_begin(), E = Succ->instr_end();
1166          I != E && I->isPHI(); ++I) {
1167       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1168         if (I->getOperand(ni+1).getMBB() == NMBB) {
1169           MachineOperand &MO = I->getOperand(ni);
1170           Register Reg = MO.getReg();
1171           PHISrcRegs.insert(Reg);
1172           if (MO.isUndef())
1173             continue;
1174 
1175           LiveInterval &LI = LIS->getInterval(Reg);
1176           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1177           assert(VNI &&
1178                  "PHI sources should be live out of their predecessors.");
1179           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1180         }
1181       }
1182     }
1183 
1184     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1185     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1186       Register Reg = Register::index2VirtReg(i);
1187       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1188         continue;
1189 
1190       LiveInterval &LI = LIS->getInterval(Reg);
1191       if (!LI.liveAt(PrevIndex))
1192         continue;
1193 
1194       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1195       if (isLiveOut && isLastMBB) {
1196         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1197         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1198         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1199       } else if (!isLiveOut && !isLastMBB) {
1200         LI.removeSegment(StartIndex, EndIndex);
1201       }
1202     }
1203 
1204     // Update all intervals for registers whose uses may have been modified by
1205     // updateTerminator().
1206     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1207   }
1208 
1209   if (MachineDominatorTree *MDT =
1210           P.getAnalysisIfAvailable<MachineDominatorTree>())
1211     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1212 
1213   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1214     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1215       // If one or the other blocks were not in a loop, the new block is not
1216       // either, and thus LI doesn't need to be updated.
1217       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1218         if (TIL == DestLoop) {
1219           // Both in the same loop, the NMBB joins loop.
1220           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1221         } else if (TIL->contains(DestLoop)) {
1222           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1223           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1224         } else if (DestLoop->contains(TIL)) {
1225           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1226           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1227         } else {
1228           // Edge from two loops with no containment relation.  Because these
1229           // are natural loops, we know that the destination block must be the
1230           // header of its loop (adding a branch into a loop elsewhere would
1231           // create an irreducible loop).
1232           assert(DestLoop->getHeader() == Succ &&
1233                  "Should not create irreducible loops!");
1234           if (MachineLoop *P = DestLoop->getParentLoop())
1235             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1236         }
1237       }
1238     }
1239 
1240   return NMBB;
1241 }
1242 
1243 bool MachineBasicBlock::canSplitCriticalEdge(
1244     const MachineBasicBlock *Succ) const {
1245   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1246   // it in this generic function.
1247   if (Succ->isEHPad())
1248     return false;
1249 
1250   // Splitting the critical edge to a callbr's indirect block isn't advised.
1251   // Don't do it in this generic function.
1252   if (Succ->isInlineAsmBrIndirectTarget())
1253     return false;
1254 
1255   const MachineFunction *MF = getParent();
1256   // Performance might be harmed on HW that implements branching using exec mask
1257   // where both sides of the branches are always executed.
1258   if (MF->getTarget().requiresStructuredCFG())
1259     return false;
1260 
1261   // We may need to update this's terminator, but we can't do that if
1262   // analyzeBranch fails. If this uses a jump table, we won't touch it.
1263   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1264   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1265   SmallVector<MachineOperand, 4> Cond;
1266   // AnalyzeBanch should modify this, since we did not allow modification.
1267   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1268                          /*AllowModify*/ false))
1269     return false;
1270 
1271   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1272   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1273   // case that we can't handle. Since this never happens in properly optimized
1274   // code, just skip those edges.
1275   if (TBB && TBB == FBB) {
1276     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1277                       << printMBBReference(*this) << '\n');
1278     return false;
1279   }
1280   return true;
1281 }
1282 
1283 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1284 /// neighboring instructions so the bundle won't be broken by removing MI.
1285 static void unbundleSingleMI(MachineInstr *MI) {
1286   // Removing the first instruction in a bundle.
1287   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1288     MI->unbundleFromSucc();
1289   // Removing the last instruction in a bundle.
1290   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1291     MI->unbundleFromPred();
1292   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1293   // are already fine.
1294 }
1295 
1296 MachineBasicBlock::instr_iterator
1297 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1298   unbundleSingleMI(&*I);
1299   return Insts.erase(I);
1300 }
1301 
1302 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1303   unbundleSingleMI(MI);
1304   MI->clearFlag(MachineInstr::BundledPred);
1305   MI->clearFlag(MachineInstr::BundledSucc);
1306   return Insts.remove(MI);
1307 }
1308 
1309 MachineBasicBlock::instr_iterator
1310 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1311   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1312          "Cannot insert instruction with bundle flags");
1313   // Set the bundle flags when inserting inside a bundle.
1314   if (I != instr_end() && I->isBundledWithPred()) {
1315     MI->setFlag(MachineInstr::BundledPred);
1316     MI->setFlag(MachineInstr::BundledSucc);
1317   }
1318   return Insts.insert(I, MI);
1319 }
1320 
1321 /// This method unlinks 'this' from the containing function, and returns it, but
1322 /// does not delete it.
1323 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1324   assert(getParent() && "Not embedded in a function!");
1325   getParent()->remove(this);
1326   return this;
1327 }
1328 
1329 /// This method unlinks 'this' from the containing function, and deletes it.
1330 void MachineBasicBlock::eraseFromParent() {
1331   assert(getParent() && "Not embedded in a function!");
1332   getParent()->erase(this);
1333 }
1334 
1335 /// Given a machine basic block that branched to 'Old', change the code and CFG
1336 /// so that it branches to 'New' instead.
1337 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1338                                                MachineBasicBlock *New) {
1339   assert(Old != New && "Cannot replace self with self!");
1340 
1341   MachineBasicBlock::instr_iterator I = instr_end();
1342   while (I != instr_begin()) {
1343     --I;
1344     if (!I->isTerminator()) break;
1345 
1346     // Scan the operands of this machine instruction, replacing any uses of Old
1347     // with New.
1348     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1349       if (I->getOperand(i).isMBB() &&
1350           I->getOperand(i).getMBB() == Old)
1351         I->getOperand(i).setMBB(New);
1352   }
1353 
1354   // Update the successor information.
1355   replaceSuccessor(Old, New);
1356 }
1357 
1358 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1359                                            MachineBasicBlock *New) {
1360   for (MachineInstr &MI : phis())
1361     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1362       MachineOperand &MO = MI.getOperand(i);
1363       if (MO.getMBB() == Old)
1364         MO.setMBB(New);
1365     }
1366 }
1367 
1368 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1369 /// instructions.  Return UnknownLoc if there is none.
1370 DebugLoc
1371 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1372   // Skip debug declarations, we don't want a DebugLoc from them.
1373   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1374   if (MBBI != instr_end())
1375     return MBBI->getDebugLoc();
1376   return {};
1377 }
1378 
1379 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1380   // Skip debug declarations, we don't want a DebugLoc from them.
1381   MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1382   if (!MBBI->isDebugInstr())
1383     return MBBI->getDebugLoc();
1384   return {};
1385 }
1386 
1387 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1388 /// instructions.  Return UnknownLoc if there is none.
1389 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1390   if (MBBI == instr_begin()) return {};
1391   // Skip debug instructions, we don't want a DebugLoc from them.
1392   MBBI = prev_nodbg(MBBI, instr_begin());
1393   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1394   return {};
1395 }
1396 
1397 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1398   if (MBBI == instr_rend())
1399     return {};
1400   // Skip debug declarations, we don't want a DebugLoc from them.
1401   MBBI = next_nodbg(MBBI, instr_rend());
1402   if (MBBI != instr_rend())
1403     return MBBI->getDebugLoc();
1404   return {};
1405 }
1406 
1407 /// Find and return the merged DebugLoc of the branch instructions of the block.
1408 /// Return UnknownLoc if there is none.
1409 DebugLoc
1410 MachineBasicBlock::findBranchDebugLoc() {
1411   DebugLoc DL;
1412   auto TI = getFirstTerminator();
1413   while (TI != end() && !TI->isBranch())
1414     ++TI;
1415 
1416   if (TI != end()) {
1417     DL = TI->getDebugLoc();
1418     for (++TI ; TI != end() ; ++TI)
1419       if (TI->isBranch())
1420         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1421   }
1422   return DL;
1423 }
1424 
1425 /// Return probability of the edge from this block to MBB.
1426 BranchProbability
1427 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1428   if (Probs.empty())
1429     return BranchProbability(1, succ_size());
1430 
1431   const auto &Prob = *getProbabilityIterator(Succ);
1432   if (Prob.isUnknown()) {
1433     // For unknown probabilities, collect the sum of all known ones, and evenly
1434     // ditribute the complemental of the sum to each unknown probability.
1435     unsigned KnownProbNum = 0;
1436     auto Sum = BranchProbability::getZero();
1437     for (auto &P : Probs) {
1438       if (!P.isUnknown()) {
1439         Sum += P;
1440         KnownProbNum++;
1441       }
1442     }
1443     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1444   } else
1445     return Prob;
1446 }
1447 
1448 /// Set successor probability of a given iterator.
1449 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1450                                            BranchProbability Prob) {
1451   assert(!Prob.isUnknown());
1452   if (Probs.empty())
1453     return;
1454   *getProbabilityIterator(I) = Prob;
1455 }
1456 
1457 /// Return probability iterator corresonding to the I successor iterator
1458 MachineBasicBlock::const_probability_iterator
1459 MachineBasicBlock::getProbabilityIterator(
1460     MachineBasicBlock::const_succ_iterator I) const {
1461   assert(Probs.size() == Successors.size() && "Async probability list!");
1462   const size_t index = std::distance(Successors.begin(), I);
1463   assert(index < Probs.size() && "Not a current successor!");
1464   return Probs.begin() + index;
1465 }
1466 
1467 /// Return probability iterator corresonding to the I successor iterator.
1468 MachineBasicBlock::probability_iterator
1469 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1470   assert(Probs.size() == Successors.size() && "Async probability list!");
1471   const size_t index = std::distance(Successors.begin(), I);
1472   assert(index < Probs.size() && "Not a current successor!");
1473   return Probs.begin() + index;
1474 }
1475 
1476 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1477 /// as of just before "MI".
1478 ///
1479 /// Search is localised to a neighborhood of
1480 /// Neighborhood instructions before (searching for defs or kills) and N
1481 /// instructions after (searching just for defs) MI.
1482 MachineBasicBlock::LivenessQueryResult
1483 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1484                                            MCRegister Reg, const_iterator Before,
1485                                            unsigned Neighborhood) const {
1486   unsigned N = Neighborhood;
1487 
1488   // Try searching forwards from Before, looking for reads or defs.
1489   const_iterator I(Before);
1490   for (; I != end() && N > 0; ++I) {
1491     if (I->isDebugOrPseudoInstr())
1492       continue;
1493 
1494     --N;
1495 
1496     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1497 
1498     // Register is live when we read it here.
1499     if (Info.Read)
1500       return LQR_Live;
1501     // Register is dead if we can fully overwrite or clobber it here.
1502     if (Info.FullyDefined || Info.Clobbered)
1503       return LQR_Dead;
1504   }
1505 
1506   // If we reached the end, it is safe to clobber Reg at the end of a block of
1507   // no successor has it live in.
1508   if (I == end()) {
1509     for (MachineBasicBlock *S : successors()) {
1510       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1511         if (TRI->regsOverlap(LI.PhysReg, Reg))
1512           return LQR_Live;
1513       }
1514     }
1515 
1516     return LQR_Dead;
1517   }
1518 
1519 
1520   N = Neighborhood;
1521 
1522   // Start by searching backwards from Before, looking for kills, reads or defs.
1523   I = const_iterator(Before);
1524   // If this is the first insn in the block, don't search backwards.
1525   if (I != begin()) {
1526     do {
1527       --I;
1528 
1529       if (I->isDebugOrPseudoInstr())
1530         continue;
1531 
1532       --N;
1533 
1534       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1535 
1536       // Defs happen after uses so they take precedence if both are present.
1537 
1538       // Register is dead after a dead def of the full register.
1539       if (Info.DeadDef)
1540         return LQR_Dead;
1541       // Register is (at least partially) live after a def.
1542       if (Info.Defined) {
1543         if (!Info.PartialDeadDef)
1544           return LQR_Live;
1545         // As soon as we saw a partial definition (dead or not),
1546         // we cannot tell if the value is partial live without
1547         // tracking the lanemasks. We are not going to do this,
1548         // so fall back on the remaining of the analysis.
1549         break;
1550       }
1551       // Register is dead after a full kill or clobber and no def.
1552       if (Info.Killed || Info.Clobbered)
1553         return LQR_Dead;
1554       // Register must be live if we read it.
1555       if (Info.Read)
1556         return LQR_Live;
1557 
1558     } while (I != begin() && N > 0);
1559   }
1560 
1561   // If all the instructions before this in the block are debug instructions,
1562   // skip over them.
1563   while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1564     --I;
1565 
1566   // Did we get to the start of the block?
1567   if (I == begin()) {
1568     // If so, the register's state is definitely defined by the live-in state.
1569     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1570       if (TRI->regsOverlap(LI.PhysReg, Reg))
1571         return LQR_Live;
1572 
1573     return LQR_Dead;
1574   }
1575 
1576   // At this point we have no idea of the liveness of the register.
1577   return LQR_Unknown;
1578 }
1579 
1580 const uint32_t *
1581 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1582   // EH funclet entry does not preserve any registers.
1583   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1584 }
1585 
1586 const uint32_t *
1587 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1588   // If we see a return block with successors, this must be a funclet return,
1589   // which does not preserve any registers. If there are no successors, we don't
1590   // care what kind of return it is, putting a mask after it is a no-op.
1591   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1592 }
1593 
1594 void MachineBasicBlock::clearLiveIns() {
1595   LiveIns.clear();
1596 }
1597 
1598 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1599   assert(getParent()->getProperties().hasProperty(
1600       MachineFunctionProperties::Property::TracksLiveness) &&
1601       "Liveness information is accurate");
1602   return LiveIns.begin();
1603 }
1604 
1605 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1606   const MachineFunction &MF = *getParent();
1607   assert(MF.getProperties().hasProperty(
1608       MachineFunctionProperties::Property::TracksLiveness) &&
1609       "Liveness information is accurate");
1610 
1611   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1612   MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1613   if (MF.getFunction().hasPersonalityFn()) {
1614     auto PersonalityFn = MF.getFunction().getPersonalityFn();
1615     ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1616     ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1617   }
1618 
1619   return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1620 }
1621 
1622 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1623 const MBBSectionID
1624     MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1625